On Postnikov's complexes and spaces of loops

By

Kiyoshi Aoki, Eiitirô Honma and Tetuo Kaneko

(Received May 4, 1956)

M.M. Postnikov [1] defined the natural system of an arcwise-connected space and its complex which is a generalization of Eilenberg-MacLane's complex [3], and he obtained its geometrical realization [2].

It is the purpose of this paper to consider the properties of these systems and complexes of a space and of the space of loops on it, and to extend the theorems, concerned with the properties of Eilenberg-MacLane's complexes and their geometrically realized spaces (see [4], [5], for examples), to the case of Postnikov's complexes. In §§ 2 and 3, we shall construct the natural systems and their Postnikov's complexes of a topological space and of the space of loops on it, connecting them each other by some special relations (theorem 3.12).

In § 4, we have occasion to discuss the realization problem, and the following theorems are given:

THEOREM 4.2. If the natural systems of two spaces are isomorphic, then the natural systems of the spaces of loops on them are so also.

THEOREM 4.3. For a given system (G_i, k_i) satisfying some conditions, there exists a space of loops whose natural system and the given system are isomorphic if and only if G_1 operates trivially on G_i $(i \ge 2)$.

In § 5, two problems will be considered, which are generalizations of Serre's (4) and of Cartan-Serre's fibering (6), i.e.,

THEOREM 5.1. For two systems **H** and **F** satisfying some conditions, there exists a fibering (E, X, F, p), in the sense of Serre (4), such that the natural systems of X, and F are isomorphic to **H** and **F** respectively.

THEOREM 5.4. For two systems (G_i, k_i) , (H_i, l_i) and groups F_i $(i=1, 2, \cdots)$ with some conditions, assume that the following sequence

$$\longrightarrow F_i \longrightarrow G_i \longrightarrow H_i \longrightarrow F_{i-1} \longrightarrow \cdots \longrightarrow H_2 \longrightarrow F_1 \longrightarrow G_1 \longrightarrow H_1 \longrightarrow 0$$

is exact. Then there exists a fibering (E, X, F, p), in the sense of Serre [4], such that the natural systems of E and X are isomorphic to (G_i, k_i) and (H_i, l_i) respectively and the homotopy exact sequence of this fiber space E is isomorphic to the given exact sequence.

In this paper we quote the notations, definitions and Postnikov's theorem from a report by P. J. Hilton (7), which we rewrite in § 1 of this paper without essential modifications.

§ 1. Preliminaries

1. The system

A non-decreasing sequence of (p+1) terms of non-negative integers $\leq r$ is called an (r, p)*-sequence. If the terms are distinct it is called an (r, p) sequence. If a is an (r, p)-sequence, we denote by $\mathbf{a}^{(i)}$ the (r, p-1)-sequence obtained by omitting the *i*-th term $(i=0, 1, \dots, p)$, and by \mathbf{a}^{-1} the (r, r-p-1)-sequence complementary to a. We identify an (r, 0)-sequence with its single element. A function defined on (r, p)*-sequences taking values in an additive abelian group G and taking the value 0 on non-(r, p)-sequence is called an (r, p)-function over G.

Given a multiplicative group G_1 , let $K(G_1)$ be its cell-complex in the sense of Eilenberg-MacLane (3). The face $A^{\bf a}$ of an r-cell A is an (r-p-1)-cell, obtained from A by deleting from its matrix representation the rows and columns whose numbers belong to ${\bf a}$. If θ_1 is an isomorphism $G_1 \approx H_1$, the mapping $\tilde{\theta}_1 \colon K(G_1) \to K(H_1)$ is given by $\tilde{\theta}_1 A = \|\theta_1(d_{ij})\|$, where A is the matrix $\|d_{ij}\|$, $i, j = 0,1,\dots, r$.

A cell complex K is called a (G_1, σ) -complex if

- to every r-cell A and every (r, p)-sequence **a** corresponds an (r-p-1)-cell A^a ,
- 2) $\sigma:K\to K(G_1)$ is dimension preserving and $\sigma(A^a)=(\sigma A)^a$,
- 3) the boundary of A is given by $\sum_{i=0}^{r} (-1)^{i} A^{(i)}$.

Let G_1 act as a group of left operators on G. Let C^r be an r-cochain of the (G_1, σ) -complex K over G. Define a coboundary F_{σ} by

$$\nabla_{\sigma} C^{r}(A) = \sigma_{01}(A) C^{r}(A^{(0)}) + \sum_{i=1}^{r+1} (-1)^{i} C^{r}(A^{(0)}),$$

for every (r+1)-cell A, $\sigma_{01}(A)$ being the element of the matrix $\sigma(A)$ with indices 0, 1.

We now construct the p-augmented complex of K over G with factor k, where k is a (p+1)- Γ_{σ} -cocycle of K, and call the new complex K'. An r-cell of K' is to be a pair (A, φ) where A is an r-cell of K and φ is an (r, p)-function over G satisfying

$$\sigma_{a_0a_1}(A)\varphi(\mathbf{a}^{(0)}) + \sum_{i=1}^{p+1} (-1)^i \varphi(\mathbf{a}^{(i)}) + k(A^{\mathbf{a}^{-1}}) = 0.$$

for every (r, p+1)-sequence $\mathbf{a} = (a_0, a_1, \dots, a_{p+1})$

Given an (r, q)-sequence **a**, and an (r-q-1, p)*-sequence **b**, we define the (r, p)*-sequence $\mathbf{c} = \mathbf{a} \circ \mathbf{b}$ as follows: Take the sequence 0, 1, ..., r. Remove the (q+1) elements in **a** and renumber the remainder 0, 1, ..., r-q-1. The sequence **b** picks

out, perhaps with repetitions, (p+1) elements in this sequence. These elements, with their original numbers, are the elements of \mathbf{c} . Now define (r-q-1, p)-function $\boldsymbol{\varphi}^{\mathbf{a}}$ by $\boldsymbol{\varphi}^{\mathbf{a}}(\mathbf{b}) = \boldsymbol{\varphi}(\mathbf{a} \circ \mathbf{b})$ and define $(A, \boldsymbol{\varphi})^{\mathbf{a}}$ as $(A^{\mathbf{a}}, \boldsymbol{\varphi}^{\mathbf{a}})$. Finally, we define $\sigma(A, \boldsymbol{\varphi}) = \sigma(A)$, so that K' is a (G_1, σ) -complex. If we identify the cell (A, 0) with A, where dim $A \leq p$, we have $K^{p-1} = K'^{p-1}$, $K^p \subset K'^p$.

