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M. M. Postnikov [1) defined the natural system of an arcwise-connected space
and its complex which is a generalization of Eilenberg-MacLzane’s complex (3), and
he obtained its geometrical realization (2].

It is the purpose of this paper to consider the properties of these systems and
complexes of a space and of the space of loops on it, and to extend the theorems,
concerned with the properties of Eilenberg-MacLane’s complexes and their geometri-
cally realized spaces (see (4], (5], for examples), to the case of Postnikov’s comple-
xes. In §§2 and 3, we shall construct the natural systems and their Postnikov’s
complexes of a topological space and of the space of ':100ps on it, connecting them
each other by some special relations (theorem 3.12).

In §4, we have occasion to discuss the realization problem, and the following
theorems are given:

THEOREM 4.2.  If the natural systems of two spaces are isomorphic, then the
natural systems of the spaces of loops on them are so also.

THEOREM 4.3. For a given system (G, , k: ) satisfying some conditions, there
exists a space of loops whose natural system and the given system are isomorphic
if and only if G; operates trivially on G: (7=2).

In §5, two problems will be considered, which are generalizations of Serre’s (4]
and of Cartan-Serre’s fibering (6], i.e, :

THEOREM 5.1. Fortwo systems H and F satisfying some conditions, there exists
a fibering (E, X, F, p), in the sense of Serre (4], such that the natural systems of
X, and F are isomorphic to H and F respectively.

THEOREM 54. For two systems (Gi, ki), (H:, 1) and groups F; (=1, 2,-)
with some conditions, assumec that the following sequence

—> F, —> G, — H,—> Fio1—> - —> Hy—> F|—> Gy —> H,—0
is exact. Then there exists a fibering (E, X, F, p), in the sense of Serre (41, such
that the natural systems of £ and X are isomorphic to {(G:, k) and (H:, i)
respectively and the homotopy exact sequence of this fiber space E is isomorphic to

the given exact sequence.
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In this paper we quote the notations, definitions and Postnikov’s theorem from
a report by P.]J. Hilton (7], which we rewrite in § 1 of this paper without essential
modifications.

§ 1, Preliminaries

1. The system

A non-decreasing sequence of (»+1) terms of non-negative integers <7 is called
an (7, p)*-sequence. If the terms are distinct it is called an (», p)-sequence. If
a is an (7, p)-sequence, we denote by a? the (7, p—1)-sequence obtained by omit-
ting the Z-th term (£=0, 1,---, p), and by a-! the (», r-p-1)-sequence complementary
to a. We identify an (7, 0)-sequence with its single element. A function defined
on (7, p)*-sequences taking values in an additive abelian group G and taking the
value 0 on non-(», p)-sequence is called an (7, p)-function over G. .

Given a multiplicative group G, let K (Gy) be its cell-ccmplex in the sense of

Eilenberg-MacLane (3]. The face Aa of an 7-cell A is an (r—-p-1)-cell, obtained from
A by deleting from its matrix representation the rows and columns whose numbers
belong to a. If 8, is an isomorphism G;=H), the mapping 8.: K(G) —~>K(H)) is
given by 8, A= | 6:(dy)|, where A is the matrix |dyl, Z, 7=0,1,, 7.

A cell complex K is called a (G), o)-complex if

1) to every r-cell A and every (7, p)-sequence a corresponds an (r-p-1)-cell A%

2) o:K ->K(G) is dimension preserving and o (A% =(c4)%,

3) the boundary of A is given by é’ (=1)t AW,

Let G, act-as a group of left operators on G. Let C” be an 7-cochain of the (G},
o)-complex K over G. Define a coboundary p. by

Po C7(A) =0 (A)CT(A®) + 32 (~1)* C7 (A®),

for every (r+1)-cell 4, cnu(A) being the element of the matrix o (A) with indices
0, 1.

We now construct the p-augmented complex of K over G with factor k, where
k is a (p+1)-po-cocycle of K, and call the new complex K'. An r-cell of K' is to
be a pair (A, @) where A is an 7-cell of K and @ is an (7, p)-function over G

satisfying
+1 -1
O g, (AP @) + T (-1 p@®) +k(A" ) =0,

for every (7, p+1)-sequence a= (@, @, . @p+1)
Given an (7, g)-sequence a, and an (r-g-1, p)*-sequence b, we define the (7, )=
sequence c=aob as follows; Take the sequence O, 1,--, 7. Remove the (g+1)

elements in a and renumber the remainder O, 1,---, 7-¢-1. The sequence b picks
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out, perhaps with repetitions, (#+1) elements in this sequence. These elements,
with their original numbers, are the elements of ¢. Now define (r-g-1, p)-function
¢8by‘ cpa(b) =@ (aob) and define (A,(p\a as (A", goa). Finally, we define a'(A. @) =
o (A), so that K' is a (G, o)-complex. If we identify the cell (4, 0) with A4,
where dim A<p, we have K?»-1=K'»-!, K?» CK'?,

Let us define a system (Gi, Ga,-:, Gn,; ki, k3, &n,-), which we call G. G,
is a multiplicative group of left operators on the additive abelian groups G:, 122,
Denote K (G)) by K, and let K. be the (7+1)-augmentation of K: over Gi.t
with factor £, where ki is an ({+2)-p,-cocycle of K;over Gii, 2=1, 2,--. Then
the sequence (G,, ki, Gz, k2,---) is called a system, written G=(G:, k:), the com-
plex K, is called the cell-ccmplex of G and the sequence of complexes K, Kg, -
is called the complex K (G).