Let us define a system $(G_1, G_2, \dots, G_n, \dots; k_1, k_2, \dots, k_n, \dots)$, which we call G. G_1 is a multiplicative group of left operators on the additive abelian groups G_i , $i \ge 2$. Denote $K(G_1)$ by K_1 and let K_{i+1} be the (i+1)-augmentation of K_i over G_{i+1} with factor k_i where k_i is an (i+2)- \mathcal{P}_{σ} -cocycle of K_i over G_{i+1} , $i=1, 2, \dots$. Then the sequence $(G_1, k_1, G_2, k_2, \dots)$ is called a system, written $G = (G_i, k_i)$, the complex K_i is called the cell-complex of G and the sequence of complexes K_1 , K_2 , \dots is called the complex K(G).

A mapping μ of the (G_1, σ) -complex K on the (H_1, σ') -complex L is called a θ_1 -isomorphism if

- 1) θ_1 is an isomorphism $G_1 \approx H_1$,
- 2) μ preserves dimension and is (1-1),
- 3) for every cell $A \in K$ and every sequence \mathbf{a} , $\mu(A^{\mathbf{a}}) = (\mu A)^{\mathbf{a}}$,
- 4) for every cell A, $\widetilde{\theta}_1 \sigma(A) = \sigma'(\mu A)$.

An isomorphic mapping, η , of the group G on the group H (on which H_1 acts as a group of left operators) is called a θ_1 -isomorphism if $\eta(\alpha g) = (\theta_1 \alpha)(\eta g)$, $\alpha \in G_1$, $g \in G$. If $\mu : K \to L$ and $\eta : G \to H$ are θ_1 -isomorphisms, and if C^r is an r-cochain of L over H, we define $\mu^* C^r$, an r-cochain of K over G, by

$$\mu^* C^r(A) = \eta^{-1}(C^r(\mu A)).$$

Now suppose L' is the p-augmentation of L over H with some factor l, and suppose further that there exists a p-cochain, d, of K over G, such that $k - \mu^* l = r_{\sigma} d$. Define the θ_1 -isomorphism V of K' on L' by $V(A, \varphi) = (\mu A, \psi)$, where the (r, p)-function ψ over H is given by

$$\psi(\mathbf{a}) = \eta \{ \varphi(\mathbf{a}) + d(A^{\mathbf{a}^{-1}}) \}.$$

It is called the η -prolongation of μ with cochain d.

We now say that two systems $G = (G_i, k_i)$ and $H = (H_i, l_i)$ are isomorphic if there is given for each i an isomorphism $\theta_i : G_i \approx H_i$ such that θ_i is a θ_1 -isomorphism if i > 1, and such that there exists for each i a θ_1 -isomorphism $\tilde{\theta}_i$ of K_i on L_i , $\tilde{\theta}_i$ being a θ_i -prolongation of $\tilde{\theta}_{i-1}$, where K_i and L_i are the cell-complexes of the systems G and H respectively.

2. The natural system of a space

We wish to associate a system $G = (G_i, k_i)$ with an arcwise-connected topological space X. The groups G_i will be the homotopy groups of the space. Put $K_1 =$

 $K(G_1)$. A 0-dimensional singular simplex in x_0 is normal. A singular simplex of arbitrary dimension is called 0-normal if all its 0-faces are normal. As shown in [3], there is a natural mapping, w_1 , of the 0-normal singular simplexes of X into K_1 , say $w_1: S_1(X) \to K_1$, such that $w_1(T^r)$ is an r-cell A_1^r of K_1 . Moreover, the 1cells and 2-cells of K_1 are covered by w_1 . We make the inductive hypothesis that K_i is constructed, and that a definition of (i-1)-normal singular simplexes has been given, moreover, that, if $S_i(X)$ is the complex consisting of (i-1)-normal singular simplexes, there is a mapping $w_i: S_i(X) \to K_i$, such that $w_i(T^r)$ is an r-cell of K_i , and that the *i*-cells and (i+1)-cells of K_i are covered by w_i . With each *i*-cell A_i^i of K_i we associate an (i-1)-normal T_N^i such that $w_i(T_N^i) = A_i^i$ and call it the normal i-dimensional singular simplex of X corresponding to A_i . Then T^r is inormal if it is (i-1)-normal and all its *i*-faces are normal. For each (i+1)-cell, A_i^{i+1} , of K_i , choose an *i*-normal T_S^{i+1} with $w_i(T_S^i) = A_i^{i+1}$, and call it the standard (i+1)-singular simplex of X corresponding to A_i^{i+1} . Let the boundary of an (i+2)dimensional Euclidean ordered simplex, \triangle^{i+2} , be mapped into X so that the map of the r-th face defines $T_{r,s}^{i+1}$ an (i+1)-dimensional standard singular simplex of X corresponding to the r-th face $A_i^{i+2(r)}$ of an (i+2)-cell A_i^{i+2} of K_i . Taking the base point in \triangle^{i+2} as the zero vertex, we can choose the map so that it represents an element of $\pi_{i+1}(X)$. Associating the cell A_i^{i+2} with this element defines the factor k_i , which turns out to be an (i+2)- ν_{σ} -cocycle.

Let T^r be *i*-normal. Every (r, i+1)-sequence **a** determines an (i+1)-face $T^r(\mathbf{a})$ of T^r , spanned by the vertices whose numbers belong to **a**. Let $T^r(\mathbf{a})_S$ be a standard (i+1)-simplex with $w_i(T^r(\mathbf{a})_S) = w_i(T^r(\mathbf{a}))$. The simplexes $T^r(\mathbf{a})$, $T^r(\mathbf{a})_S$ are distinguished from each other by an element $\varphi_{i+1}^r(\mathbf{a})$ of $\pi_{i+1}(X)$. It turns out that the pair $(w_i(T^r), \varphi_{i+1}^r)$ is an r-cell of K_{i+1} . We put

$$w_{i+1}(T^r) = (w_i(T^r), \varphi_{i+1}^r).$$

Continuing the construction, we obtain the sequence of factors of the system G and we also define, in each dimension, the concept of a normal singular simplex. G is called the natural system of the space X. Its construction involves a certain arbitrariness, but all natural systems of a space are isomorphic.

A system G^n is called *n*-segment of the system G if

$$H_{i} = \begin{cases} G_{i}, & (i \leq n), \\ 0, & (i > n), \end{cases} \qquad l_{i} = \begin{cases} k_{i}, & (i < n), \\ 0, & (i \geq n), \end{cases}$$

where $G^n = (H_i, I_i)$, $G = (G_i, k_i)$. Two systems are called *n*-isomorphic $(1 \le n \le \infty)$ if their (n-1)-segments are isomorphic. The complexes $K_{n-1}(G)$, $K_{n-1}(H)$ must be isomorphic when G and H are n-isomorphic.

THEOREM (Postnikov). Every system is *n*-isomorphic $(1 \le n \le \infty)$ to the natural

system of some n-dimensional CW-complex.

§ 2. The natural system of a space of loops I

In §§ 2-4, X will denote an arcwise-connected simply-connected topological space. We shall denote the i-th homotopy group $\pi_i(X, x_0)$ and the natural system by π_i and (π_i, k_i) respectively. Let K_i and e^r be the cell-complex of (π_i, k_i) and the unique r-cell of $K_1 = K(\pi_1)$ respectively. For the (π_1, σ) -complex $K_1, \sigma : K_1 \to K(\pi_1)$ is the identity map, and $\sigma_{a_0a_1}(A_i^r)$ is the unit element of π_1 for each cell A_i^r . Let us define the normal 1-dimensional singular simplex of X corresponding to e^1 and the standard 2-dimensional singular simplex of X corresponding to e^2 by the collapsed simplexes. Consequently we have $k_1 = 0$.

Let \hat{X} be the space of loops on X with the base point x_0 . Hereafter each notation covered by \wedge denotes the notation concerned with the space of loops. In particular, \hat{e}^r is the r-dimensional matrix $||d_{ij}||$ where d_{ij} is the unit element of $\hat{\pi}_1$ for each i and j.

THEOREM 2.1 $\hat{\pi}_1$ operates trivially on $\hat{\pi}_n$ $(n \ge 2)$.

PROOF. We denote by E^n and I the *n*-element and the unit interval. Let (\hat{f}) be an element of $\hat{\pi}_1$, i. e.,

$$\hat{f} = \hat{f}(y) : E^1, \, \hat{E}^1 \to \hat{X}, \, \hat{x}_0,$$

$$\hat{f}(y)(s) = f(y, s) : E^1 \times I, \, (E^1 \times I)^* \to X, \, x_0.$$

where s being the parameter of loop.

Let $\hat{\beta}$ be an element of $\hat{\pi}_n$ and \hat{g} be its representation:

$$\hat{g} = \hat{g}(y_1, y_2, \dots, y_n) : E^n, \dot{E}^n \to \hat{X}, \hat{x}_0,
\hat{g}(y_1, y_2, \dots, y_n) (s) = g(y_1, y_2, \dots, y_n, s) : E^n \times I, (E^n \times I) \to X, x_0.$$

We denote by $f^*(\hat{\beta})$ the image of $\hat{\beta}$ by $\{\hat{f}\}$ and let \hat{h}_0 be a representation of $f^*(\hat{\beta})$ defined as follows:

$$\hat{h}_{0} = \hat{h}_{0}(y_{1}, y_{2}, \dots, y_{n}) : E^{n}, \hat{E}^{n} \to \hat{X}, \hat{x}_{0},
\hat{h}_{0}(y_{1}, y_{2}, \dots, y_{n})(s) = h_{0}(y_{1}, y_{2}, \dots, y_{n}, s) : E^{n} \times I, (E^{n} \times I) \to X, x_{0}
\begin{cases}
f(2z-1, 2s), & (1 \ge z \ge \frac{1}{2}, 0 \le s \le \frac{1}{2}), \\
x_{0}, & (1 \ge z \ge \frac{1}{2}, \frac{1}{2} \le s \le 1), \\
x_{0}, & (\frac{1}{2} \ge z \ge 0, 0 \le s \le \frac{1}{2}), \\
g(2y_{1}, \dots, 2y_{n}, 2s-1) & (\frac{1}{2} \ge z \ge 0, \frac{1}{2} \le s \le 1),
\end{cases}$$

where $z = \sqrt{y_1^2 + y_2^2 + \dots + y_n^2}$.

Let \hat{h}_1 be another representation of $\hat{\beta}$ defined as follows:

$$\hat{h}_{1} = \hat{h}_{1}(y_{1}, y_{2}, \dots, y_{n}) : E^{n}, \hat{E}^{n} \to \hat{X}, \hat{X}_{0},
\hat{h}_{1}(y_{1}, y_{2}, \dots, y_{n})(s) = h_{1}(y_{1}, y_{2}, y_{n}, s) : E^{n} \times I, (E^{n} \times I)^{n} \to X, x_{0}
= \begin{cases}
x_{0}, & (1 \ge z \ge \frac{1}{2}, 0 \le s \le 1), \\
x_{0}, & (\frac{1}{2} \ge z \ge 0, 0 \le s \le \frac{1}{2}), \\
g(2y_{1}, \dots 2y_{n}, 2s - 1), & (\frac{1}{2} \ge z \ge 0, \frac{1}{2} \le s \le 1).
\end{cases}$$

Then we have the homotopy between \hat{h}_0 and \hat{h}_1 defined by the following expression:

$$\hat{h}_{t} = \hat{h}_{t}(y_{1}, y_{2}, \dots, y_{n}) : E^{n}, \hat{E}^{n} \to \hat{X}, \hat{x_{0}},
\hat{h}_{t}(y_{1}, y_{2}, \dots, y_{n}) (s) = h_{t}(y_{1}, y_{2}, \dots, y_{n}, s) : E^{n} \times I, (E^{n} \times I) \to X, x_{0},
\begin{cases}
f(1-2(1-t)(1-z), 2s), & (1 \ge z \ge \frac{1}{2}, 0 \le s \le \frac{1}{2}), \\
x_{0}, & (1 \ge z \ge \frac{1}{2}, \frac{1}{2} \le s \le 1), \\
f(t, 2s), & (\frac{1}{2} \ge z \ge 0, 0 \le s \le \frac{1}{2}), \\
g(2y_{1}, \dots, 2y_{n}, 2s-1), & (\frac{1}{2} \ge z \ge 0, \frac{1}{2} \le s \le 1).
\end{cases}$$

Thus the proof of theorem 2.1 is complete.