A mapping u of the (G|, o)-complex K on the (H), ¢’)-complex L is called a
0,-isomorphism if

1) @, is an isomorphism G ,=H |,

2) p preserves dimension and is (1-1),

38) for every cell A € K and every sequence a, ,u,(Aa) = ( y,A)a,

4) for every cell 4, 8,0 (A) =o' (nA).

An isomorphic mapping, %, of the group G on the group ff (on which H; acts
as a group of left operators) is called a @,-isomorphism if (e g) = (01 @) (n g), ag&Gy,
g€G. 1f p: K-> L and »:G—H are 0r-isomorphisms, and if C"is an 7-cochain of L
over H, we define u*C”, an r-cochain of K over G, by

u*Cr(A) =n"1(C"(nA)).

Now suppose L’ is the p-augmentation of L over / with some factor /, and
suppose further that there exists a p-cochain, d, of K over G, such that £—-u*/=
pod. Define the @;-isomorphism V of K’ on L' by V (4, @)= (#4, ), where the (7,
p)-function vr over H is given by

V() =n{p(a) +d (4% )}

It is called the %-prolongation of x with cochain d.

We now.say that two systems G=(G:, k:) and H= (H:, ;) are isomorphic if
there is given for each 7 an isomorphism 6: : G; =H such that €, is a #,-isomorphism
if £>1, and such that there exists for each ¢ a ¢,-isomophism O: of Kion Li, &
being a 8. -prolongation of d.-1, where K. and L; are the cell-complexes of the systems
G and H respectively.

2. The natural system of a space

We wish to associate a system G=(G:, k) with an arcwise-connected topolo-
gical space X. The groups G: will be the homotopy groups of the space. Put K=
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K (G;). A O-dimensional singular simplex in x0 is normal. A singular simplex of
arbitrary dimension is called 0-normal if all its O-faces are normal. As shown in
[3], there is a natural mapping, w;, of the 0-normal singular simplexes of X into
K, say w;:S1(X)—>K |, such that w(T") is an7r-cell A] of K. Moreover, the 1-
cells and 2-cells of K; are covered by w;. We make the inductive hypothesis that
K is constructed, and that a definition of (#-1)-normal singular simplexes has been
given, moreover, that, if S;(X) is the complex consisting of (Z-1)-normal singular
simplexes, there is a mapping wi: Si(X)-> K, such that w:;(T") is an 7-cell of
K;, and that the Z-cells and (¢ +1)-cells of K; are covered by w;. With each 7-cell
A} of K; we associate an (Z-1)-normal T} such that w:(T}) =A% and call it the
normal Z-dimensional singular simplex of X corresponding to A;,., Then 77 is 7-
normal if it is (Z-1)-normal and all its 7-faces are normal. For each (7+1)-cell,
Aj*l, of K., chocse an Z-normal T4 with w;(T{) =Ai*,, and call it the standard
(Z+1)-singular simplex of X corresponding to Ai*!, Let the boundary of an (7 42)-
dimensional Euclidean ordered simplex, A**2 be mapped into X so that the map of
the 7-th face defines T:!%' an (7+1)-dimensional standard singular simplex of X
corresponding to the 7-th face A!**” of an (7+2)-cell A}*? of K:. Taking the base
point in A% as the zero vertex, we can choose the map so that it represents an
clement of 7.+ (X ). Associating the cell Ai*? with this element defines the factor
k; , which turns out to be an (7+2)-p, -cocycle.

Let TT be Z-normal. Every (7, Z+1)-sequence a determines an (7+1)-face
Tr(a) of T’, spanned by the vertices whose numbers belongto a. Let T7(a)s be a
standard (7-+1)-simplex with w.(T7(a)s) =w.(T7(a)). The simplexes T"(a), T"(a)s
are distinguished from each other by an element @, ,(a) of =...(X). It turns out
that the pair (w:(T7), @,,) is an 7-cell of K.... We put

w1 (T ) = (w; (T7), ‘7’1’4»1)-

Continuing the construction, we obtain the sequence of factors of the system G
and we also define, in each dimension, the concept of a normal singular simplex. G
is cailed the natural system of the space X. Its construction involves a certain
arbitrariness, but all natural systems of a space are isomorphic.

A system G” is called 7n-segment of the system G if

H, = [G:. (7=, , ={k£ . (i),

lo, (i>n), 0,  (izm),

whera G'=(H:, 1,),G=(G:, k). Two systems are called n-isomorphic (1<n< )
if their (#-1)-segments are isomorphic. The complexes K.-1(G), K.-1(H) must be
isomorphic when G and H are »-isomorphic.

THEOREM (Postnikov). Every system is z-isomorphic (1<7< ) to the natural
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éystem of some n-dimensional CW-complex.