Define $\rho_{r+1}: \triangle^{r+1} \to \triangle^r \times I$ by

$$\rho_{r+1}(y_1, y_2, \dots, y_{r+1}) = \begin{cases} (ly_1, ly_2, \dots, ly_{r+1}) & (y_1 + y_2 + \dots + y_r \ge y_{r+1}), \\ (my_1, my_2, \dots, my_{r+1}), & (y_1 + y_2 + \dots + y_r \le y_{r+1}), \end{cases}$$

$$l = \frac{y_1 + y_2 + \dots + y_{r+1}}{y_1 + y_2 + \dots + y_r} \quad \text{and} \quad m = \frac{y_1 + y_2 + \dots + y_{r+1}}{y_{r+1}}, \quad \text{and}$$

$$\triangle^{r+1} = \left\{ (y_1, y_2, \dots, y_{r+1}) : \begin{array}{l} 0 \le y_i \le 1, & i = 1, 2, \dots, r+1 \\ 0 \le y_1 + y_2 + \dots + y_{r+1} \le 1 \end{array} \right\}$$

where

is an (r+1)-dimensional Euclidean simplex and \triangle^r is the r-face $\triangle^{r+1(r+1)}$ of \triangle^{r+1} contained in the hyperplane $y_{r+1}=0$.

Let $\hat{T}^r: \triangle^r \to \hat{X}$ be an r-dimensional singular simplex of \hat{X} and define ξ_{r+1} by $\xi_{r+1}(P, s) = \hat{T}^r(P)(s)$ where $P \in \triangle^r$. Define $\tau: \hat{T}^r \to T^{r+1}$ by

$$\tau \hat{T}^r = \xi_{r+1} \circ \rho_{r+1} : \triangle^{r+1} \to X.$$

We use the same notation τ for the induced map: $(\hat{T}^r) \to (T^{r+1})$ subject to the condition that (\hat{T}^r) is an element of $\hat{\pi}_r$. It is easily seen that

1)
$$\tau: (\hat{T}^r) \to (T^{r+1})$$
 is an isomorphism of $\hat{\pi}_r$ onto π_{r+1} ,

- 2) $T^{r+1(i)} = \tau(\hat{T}^{r(i)}), \quad i = 0, 1, \dots, r,$
- 3) $T^{r+1(r+1)}$ is the collapsed simplex (see notations of [8]).

Define φ_{i+1*}^{r+1} , (r+1, i+1)-function over π_{i+1} , by

$$arphi_{i+1}^{r+1}$$
, $(a_{0}, a_{1}, \dots, a_{i+1}) = \begin{cases} \tau \psi_{i}^{r}(a_{0}, a_{1}, \dots, a_{i}), & (a_{i+1} = r+1), \\ 0, & (a_{i+1} < r+1), \end{cases}$

where ψ_i^r is an (r, i)-function over $\hat{\pi}_i$ and $(a_0, a_1, \dots, a_{i+1})$ is an (r+1, i+1)-sequence. And denote by α this transformation from ψ_i^r to φ_{i+1}^{r+1} . Let $\hat{A}_i^r = ||\psi_i^r(i, j)||$ be a matrix representation of an r-cell \hat{K}_1 , and define α on \hat{K}_1 as follows:

$$\alpha \hat{A}_1^r = (e^{r+1} \alpha \psi_1^r).$$

If α was defined on \hat{K}_i , we define α on \hat{K}_{i+1} as follows:

$$\alpha \hat{A}_{i+1}^r = (\alpha \hat{A}_i^r, \alpha \psi_{i+1}^r),$$

where $\hat{A}_{i+1}^r = (\hat{A}_i^r, \psi_{i+1}^r)$ is an r-cell of \hat{K}_{i+1} . Then we have the following lemma.

LEMMA 2.2. α is an isomorphism (into).

This is trivial.

LEMMA 2.3. If $\mathbf{a} = (a_0, a_1, \dots, a_{p-1}, a_p)$ is an (r, p)-sequence, $\mathbf{c} = \mathbf{a}^{(p)}$ and ψ_{i-1}^{r-1} is an (r-1, i-1)-function over $\hat{\pi}_{i-1}$, then we have

$$(\alpha \psi_{i-1}^{r-1})^{\mathbf{a}^{-1}} = \begin{cases} \alpha (\psi_{i-1}^{r-1}^{\mathbf{c}^{-1}}), & (a_p = r), \\ 0, & (a_p < r). \end{cases}$$

PROOF. 1°. $a_p = r$: Let $\mathbf{b} = (b_0, b_1, \dots, b_i)$ be a $(p, i)^*$ -sequence.

If
$$b_i = p$$
, $(\alpha \psi_{i-1}^{r-1})^{\mathbf{a}^{-1}}(b_0, b_1, \dots, b_{i-1}, p) = \tau(\psi_{i-1}^{r-1} \mathbf{c}^{-1}(b_0, b_1, \dots, b_{i-1}))$,

if $b_i < p$, since the last element of $a^{-1} \circ b$ is less than r, we have

$$(\alpha \psi_{i-1}^{r-1})^{\mathbf{a}^{-1}}(b_0, b_1, \dots, b_i) = (\alpha \psi_{i-1}^{r-1})(\mathbf{a}^{-1} \circ \mathbf{b}) = 0.$$

Thus we have $(\alpha \psi_{i-1}^{r-1})^{\mathbf{a}^{-1}} = \alpha (\psi_{i-1}^{r-1})^{\mathbf{c}^{-1}}$,

2.° $a_p < r$: Since the last element of $a^{-1} cb$ is less than r for each sequence b, we have

$$\left(\alpha\,\psi_{i-1}^{r-1}\right)^{\mathbf{a}^{-1}}(\mathbf{b})=\left(\alpha\,\psi_{i-1}^{r-1}\right)\left(\mathbf{a}^{-1}\circ\mathbf{b}\right)=0.$$

LEMMA 2.4. If a, c are the same sequences given in lemma 2.3, then

$$(\alpha \hat{A}_{i-2}^{r-1})^{\mathbf{a}^{-1}} = \begin{cases} \alpha (\hat{A}_{i-2}^{r-1}^{\mathbf{c}^{-1}}). & (a_p = r), \\ (\cdots ((e^p, 0), 0) \cdots, 0), & (a_p < r). \end{cases}$$

PROOF. 1°. $a_p = r$: In the case i = 3, for an (r-1)-cell $\hat{A}_1^{r-1} = ||\psi_1^{r-1}(i, j)||$, we have

$$(\alpha \hat{A}_{i}^{r-1})^{a^{-1}} = (e^{r}, \alpha \psi_{i}^{r-1})^{a^{-1}} = (e^{r}^{a^{-1}}, (\alpha \psi_{i}^{r-1})^{a^{-1}})$$