§ 2. The natural system of a space of loops I

In §§ 2-4, X will denote an arcwise-connected simply-connected topological
space. We shall denote the Z-th homotopy group 7: (X, %) and the natural system
by z: and (m:, ki) respectively. Let K; and e” be the cell-complex of (7:, k) and the
unique 7-cell of K=K (7)) respectively. For the (7}, o) -complex K1, o : K1—> K (71)
is the identity map, and o i al(A§) is the unit element of m; for each cell A]. Let
us define the normal 1-dimensional singular simplex of X corresppnding to el and
the standard 2-dimensional singular simplex of X corresponding to 2 by the collapsed

simplexes. Consequently we have k;=0.
Let X be the space of loops on X with the base point xo. Hereafter each

notation covered by A denotes the notation concerned with the space of loops. In
particular, &r is the 7-dimensional matrix | dy|| where dy is the unit element of 1
for each 7 and j. _
THEOREM 2.1 %, operates trivially on #. (n=2).
PROOF. We denote by E* and I the z-element and the unit interval. Let [ f ]
be an element of #y, i.e,
f=j°(y) . EL Bt > }2", 2o,
f(y)(s)=f(y, s): EixI, (EixI)" = X, xo.

where s being the parameter of loop.
A
Let B be an element of #. and £ be its representation:

§'=<§(ny yZ.-"',.yn) . En’ vls:n —> .(TA{, %0,
é.(yl’ J; )%y J’n) ($> =g(.‘)’l, N2yt ety Yno S) : Ean’ (Ean). '—)X’ X0.
A
We denote by f *(,é) the image of ,é by {f] and let fto be a representation of
I (;é) defined as follows:

flo=ﬁ0()’1, 32,00 yn) : E", E”—))ﬂf, .'?Co,
AN
B (¥, 92,5 92) (8) =B, Yo,y ¥n, S) 3 Enx I, (E"xI)"—> X, %o

(721, 29, (1ze=, 0ss<+)
l.'x'o, (1;22__—;—, %,5__331),

)
1),

l\')l)—l |

(52220, 0ss<

A

{xo; —-2—-
1 1
g(2y1,"‘: 2_’}’;1, 23“1} (-2—2_2_2_0’ -—2—

IA

S

where 2=V 92+ 2+ ---+ 32 -
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Let %, be another representation of ,é defined as follows:
fu=hi(31 32, 30) : E®, En > X, 2,
Ry(Yy Yoo 90) () =Ri(D1, 32, ¥n, S) : Enx I, (E"xI) - X, %o
1
’ X0, (1222 5 0sg1 ),

I (=220, osss—4),
]g(zylr zy"’ 25 - 1)1 (%;zgo, —;—ﬁsél).

Then we have the homotopy between ;;;0 and ’/;1 defined by the following
expression :

ﬁt: ﬁl(yl, Y2, J’n) : En, En_)k’ -’?0,
iil(yh V2500 yn> (S) :ht(yly V2,05 Yn,y S) : E”XI (E"XI).—)X, X0

{f(l—Z(l—tv). (1-2), 2s), (122:2 ; , O_S_-sgé),

: 1 1
B %o, (1_2_z;—§—, —z—éssl),
= . .
S 2, (2220, o0sss),
g2y, 2yn, 25=-1) (—l—zzgo _1_<351)
? 1 7 Ly ’ 2 = ’ z =¥ = .

Thus the proof of theorem 2.1 is complete.
Define prii: A1 > 7%xI by

Uy, 132,531 9r11) M1+t F Y= Pre1),

Pr '(yb Y2yoos Yr )={
" * (myll myz,---, my"+l>' (J’1+J’2+'-'+yr_§yr+1),

N+t Pret Nt Pra
Yttty and ™ Pert

Oéyl.él, Z.=1, 2,...’ f+1}
0O<yi+y2+ -+ yrn=l

where l=

, and

Ar+1= { (J’I, y27"' )J"‘* 1) :

is an (r+1)-dimensional Euclidean simplex and A" is the 7-face AT*1"+D of A™!
contained in the hyperplane ¥,.1=0:

Let T7: a7 X be an 7-dimensional singular simplex of X and define Er+1 by
Erui(P, s)=T7(P)(s) where P ¢ A". Define 7: 17> T+ by

A
TTr= Er+x°Pr+l AT > X,

We use the same notation = for the induced map: [T’]—)[T”'j subject to the
condition that [T’J is an element of 7, It is easily seen that
1)) 'r.[f‘ N> (T*') is an isomorphism of ‘r ONEO TCrsn,
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2) Tr+1(i)=,r(f‘r(i))’ z.=01 1," » 7,

3) Tr+¥v+V js5 the collapsed simplex (see notations of [8)).
Define @il , (r+1. Z+1)-function over 7., by

Tyl (@, @y a),  (Ga=r+]1),

r+1 , a,..'., $ ={
Piiiy @ v aa) Ty (@5 <7+1),

where Y is an (7, 7)-function over #: and (a, a1,-*, @:+1) is an (r+1, £+1)-sequence.
And- denote by « this transformation from 7 to @[/, . Let A\7= ¥z, )| be a
matrix répresentation of an 7-cell R 1, and define ¢ on R 1 as follows:
aﬁ[=(e"+’ a ),
1If o wes defined on K, we define a on Ky.1 as follows

A A
a A7z.+1= (a A:a 24 11":;1),

where A;'+1= (A\{, i) is an 7-cell of K «+1. Then we have the following lemma,
LEMMA 2.2. o 75 an isomorphism (into).
This is trivial.
LEMMA 2.3. If a=(ao @i ap-1, ap) is an (1, D)-sequence, ¢=a® and -1
is an (r-1, i-1)-funciion over -1, then we have

(! a—lz{a(ﬂf?_‘}c-l), (@p=7),

0, (ap<7).
PROOF. 1° a,=7: Let b= (b, by,---, b)) be a (P, 7)*-sequence.
_ -1 -1
If b;= P, (a\]’t:})a (bc: by, bicy, ?,\)x: 7(\&'{.:{‘: (bO, by, bi-l))y

if b;< P, since the last element of a~lob is less than 7, we have

@D (B, by ) = (@ o) (a-lob) =0,
Thus we have (« \P{:})a“1=d (i c-I),
2° a,<r: Since the last element of a-icb is less than 7 for each sequence b, we
have
@™ (b) = (@ i) (alob) =0.
LEMMA 2. 4. If a, ¢ are the same sequences given in lecmma 2,3, then

A c—l
Aoy (AT =7,
) (,,,((ep’ O)s 0)"')0), (dp(f).