=
$$(e^p, \alpha(\psi_1^{r-1}^{c^{-1}})) = \alpha(\hat{A}_1^{r-1}^{c^{-1}}).$$

Making the inductive hypothesis as follows: $(\alpha \hat{A}_{i-3}^{r-1})^{\mathbf{a}^{-1}} = \alpha (\hat{A}_{i-3}^{r-1})^{\mathbf{c}^{-1}}$, let us consider an (r-1)-cell $\hat{A}_{i-2}^{r-1} = (\hat{A}_{i-3}^{r-1}, \psi_{i-2}^{r-1})$. Then we have

$$\begin{split} (\alpha \; \hat{A}_{i-2}^{r-1})^{\mathbf{a}^{-1}}) &= ((\alpha \; \hat{A}_{i-3}^{r-1})^{\hat{\mathbf{a}}^{-1}}, \; (\alpha \; \psi_{i-2}^{r-1})^{\mathbf{a}^{-1}}) = (\alpha \; (\hat{A}_{i-3}^{r-1}^{\mathbf{c}^{-1}}), \; \alpha \; (\psi_{i-2}^{r-1}^{\mathbf{c}^{-1}})) \\ &= \alpha \; (\hat{A}_{i-3}^{r-1}^{\mathbf{c}^{-1}}, \psi_{i-2}^{r-1}^{\mathbf{c}^{-1}}) = \alpha \; (\hat{A}_{i-2}^{r-1}^{\mathbf{c}^{-1}}). \end{split}$$

2°. $a_p < r$: $(\alpha \hat{A}_{l-2}^{r-1})^{\hat{a}^{-1}} = ((\alpha \hat{A}_{l-3}^{r-1})^{\hat{a}^{-1}}, 0) = \cdots = (\cdots ((e^p, 0), 0) \cdots, 0).$

THEOREM 2.5. If $\hat{A}_{1}^{r-1} = \|\psi_{1}^{r-1}(i, j)\|$ is an (r-1)-cell of \hat{K}_{1} , $A_{2*}^{r} = \alpha \hat{A}_{1}^{r-1} = (e^{r}, \alpha \psi_{1}^{r-1})$ is an r-cell of K_{2} .

PROOF. In the first place we have to remark that ψ_1^{r-1} has the following relations:

$$\psi_1^{r-1}(i, j) + \psi_1^{r-1}(j, l) = \psi_1^{r-1}(i, l), (i, j, l=0, 1, , r-1).$$

When r=2, since $\alpha \psi_1^{r-1}$ is a (2, 2)-function over π_2 , $(e^2, \alpha \psi_1^r)$ is a 2-cell of K_2 . Consider the case $r \ge 3$. Let $a = (a_0, a_1, a_2, a_3)$ be an (r, 3)-sequence.

1°. $a_3 < r$: It is trivial.

2°.
$$a_3 = r$$
: $\alpha \psi_1^{r-1}(\mathbf{a}^{(0)}) + \sum_{j=1}^{3} (-1)^{(j)} \alpha \psi_1^{r-1}(\mathbf{a}^{(j)})$
= $\tau (\psi_1^{r-1}(a_1, a_2) - \psi_1^{r-1}(a_0, a_2) + \psi_1^{r-1}(a_0, a_1)) = \tau (0) = 0$.

THEOREM 2.6. $w_2(\tau \hat{T}^r) = \alpha (\hat{w}_1 \hat{T}^r)$.

PROOF. By the definition of w_2 , we have $w_2(\tau \hat{T}^r) = (e^{r+1}, \varphi_2^{r+1})$ where $\varphi_2^{r+1}(\mathbf{a}) = ((\tau \hat{T}^r)(\mathbf{a}))$ for each (r+1, 2)-sequence $\mathbf{a} = (a_0, a_1, a_2)$.

On the other hand, $\hat{w}_1\hat{T}^r = \|\psi_1^r(i,j)\|$ where $\psi_1^r(\mathbf{b}) = [\hat{T}^r(\mathbf{b})]$ for each (r, 1) sequence **b**.

1°. $a_2 = r + 1$: Put $\mathbf{b} = \mathbf{a}^{(2)}$. Since $\tau(\hat{T}^r(\mathbf{b})) = ((\tau \hat{T}^r)(\mathbf{a}),)$, we have $\varphi_2^{r+1}(\mathbf{a}) = \tau \psi_1^r(\mathbf{b})$. 2°. $a_2 < r + 1$: $\varphi_2^{r+1}(\mathbf{a}) = 0$.

Thus we have $\varphi_2^{r+1} = \alpha \psi_1^r$ and then $w_2(\tau \hat{T}^r) = (e^{r+1}, \alpha \psi_1^r) = \alpha \|\psi_1^r(i, j)\| = \alpha (\hat{w}_1 \hat{T}^r)$.

DEFINITION 2.7. We define \hat{T}_N^1 corresponding to \hat{e}^1 by the collapsed simplex and \hat{T}_N^1 corresponding to other 1-cells by the method given in § 1.

DEFINITION 2.8. When \hat{T}_N^1 is the normal 1-dimensional singular simplex of \hat{X} corresponding to \hat{A}_1^1 , then we define T_N^2 corresponding to $\hat{A}_{2*}^2 = \alpha \hat{A}_1^1$ by $\tau \hat{T}_N^1$.

REMARK. All 2-cells of K_2 are covered by α and therefore the definition of the normal 2-dimensional singular simplex of X corresponding to each 2-cell of K_2 was given by the above definition.

LEMMA 2.9. T_N^2 corresponding to $A_2^2 = (e^2, 0)$ is the collapsed simplex.

This is easily seen by definitions 2.7 and 2.8.

DEFINITION 2.10. We define \hat{T}_s^2 corresponding to \hat{e}^2 by the collapsed simplex and \hat{T}_s^2 corresponding to other 2-cells by the method given in § 1.

DEFINITION 2.11. When \hat{T}_{S}^{2} is the standard 2-dimensional singular simplex of \hat{X} corresponding to \hat{A}_{1}^{2} we define T_{S}^{3} corresponding to $A_{2*}^{3} = \alpha \hat{A}_{1}^{2}$ by $\tau \hat{T}_{S}^{2}$ and T_{S}^{3} corresponding to other 3-cells by the method given in § 1.

LEMMA 2.12. T_s^3 corresponding to $A_{2*}^3 = (e^3, 0)$ is the collapsed simplex. This is easily seen by definitions 2.10 and 2.11.

THEOREM 2.13. $k_2(e^4, 0) = 0$

PROOF. Since $(e^4, 0)^{(j)} = (e^3, 0)$, j = 0, 1, 2, 3, 4, and T_S^3 corresponding to $(e^3, 0)$ is the collapsed simplex, we have $k_2(e^4, 0) = 0$.

THEOREM 2.14. $\hat{k}_1 = \tau^{-1} \circ k_2 \circ \alpha$.

PROOF. Let \hat{A}_{1}^{3} , \hat{T}_{js}^{2} and \hat{f} be a 3-cell of \hat{K}_{1} , the standard 2-dimensional singular simplex of \hat{X} corresponding to the j-th face $\hat{A}_{1}^{3(j)}$ of \hat{A}_{1}^{3} and a representation of an element of $\hat{\pi}_{2}$ defined by $\hat{f} \mid \triangle^{3(j)} = \hat{T}_{js}^{2}$, j = 0, 1 2, 3 respectively. Then, by the definition, we have

$$\hat{k}_1:\hat{A}_1^3 \rightarrow [\hat{f}]\in \hat{\pi}_2.$$

By lemma 2.4, we have

$$(\alpha \hat{A}_{1}^{3})^{(j)} = \alpha (\hat{A}_{1}^{3}^{(j)}), \quad (j = 0, 1, 2, 3),$$

$$(\alpha \hat{A}_{1}^{3})^{(4)} = (e^{3}, 0).$$

Consequently T^3_S corresponding to $(\alpha \hat{A}^3_1)^{(j)}$ is $\tau \hat{T}^2_{jS}$ (j=0, 1, 2, 3) or the collapsed simplex (j=4). Therefore we have $k_2(\alpha \hat{A}^3_1) = [f]$ where $f: \dot{\Delta}^4 \to X$ is defied as follows:

$$f \mid \triangle^{4(j)} = \tau \hat{T}_{iS}^2$$
, $(j = 0, 1, 2, 3)$,

and

 $f|\triangle^{4(4)}$ is the constant map.

Thus we have

$$\hat{k}_1 = \tau^{-1} \circ k_2 \circ \alpha.$$

§ 3. The natural system of a space of loops II

In this section, in the process of definition of the natural systems of X and \hat{X} , we assume that

$$K_{n-1}$$
, $S_{n-1}(X)$, w_{n-1} , T_N^{n-1} , T_S^n , k_{n-1} , \hat{K}_{n-2} , $S_{n-2}(\hat{X})$, \hat{w}_{n-2} , \hat{T}_N^{n-2} , \hat{T}_S^{n-1} , \hat{k}_{n-2} , $(n=3, 4, \dots, i)$

are defined by the method of §1 and satisfying the following five relations:

- 1) When \hat{A}_{n-2}^{r-1} is an (r-1)-cell of \hat{K}_{n-2} , $A_{n-1}^r = \alpha \hat{A}_{n-2}^{r-1}$ is an r-cell of K_{n-1} .
- 2) $w_{n-1}(\tau \hat{T}^r) = \alpha(\hat{w}_{n-2} \hat{T}^r)$.
- 3) \hat{T}_N^{n-2} corresponding to $(\cdots((\hat{e}^{n-2},0),0),\cdots 0)$ is the collapsed simplex. When \hat{T}_N^{n-2} is the normal (n-2)-dimensional singular simplex of \hat{X} corresponding to \hat{A}_{n-2}^{n-2} , T_N^{n-1} corresponding to $A_{n-1}^{n-1} = \alpha \hat{A}_{n-2}^{n-2}$ is $\tau \hat{T}_N^{n-2}$.
- 4) \hat{T}_S^{n-1} corresponding to $(\cdots((\hat{e}^{n-1},0),0)\cdots,0)$ is the collapsed simplex. When \hat{T}_S^{n-1} is the standard (n-1)-dimensional singular simplex of \hat{X} corresponding to \hat{A}_{n-2}^{n-1} , T_S^n corresponding to $A_{n-1}^n = \alpha \hat{A}_{n-2}^{n-1}$ is $\tau \hat{T}_S^{n-1}$.
 - 5) $\hat{k}_{n-2} = \tau^{-1} \circ k_{n-1} \circ \alpha.$

REMARK 1. T_N^{n-1} corresponding to $(\cdots((e^{n-1},0),0)\cdots,0)$ is the collapsed simplex. T_S^n corresponding to $(\cdots((e^n,0),0)\cdots,0)$ is the collapsed simplex.

REMARK 2. If \hat{T}^r belongs to $S_{n-1}(\hat{X})$, $\tau \hat{T}^r$ belongs to $S_n(X)$.

REMARK 3. $\hat{k}_{n-2}(\cdots((\hat{e}^n, 0), 0)\cdots, 0) = 0,$ $k_{n-1}(\cdots((e^{n+1}, 0), 0)\cdots, 0) = 0.$

THEOREM 3.1, If \hat{A}_{i-1}^{r-1} is an (r-1)-cell of \hat{K}_{i-1} , then $A_{i*}^r = \alpha \hat{A}_{i-1}^{r-1}$ is an r-cell of K_i .

PROOF. The case i=2 was proved in theorem 2.5. We assume that i>2. Put $\hat{A}_{i-1}^{r-1}=(\hat{A}_{i-2}^{r-1}, \psi_{i-1}^{r-1})$, $\varphi_{i*}^r=\alpha \psi_{i-1}^{r-1}$,

where $A_{i-1}^r = \alpha \hat{A}_{i-2}^{r-1}$ is an r-cell of K_{i-1} by the inductive hypothesis. Let $\mathbf{a} = (a_0, a_1, \dots, a_{i+1})$ be an (r, i+1)-sequence.