PRGOF. 1°. a@,=7: In the cace 7=3, for an (r—1)-cell A{"= [r-1(Z, /), we
have ‘

@A = @, a w9 = @, @)
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= (e?, a( ’r‘c_l)) =a( AI“C_’)-

-1 -
Making the inductive hypothesis as follows: (« A;:S‘)a =a(ﬁ;:;° ]), let us
consider an (r—1)-cell Aj-}= (A]Z}, Y¥72)). Then we have
A ~1 A -1 a1 A ~1 -1
@ArH® ) = (@ &)™, (@) )= (@A), awt )

A ¢l c-! A ¢l
=a(A7y Win T ) =al4l ).

LA a-! A a-1
2°, ap<7: (@A} = (@472 , 0 =-=(-((e, 0), 0)--, 0).
THEOREM 2.5. If Art=|y5-1(G, /)| is an (r-1)-cell of Ky, A;, =a A;=
(er, a ™" is an r-cell of K.
PROOF. In the first place we have to remark that ! has the following

relations :
YN(E, 7)Y, D) =N D), (7,7, 1=0,1, ,7-1).
When 7=2, since a "' is a (2, 2)-function over w2, (€2, a) is a 2-cell of K.

Consider the casé r>=3. Let a= (ao, a1, @, a3) be an (7, 3)-sequence.
1°. a3<7r: It is trivial
2°. a=7r: ay;(a®) +J2;(-- 1) o 1 (a))
=7 (Y[ (@1, a2) — ¥ (a0, az) +Y¥ 7 (@, @) =7(0) =0,

THEOREM 2.6.  wz(«+T7) =a (i, T7).

PROOF. By the definition of w;, we have w; (Tf‘") = (e, p;*") where
q:;“(zi) ={{(r '}') (@)3 for each (r+1, 2)-sequence a= (ao, @), az).

On the other hand, &7 =|¥;(, 7) | where ¥ (b) =(T"(b)] for each (7, 1)-
sequence b,
1°. a=7-+1: Put b=a®. Since v(17(b)1=C(r T) (a),], we have @}*'(a) == ¥ (b).
2°, ap<r+1: @;*'(a)=0.
Thus we have @*!=a ¥ and then wa(+17) = (@, & ¥ =a | Y1¢, H] =a@d).

DEFINITION 2.7. We define T} corresponding to &! by the collapsed simplex
and T 1 corresponding to other 1-cells by the method given in § 1.

DEFINITION 2.8. When T} is the normal 1-dimdnsicnal singular simplex of
X corresponding to A}, then we define T 3 corresponding to Al.=a f'i{ by Tf‘ ¥

REMARK. All 2:cells of K2 are covered by & and therefore the definition of
the normal 2-dimensional singular simplex of X corresponding to each 2-cell of K2
was given by the above definition.

LEMMA 2.9, Tj% corresponding to Ai=(e? Q) is the collapscd simplex
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This is easily seen by definitions 2.7 and 2.8.
A
DEFINITION 2, 10. We define T% corresponding to €2 by the collapsed simplex

and YA‘; corresponding to other 2-cells by the method given in § 1.

DEFINITION 2.11.  When 7% is the standard 2-dimensional singular simplex
of X corresponding to A‘;’ we define T% corresponding to A, =« Al by T 1’\‘3 and T3
corresponding to other 3~cells by the method given in § 1.

LEMMA 2.12. T3 corresponding to A= (€3, 0) is the collapsed simplex.
This is easily seen by definitions 2.10 and 2.11.

THEOREM 2.13.  kz(et, 0)=0

PROOF. Since (et, 0)P=(e3, 0), 7=0, 1, 2, 3, 4, and T% corresponding to (€3, 0)
is the collapsed simplex, we have k(e 0) =0.

THEOREM 2.14.  ky=r-lokypa.

PROOF. Let A}, T2 and f be a 3-cell of Ky, the standard 2-dimensional
singular simplex of X corresponding to the j-th face /ifw of //J‘.l and a representation
of an clement of #; defined by f|a*?=T%, 7=0, 1 2,3 respectively. Then, by the
definition, we have

By i A > 0f)ck
By lemma 24, we have

(@ AP =a (A1), (=0, 1,2 3),

(@ Ap®=(e, 0). |
Consequently T% corresponding to (« A'}’) @ is -r’.;‘j‘ls (7=0, 1, 2, 3) or the collapsed
simplex (j=4). Therefore we have kz(a Af):[ f) where f: At —> X is defied as
follows: _ |

flaw=2Tz  (j=0,1,23),

and [l is the constant map.
Thus we have

A .
ki=7t"lokoc.

§ 3. The natural system of a space of loops II
A
In this section, in the process of definition of the natural systems of X and X,

we assume that

K-nJl, Sa-1 (X) s Wiu-1, T’&_l, Tg, kn—l,
A , A A A e A A .
Kn—ﬂ, Sn—‘)_(X), W, -2, Tj.\r " -[1:; ) k;n‘g, (n=3, 4,..., Z)

are defined by the method of § 1 and satisfying the following five relations:
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1) When A;:; is an (r-1)-cell of I%n—S, A4, ., =a Aj’,"_" is an r~cell of Kn-1.