1°. $a_{l+1} < r$: Since $\varphi_{i*}^{r}(\mathbf{a}^{(j)}) = 0$ and $A_{l-1*}^{r}^{\mathbf{a}^{-1}} = (\cdots ((e^{l+1}, 0), 0), \cdots, 0)$, we have

$$\sum_{i=0}^{t+1} (-1)^{i} \varphi_{i*}^{r}(\mathbf{a}^{(i)}) + k_{i-1} (A_{i-1*}^{r} \mathbf{a}^{-1}) = 0.$$

2°. $a_{i+1}=r$: Put $\mathbf{c}=\mathbf{a}^{(i+1)}$. Then we have

$$\begin{split} &\sum_{j=0}^{i+1} (-1)^{j} \, \boldsymbol{\varphi}_{i*}^{\mathbf{r}}(\mathbf{a}^{(j)}) + k_{i-1} (A_{i-1*}^{\mathbf{r}}) = \sum_{j=0}^{i} (-1)^{j} \, \tau \, \psi_{i-1}^{\mathbf{r}-1}(\mathbf{c}^{(j)}) + k_{i-1} \, \alpha \, (\hat{A}_{i-2}^{\mathbf{r}-1}\mathbf{c}^{-1}) \\ &= \tau \, (\sum_{j=0}^{i} (-1)^{j} \, \psi_{i-1}^{\mathbf{r}-1}(\mathbf{c}^{(j)}) + \hat{k}_{i-2} \, (\hat{A}_{i-2}^{\mathbf{r}-1}\mathbf{c}^{-1})) = \tau \, (0) = 0. \end{split}$$

LEMMA 3.2. If T^r is the constant map: $\triangle^r \rightarrow x_0$,

$$w_i T^r = (\cdots ((e^r, 0), 0) \cdots, 0).$$

PROOF. It is trivial in the cases i=1, 2. Assume that this lemma holds in the cases i=1, 2,..., j-1. By the definition of w_i we have

$$w_j T^r = (w_{j-1} T^r, \varphi_i^r),$$

where $\varphi_{j}^{r}(\mathbf{a}) = [T^{r}(\mathbf{a}) - T^{r}(\mathbf{a})_{s}]$ for each (r, j)-sequence \mathbf{a} .

Since $T^r(\mathbf{a})$ is the collapsed simplex, we have $w_{j-1}T^r(\mathbf{a}) = (\cdots (e^r, 0), 0) \cdots, 0)$ and

 $T^r(\mathbf{a})_S$ is the collapsed simplex. Consequently φ_i^r is the constant map. Therefore we have

$$w_j T^r = (w_{j-1}T^r, 0) = \cdots = (\cdots ((e^r, 0), 0) \cdots, 0).$$

THEOREM 3.3. $w_i(\tau \hat{T}^r) = \alpha(\hat{w}_{i-1}\hat{T}^r)$.

PROOF. By definition, we have

$$w_i(\tau \hat{T}^r) = (w_{i-1}(\tau \hat{T}^r), \varphi_i^{r+1}) = (\alpha(\hat{w}_{i-2}\hat{T}^r), \varphi_i^{r+1}),$$

where

$$\boldsymbol{\varphi}_{i}^{r+1}(\mathbf{a}) = [\boldsymbol{\tau} \, \hat{\boldsymbol{T}}^{r}(\mathbf{a}) - (\boldsymbol{\tau} \hat{\boldsymbol{T}}^{r}(\mathbf{a}))_{S}]$$

and $\mathbf{a} = (a_0, a_1, \dots, a_i)$ is an (r+1, i)-sequence. On the other hand,

$$\hat{w}_{i-1}\hat{T}^r = (\hat{w}_{i-2}\hat{T}^r, \psi_{i-1}^r)$$

where

$$\psi_{i-1}^r(\mathbf{b}) = (\hat{T}^r(\mathbf{b}) - (\hat{T}^r(\mathbf{b}))s)$$

and **b** is an (r, i-1)-sequence.

1°. $a_i = r + 1$, $b = a^{(i)}$: In this case it is easy to see that

$$\varphi_{i}^{r+1}(\mathbf{a}) = \tau \psi_{i-1}^{r}(\mathbf{b}).$$

2°. $a_i < \tau + 1$: $\tau \hat{T}^r(\mathbf{a})$ is the collapsed simplex and therefore $(\tau \hat{T}^r(\mathbf{a}))_S$ is also the collapsed simplex. Consequently $\varphi_i^{r+1} = 0$. Thus we have

$$\varphi_{i-1}^{r+1} = \alpha \psi_{i-1}^{r}$$

DEFINITION 3.4. We define \hat{T}_N^{i-1} corresponding to $(\cdots(\hat{e}^{i-1}, 0), 0)\cdots, 0)$ by the collapsed simplex.

DEFINITION 3.5. When \hat{T}_{N}^{i-1} is the normal (i-1)-dimensional singular simplex of \hat{X} corresponding to \hat{A}_{i-1}^{i-1} , then we define T_{N}^{i} corresponding to \hat{A}_{i-1}^{i} by $\tau \hat{T}_{N}^{i-1}$.

LEMMA 3.6. T_N^i corresponding to $(\cdots((e^i, 0), 0)\cdots, 0)$ is the collapsed simplex. It is easily seen by definitions 3.4 and 3.5

DEFINITION 3.7. \hat{T}_s^i corresponding to $(\cdots(\hat{e}^i,0),0)\cdots,0)$ is defined by the collapsed simplex.

DEFINITION 3.8. When \hat{T}_{S}^{i} is the standard *i*-dimensional singular simplex of \hat{X} corresponding to \hat{A}_{l-1}^{i} , we define T_{S}^{i+1} corresponding to $A_{l-1}^{i+1} = \alpha \hat{A}_{l-1}^{i}$ by $\tau \hat{T}_{S}^{i}$.

LEMMA 3.9. T_S^{i+1} corresponding to $(\cdots((e^{i+1}, 0), 0), \cdots, 0)$ is the collapsed simplex. This is easily seen by definition 3.7 and 3.8.

THEOREM 3.10. $k_i(\cdots((e^{i+2}, 0), 0), \cdots, 0) = 0$.

It is a trivial result of lemma 3.9.

THEOREM 3.11. $\hat{k}_{i-1} = \tau^{-1} \circ k_i \circ \alpha.$

PROOF. Let \hat{A}_{i-1}^{i+1} be an (i+1)-cell of \hat{K}_{i-1} , \hat{T}_{js}^{i} be the standard i-dimensional singular simplex of \hat{X} corresponding to the j-th face \hat{A}_{i-1}^{i+1} of \hat{A}_{i-1}^{i+1} and \hat{f} be a representation of an element of $\hat{\pi}_{i}$ defined by

$$\hat{f} \mid \triangle^{i+1(j)} = \hat{T}_{jS}^i$$
, $(j=0, 1, \dots, i+1)$.