2 wanr (v T7) = (@u-2 T).

3) TA"};? corresponding to (---((€*~% 0), 0),---0) is the collapsed simplex. When
YA"“Z is the normal (#~2)-dimensional singular simplex of b'g corresponding to fi::%,
Tt correopo*mdmg to An-l, —aA}';:: is T T“’

4) T" L corresponding to (---((e*Y, 0), 0)---,0) is the collapsed simplex. When
T" ! is the standard (n~1)-dimensional singular simplex of X corresponding to A}:Zm
T'% corresponding to Aj_,, =« A;::; is -rTg"l.

5 FEuos=7"lckaioa.

REMARK 1. T corresponding to (--- ((e*-1,0),0)--,0) is the collapsed simplex.

T% corresponding to (--- ((e", 0), 0)---, 0) is the collapsed simplex.

REMARK 2. If 7 belongs to Su_1(X), T 2 belongs to S.(X).

REMARK 3.  ao(((6", 0), 0)---,0) =0,

kn-l(---((e:“, 0), 0)---,0) =0. ) )

THEOREM 3.1, If AjZ} is an (7-1)-cell of K-y, then Aj, =a A}zl is an 7-
cell of K.

PROOF. The case ¢ -2 was proved in theorem 2.5. We assume that £ >2. Put

A'-l"'(At 5 Yol P =a Y],
where A’ l*—aA -1 is an 7-cell of K;-1 by the inductive hypothesis. Let a = (ap,
ay,--, @;+1) be an (7, 7+1)-sequence.
1°. a@n<r: Since @ (a®) =0 and A;_2 Y= (o ((et*y 0), 0) -, 0),

we have
T+1 . a—l
,g(-— 1)/ piu (@) + ki1 (Af_x ) =0.
2°, ai1=7: Put c=a%!, Then we have
i+t ) ) a-l i , , A ¢!
2D @)tk (Al ) =S (=D 7Pz (€D) Hhia (AT )
i . A A ¢!
='r(j§_.‘o(—1)’ﬂlff_‘1‘ (€P) +ki-2(A]Z} ) =7(0) =0.
LEMMA 3.2. If T is the constant map: A7 —> xo,

w; T7= (- ((e7, 0), 0)---,0).

PROOF. It is trivial in the cases Z=1, 2. Assume that this lemma holds in
the cases 7=1, 2,---,7-1. By the definition of w; we have

w; Tr=(w;-. T", @),

where @j(a) =(T"(a) —~T"(a)s] for each (7, j)-sequence a.
Since T7(a) is the collapsed simplex, we have w;-T" (a) = (---((e", 0), 0)-+-,0) and
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T(a)s is the collapsed simplex. Consequently @] is the constant map. Therefore
we have
w; T = (w0, T", 0) =+ = (- (e", 0, 0) -+, 0).
THEOREM 3.3.  wi(r T =a(@. 1.
PROOF. By definition, we have
wi (B = it (T, @) = (@ i1, @I,
where A
@;+(a) =Cr 17 (@) - (+17(a))s]
and a= (a4, @1,,a) is an (r+1, #)-sequence. ‘On the other hand,

i = oo T, Vi
~ where
7.(b) =17 - (7 (1))

and b is an (7, Z-1)-sequence.
1°. ai=7+1, b=a®¥: In this case it is easy to see.that

Pt (@) =T (b).
2° a<lr+l: T f"(a) is the collapsed simplex and therefore (7 f"(a))s is also the
collapsed simplex. Consequently @*'=0. Thus we have

pitl=a Yioye

DEFINITION 3.4, We define T's' corresponding to (- ((¢"% 0), 0)-, 0) by
the collapsed simplex.

DEFINITION 3.5, When T%! is the normal (¢ —1)-dimensional singular sim-
plex of b'e corresponding to Af_:{, then we define T'% corresponding to A;?*;‘aflj:{ by
7 ol

LEMMA 3.6. ; corresponding to (- ((¢', 0), 0)--, 0) is the collapsed
simplex, 1t is easily seen’ by definitions 3.4 and 3.5

DEFINITION 3.7. T ¢ corresponding to (- ((e* 0), 0)---,0) is defined by the
collapsed simplex.

DEFINITION- 3.8. When IA‘ is the standard f-dimensional singular simplex
of X corresponding to Al » we define T%! corresponding to Al*\=a Ag_l by. f‘g

LEMMA 3.9. Tist corresponding to (---((ett, 0), 0)«-,0) és the collapsed-
simplex. This is easily seen by definition 3.7 and 3.8,

THEOREM 3.10. k(- ((e*% 0), 0)+-. 0) =
Tt is a trivial result of Iemma 3.9.
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THEOREM 3. 11. Bia=r-lokioa.
PROOF.  Let A!*l be an (¢+1)-cell of K1, T ) be the standard 7~dimensional
A A
singular simplex of X corresponding to the j-th face fiﬁ’:{‘”—.of Aitl and -f be a

representation of an element of 7#; defined by
Flamd=Ty, (=0, 1, i+1).
Then we have
kioy: At - .
By lemma 2.4, we have
(@ Ary O =u Aoy, (G=0, 1o, i+D),
(@ A @D = (. (e, 0), 0) -, 0)

Consequently Tit! corresponding to (« A“l)w' is 'rTfS (7=0, 1,+-, §+1) or the
collapsed simplex (F7=74+2).

Therefore we have

k(A =01,
where f: A2 X is defined as follows:
flatted =1 TjS’ (7=0, 1,---, £+1),
1A+ = ¢he corstant map.
Namely éi—l'—"T-lokioa.

We are now in a position to conclude the studies of §§2 and 3:

THEOREM 3. 12, Let X and X be an arcwise-connected simpbly.connected
Zopological space and the space of loops on X respectively. Then we can
construct the natural systems of X and X which satisfy the following relations
Jor each i=3.

1 If ﬁ;:; is an (r—1)-cell of I%z—g, A;_l*=a/’1\;:; is an r-cell of Ki-i.

2) wii(v T =a(@iT7),

3) T corresponding to (- ({€i%, 0), 0)--, 0) is the collapsed simplex.

T4t corresponding to (- ((et"1, 0), 0)--, 0) Zs the collapsed simplex.
1/ 3?“"” is the normal (i-2)-dimensional singular simplex of b'e corresponding
1o A‘ 2 'rT‘ 2 7s thﬂ normal (Z-1)-dimensional singnlar simplex of X corres-
pondmg fo Aizly= chL 2

4) Cl‘fS 1 corresponding to (---((&-1, 0), 0)---, 0) Zs the collapsed simnplex.

T corresponding to (---((et, 0), 0)---, 0) Zs the collapsed simplex.
Iy T‘ L s the standard (i-1)-dimensional singular simplex ofX corresponding
io AE LT T il is the standard :-dimensional singular simplex cf X corresponding

o Al_.=a Ag_2 .
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5) kiaC (@, 0),0)-, 0)=0,
ki—l("‘((ei”“, 0), 0)’ 0>=0’
ﬁi_2=7*10ki-k0a.

§ 4. Isomorphism of natural systems

Let X and Y be two arcwise-connected, simply-connected topological spaces,
and X and I'/\' the spaces of loops on X and Y respectively. We make the assump-
tion that the natural systems G= (G, ki), G = (Gi, F), H=(H:, I:) and A= (., 1))
of X, X , Y and IA/, respectively, have been defined such that they satisfy the

-relations given in theorem 3.12.

Let K, 13 i Li and ii be the cell-complexes of the above systems G, é, H and
fI respectively. Put €' =|d.u|, E*=||Dwnl, @us=1€ Gy, Dmm=1 € H}, m=0, 1,---, 7,
n=0, 1,---, 2.

Assume that G and H are isomorphic, i. e, there exists for each ¢ an isomorphism
0:.: Gi=H; such that 6; is a 0;-isomorphism if > 1, and such that there exists for
each ¢ a @-isomorphism @; of K: on L; @; being a ¢;-prolongation of -, with i-
cochain d;_;.

LEMMA 4.1. fia Ki=a L.

PROOF. In the first plaée! we intend to prove the case 7=1. Let ||[](z, 7)|
be an 7-cell of I%;. Then we have

allyi(@, Il = (e, ay)) CK,,
G |V, D= (E™, 05" € Ly,
where
0;7(a) =02 (Y @) +di(e ™))
for each (r+1, '2) -sequence a= (ay, a;, @2). Since k=0 and /=0, we have d{=0 and

i
Define an (7, 1)-function #7 as follows:

¥i(an, @) =771 07 (a0, @y, 7+1)
for each (7, 1)-sequence (@, a)). Then we have that [¥] (Z, j)|+ j=o. 1,00, » iS an
7-cell of Ly, and

al¥; @, HI=E", o;Y) € L.
Conversely, let | #7(, 7)|| be an 7r-cell of L. Then we have

al G Hi=E™, a?) c L

Put @l*'=0;'oao¥]. Then we have
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P (a) =6;'a¥i(a)=0
for each (r+1, 2)-sequence a= (@, a;, &;) with @&<r+1.
Put

Y (ay, a) =7""'@;" (a0, a1, T+1).
Then |

G: | (5, Hl=(E™', a¥).
Secondly we make the inductive assumption that the following relation

gi_a f%zq:a £r-l

A ~ A ~ A

has been proved. Let A§= (A;‘_,, W) be an r-cell of Ki.. Then i.i Ar=(.ax A]_,,
o7 is an (r+1)-cell of Ly,
where

A -1
0721 (a) = Gis (@ Wy (a) +d((@ A7) )

for each (7-1-1, £4-1)-sequence a= (@, @1,***, Gi+1).
In the case a1 <71,

a‘?f(a) =0r
di((a Ar=® " =d. (. (e, 0), 0) -+, 0) =0,
i.e., o7\ ao, @+, @) =0 for ain<r+L

Put
¥ (ao, @y, @) =710 (a0, @y, @, r+1).

B A A
By the inductive hypothesis there exists an 7-cell B7_, of Li-y such that
A ~ A
aB;_ =0.aAj_,.

Since (4. a A\{_.l, or!) is an (r+1)-cell of Li+i, for each (r+1, 7 +2)-sequence a we

have

i+

-~ A -1
(=1)7 0721 @) +2: (B A7) =0

=

Especially in the case a= (ao, ai,"*", @i+1, r+1) and b= (a, @i, -, Gi+1), we have

~1

S =1 ) +1 (B2 =0,
2=0

- A
Namely, 6.« K ca il.
A
Conversely, let é{=(é;_1, ¥7) be an r-cell of L, Then we have

A
aBr= B, a7,

A A
and by the inductive hypothesis there exists an r-cell A]_, of K1 such that
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doa Al =aB;,
Let @7/! be an (r+1, {+1)-function defined as follows:

1l (@) =orha Ti@) —di((a A7 )" )
for each (r-+1, 7+1)-sequence a. Then

@i (ao, @y, @) =0 for ain<r+1
Define Y as follows:

Yi(a, ay -, @) =779 (a0, @y, @i, 7+1)

for each (7, #)-sequence (ao, @, a.).
Then we have

a Ur(@ =G (@ ¥ (a) +di ((a A7 )" ),
and if (Af_l Jy7) is an 7-cell of I%; we have
o~ A ~ A
Bia(Ar, v =0@.a A, a ¥)=ab
Therefore we can complete this proof by showing that (fl{_l, VY7 is an 7-cell of ff i
Since (@ Br_,, a ¥?7) is an (r+1)-cell of L.,
1+2 . . A a'-l
Zg—l)f v (@a?®) +1.((@B;.)) =0
e .
for each (r+1, i +2)-sequence a= (ao, ai, -, @&i+2). Consequently,
i+2 _ ] t+2 (7)) -1 - ~ -1
LD e (@9 + B (D01 il @Ay @ 11 @ &) =0,
Especially, in the case ai+~_»=r+1, b= (ay, a,,, a+), we have

B (=D (b"’)+2(—l)’d (e A7) ) 1610 Boal, b =0,

Jj=0
A 'b-1
Z( 1)’ 1Ir'(b<’>)+'r'1 (pd:+0;, 1 8)ax (A7, ) =0.

Substituting k. for rd.+0;1,1.0; and .-\ for 7 1o k;oa we obtain
T A A b-!
2_.“(—1)1'\1r{(b<’>)—I—ki—x(A;_1 )=0.
Thus (At » V%) is an 7-cell of R.

THEOREM 4. 2, On the assumptions mentzoned above, G~H That is to
say, there exists for each i an isomorphism n; : GL~H1 such that n:. is an 7m-
zsomorphzsm ? f i>1, and such that there exists for each i an - zsomorphzsm
% of K. on L,, % being an n.-prolongation of %i-. with some i-cochain di-a.

PROOF, Put
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~ A
ni=tlofrmor, Fi=alofimoa and dii=77lod;oa.

A A
By lemma 4.1, it is justified that %: is a mapping from K: onto L; It is easy to
see that
A A

»i is an isomorphism from G: onto H,,

7: preserves dimension and is (1-1),

- . . A A

d;-. is an Z-cochain of K-\ over G..

: A A
Since él and I?’ | operate trivially ‘on G: and H: ({=2), respectively, »: is an #;-
isomorphism.
A
For each cell [Y7(7, j)| of K, we have

i Dl=a 1 Gaallyi i, Hi=Ir16: 761 E NI = I G DI
Put ﬁ{:?i; /1;, ‘i.e., a§;=§ma A{. ‘
Let a=(a, a1+, @;) be an (r, j)-sequence and we denote it by b when we consider

it as an (r+1, 7)-sequcnce, then
A ~ - ~ A
a(éga) =(a B;)b:‘ Oina A;) b=0i+1 a(A'ia)’
ie, Gl =%.(A7).
A A A A A
Let K1=K (G)) and L= K (H) be (é 1, ) -complex and (H, o) -compléx, respectively.
Deﬁning Arz by (((AT, ‘l’;)’ 4";}"'7 ‘1’;)7 we have
A A A
c(A)=0(A) =AT
and then 7, 0 (A7) =%, A~
On the other hand by the definition of 7,
o' G Ap =o' (@18 a k) =c' (@ 1Ga Ay =a-1 Ga A7=5 A7
Thus, we have
A A
10 (A]) =o' (5: A7)
for each 7-cell ‘zl\.{ of I'{" i
A
Let us cirsider the property of di-.:
A A 7+1 A A A
pdi-1 (A =Zo(-1)fd¢_1(A§t}m) =71y d;(x AiD))
2=
=7 1k o Air1= 071 1 B (@ AY)
=By Atri ) T 5. (A,
‘To finish the proof, we must prove that
_ A ~ A
71 AT= (G2 A7, ¥))

N A A
for each 7-cell A7= (A7, ¥]) of K, wherc % is defined as follows:
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A A a-!
(@) =n: (i (@) +di-1 (A7, )
for each (r, f§)-sequerice a.
Since %i=a-108..10a,

o) ~ A ~ A
G Al=a (0:ax A]_, 07:})= (@1 A7\, "1 O]}
A
=(n’7’t~1A:—v a-lwgill s

where 071 (@) = Oior (¥ @) +di (CaAr D™ )

for each (r+1, 7+1)-sequence a.

Let b= (b, b,--, b) be an (7, 7)-sequence, and let a be an (741, £-1)-sequence
defined by a= (b, bl,-:-, b:;, r+1). Then we have

(@ 107:b) =7"1(07](a))
A b~l A A b—l
=7 10n(ay;@)+dia(A%_, )) = mﬂ,{(b) +nidi (A7, ).

Thus %: is an 7.-prolongation of %;-1.

REMARK. We can extend theorem 4.2 to the following form and its proof is
very similar to that of theorem 4.2:

Let (G, ki), (G, k), (Hi, 1)) and (H/, l’) be systems, not necessarily being

the natural systems of spaces, and assume that

G1=0 and H,=0,
G\ operates trivially on G (i=2), H/ operates trivially on H/' (i=2),
there exists an isomor phism + such that v:. G'i..=G. (i22) and
v: Hi..=H, (i1=2),
Eii=r"lokoa and l';-;=7"10l;0a where « is the isomor phism de fined
in §2,
Ei(((€4+%0), 0)--, 0) =0 and 1.(--((Ei*% 0), 0)--, 0) =0
where e+t and E*2 are the matrices defined at the beginning of this
section,
(Gi, ki) and (Hi, 1;) are isomor phic.

Then we have that (G/, k') and (H/, 1!) are isomor phic.

THEOREM 4. 3. Let (G/, k) be a system such that k':(---((€'*% 0), 0)---, 0)
=0. Then there exists a space of loops whose natural system is isomor phic to
(G/y k) if and only if G\ operates irivially on G/ (i=2).

PROOF. The condition is evidently necessary. To prove the sufficiency, let
GY be a multiplicative group of left operators which operate trivially on G.” (1=2).
Define a system (G, k) as follows:

G:=0,
there exists an isomorphism 7: Gi-1=G: ({=2),
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Fi=rok'v-1oa”! where a is the isomorphism defined in § 2,
%&:=0 on the complementary of the image of «
Then, by Postnikov’s theorem (see § 1), there exists a topological space x whose
natural system is isomorphic to (Gi, k). Let X be the space of loops on X, then
it is easy to see that the natural system of X and (G, k) are isomorphic,

§ 5. Fibering

1. By theorem 4.3, we have the following theorem :

THEOREM 5.1.  For tweo systems G'=(G/, k) and G=(Gi, k) given in
theorem 4.3 and in iis proof, there exists a fibering (E, X, F, p) such that the
natural systems of X and F are isomorphic to G and G’ respectivel y,

2. Let G; and H; be multiplicative groups of left operators on ahelian groups
G: and H: (>2), respectively, and assume that the following sequence is exact:

— Fi—Gi—> Hi—> Fioi—> oo —> Hy—> FL — G —> H1— Q.
S &g h; h; [1 &1 hy

We now consider two systems G=(G;, k) and H= (If » #i) and denote their cell-
complexes by K: and L;. In this section we assume that the following relations
hold:

1) g: is an onto-homomorphism: G:— H;,

2y gi(x1x:) =g1(x1) gi(x:) for all elements #1 € Gy and %: € Gy,

3) &ginoki=1l;0g; defining Z1: K1 L; by g1 |dij|=|g1di;|| and & on Kby
giA7=(8i1A]_,, gio @) for each r-cell Aj=(A],, @;) of K, inductively.

LEMMA 52, We have

210044, (AD) =0, , (1 A7)

Sfor each r-cell Aj= (- ((A], @y, @), @) of K; and for each (r, i)-sequence

a= (00! ai, ai) .
PROOF. By definitions

g.l("aoal(A;)) =g1'(°'aoal(AI)) =g a (g1 A)).
On the other hand
% o, &I A7) =0 g (- ((Z147, g20P}), 30 PP s IO P)) =00 & AD.
LEMMA 5. 3. 1f Gi-1(Ki-1) © Li-y, gi(K)c L. .
PROOF. Let A;=(A;_,, #;) be an 7-cell of K;, then we have
. i+1 . . -1
@ oo, AP PL @) + B (=D @@ R (A7) =0

for each (7, #+1)-sequence a= (@, Gy, ', Gi+1).
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Transforming this expression by g: we have

i+1 -1
7 moan (&1 A:—J g, P; (@) +J§0(_ D’ gip;(a?) +gi ki (Af—xa ) =0.
But

g,';ki-l(Af_luFI)=1i—l§£—l(A-:;'_ ) Iy l(<gt 1 )a ’)

Thus we have that g: A7 is contained in L.

THEOREM 5.4. There exisis a fibering (E, X, F, D), in the sense of
Serre (4), such that the natural systems of E and X are isomorphic to G and
H respecisvely and its homotopy exact sequence is the above given exact sequence.

PROOF. Define a mapping g: K (G)>K (H) by & (4], A, ) =(814], &
A7z,:--). By Postnikov’s theorem we have two spaces ¥ and X whose natural systems
are isomorphic to G and H respectively. Let g*: Y—>X be the barycentric extension
of @. Construct a fibering (E, X, F, p) by the method of Cartan-Serre (6] as
follows : ’

Let E be a space of pairs (¥, (¥)) where ¥ ¢ ¥ and o (¢) is a path of X such
that (0) =g*(y). Y is a deformation retract of E and therefore all natural systems
of E are 1somorph1c to G.

The map p: E > X such that (9, © @) —w(l) makes E a fiber space with base
space X and fiber F which is a subspace of E consisting of pairs (y, »(#)) such

that (1) is a fixed point of X.
In the following diagram which consists of the given exact sequence and the

homotopy exact sequence of this fiber space E :

s/

J 0 J J
7l'f+1(E> _> 7l'z+1(X) —> ﬂi(F) —> ﬂi(E) —_— ﬂg(X)
lp' Lo’ lp’ lp"
Givw — Hyyy — F;, —> G —> H;
i1 Ry S g
it is easily verified that p”o j'=g:0p’. And then we have, for each e ¢ =, (F),
gipjla=p"jja)=0,
that is to say,
p'j(a) € g;1(0) =image of f.
Since g:+1 maps Gi., onto Hi.y, fi is an isomorphism and therefore we can define

p: mi(F) > F: by p(a)=f;'0'j(@.

And then we have fiop=p'cj.
On the other hand, since pod=f;'0op’c jod=0 and hi..0p" =0, we have
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pol=h, 0p".

By the five lemma, we can conclude that p: 7:;(F) > F; is an isomorphism (onto).
Thus the proof is complete.

€23
(3)

(4
(53

(63

(73
(8)
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