Then we have

$$\hat{k}_{i-1} \colon A_{i-1}^{i+1} \to \hat{f}$$
.

By lemma 2.4, we have

$$(\alpha \hat{A}_{i-1}^{(i+1)})^{(j)} = \alpha (\hat{A}_{i-1}^{(i+1)(j)}), \qquad (j=0, 1, \dots, i+1),$$

$$(\alpha \hat{A}_{i-1}^{(i+1)})^{(i+2)} = (\dots ((e^{i+1}, 0), 0) \dots, 0).$$

Consequently T_S^{i+1} corresponding to $(\alpha \hat{A}_{i-1}^{i+1})^{(j)}$ is $\tau \hat{T}_{jS}^i$ $(j=0, 1, \dots, i+1)$ or the collapsed simplex (j=i+2).

Therefore we have

$$k_i(\alpha \hat{A}_{i-1}^{i+1}) = [f],$$

where $f: \triangle^{i+2} \rightarrow X$ is defined as follows:

$$f \mid \triangle^{i+2(j)} = \tau \hat{T}^{i}_{js}, \qquad (j=0, 1, \dots, i+1),$$
 $f \mid \triangle^{i+2(i+2)} = the \ constant \ map.$
 $\hat{k}_{i-1} = \tau^{-1} \circ k_{i} \circ \alpha.$

Namely

We are now in a position to conclude the studies of §§ 2 and 3:

THEOREM 3.12. Let X and \hat{X} be an arcwise-connected simply connected to pological space and the space of loops on X respectively. Then we can construct the natural systems of X and \hat{X} which satisfy the following relations for each $i \ge 3$.

- 1) If \hat{A}_{i-2}^{r-1} is an (r-1)-cell of \hat{K}_{i-2} , $A_{i-1}^{r} = \alpha \hat{A}_{i-2}^{r-1}$ is an r-cell of K_{i-1} .
- 2) $w_{i-1}(\tau \hat{T}^r) = \alpha (\hat{w}_{i-2}\hat{T}^r),$
- 3) \hat{T}_N^{i-2} corresponding to $(\cdots((\hat{e}^{i-2}, 0), 0)\cdots, 0)$ is the collapsed simplex. T_N^{i-1} corresponding to $(\cdots((e^{i-1}, 0), 0)\cdots, 0)$ is the collapsed simplex.

If \hat{T}_{N}^{i-2} is the normal (i-2)-dimensional singular simplex of \hat{X} corresponding to \hat{A}_{i-2}^{i-2} , $\tau \hat{T}_{N}^{i-2}$ is the normal (i-1)-dimensional singular simplex of X corresponding to $\hat{A}_{i-1}^{i-1} = \alpha \hat{A}_{i-2}^{i-2}$.

4) \hat{T}_S^{i-1} corresponding to $(\cdots((\hat{e}^{i-1},0),0)\cdots,0)$ is the collapsed simplex. T_S^i corresponding to $(\cdots((e^i,0),0)\cdots,0)$ is the collapsed simplex. If \hat{T}_S^{i-1} is the standard (i-1)-dimensional singular simplex of \hat{X} corresponding to \hat{A}_{i-1}^{i-1} , $\tau \hat{T}_S^{i-1}$ is the standard i-dimensional singular simplex of X corresponding to $A_{i-1*}^{i} = \alpha \hat{A}_{i-2}^{i-1}$.

5)
$$\hat{k}_{i-2}(\cdots(\hat{e}^i, 0), 0)\cdots, 0) = 0,$$

 $k_{i-1}(\cdots((e^{i+1}, 0), 0)\cdots, 0) = 0,$
 $\hat{k}_{i-2} = \tau^{-1} \circ k_{i-1} \circ \alpha.$

§ 4. Isomorphism of natural systems

Let X and Y be two arcwise-connected, simply-connected topological spaces, and \hat{X} and \hat{Y} the spaces of loops on X and Y respectively. We make the assumption that the natural systems $\mathbf{G} = (G_i, k_i)$, $\hat{\mathbf{G}} = (\hat{G}_i, \hat{k}_i)$, $\mathbf{H} = (H_i, l_i)$ and $\hat{\mathbf{H}} = (\hat{H}_i, \hat{l}_i)$ of X, \hat{X} , Y and \hat{Y} , respectively, have been defined such that they satisfy the relations given in theorem 3.12.

Let K_i , \hat{K}_i , L_i and \hat{L}_i be the cell-complexes of the above systems G, \hat{G} , H and \hat{H} respectively. Put $e^i = \|d_{mn}\|$, $E^i = \|D_{mn}\|$, $d_{mn} = 1 \in G_1$, $D_{mn} = 1 \in H_1$, m = 0, $1, \dots$, i, n = 0, $1, \dots$, i.

Assume that **G** and **H** are isomorphic, i. e., there exists for each i an isomorphism $\theta_i: G_i \approx H_i$ such that θ_i is a θ_1 -isomorphism if i > 1, and such that there exists for each i a θ_1 -isomorphism $\tilde{\theta}_i$ of K_i on L_i . $\tilde{\theta}_i$ being a θ_i -prolongation of $\tilde{\theta}_{i-1}$ with i-cochain d_{i-1} .

LEMMA 4.1.
$$\tilde{\theta}_{i+1} \alpha \hat{K}_i = \alpha \hat{L}_i$$
.

PROOF. In the first place, we intend to prove the case i=1. Let $\|\psi_i^r(i,j)\|$ be an r-cell of \hat{K}_1 . Then we have

$$lpha \| \psi_1^r(i, j) \| = (e^{r+1}, \alpha \psi_1^r) \in K_2,$$
 $\widetilde{\theta}_2 \alpha \| \psi_1^r(i, j) \| = (E^{r+1}, \theta_2^{r+1}) \in L_2,$

where

$$\mathcal{Q}_{2}^{r+1}(\mathbf{a}) = \theta_{2}(\alpha \psi_{1}^{r}(\mathbf{a}) + d_{1}(e^{r+1}^{\mathbf{a}^{-1}}))$$

for each (r+1, 2)-sequence $\mathbf{a} = (a_0, a_1, a_2)$. Since $k_1 = 0$ and $l_1 = 0$, we have $d_1 = 0$ and

$$\emptyset_2^{r+1}(\mathbf{a}) = \theta_2 \alpha \psi_1^r(\mathbf{a}) = \begin{cases} \theta_2 \tau \psi_1^r(\mathbf{a}^{(2)}), & (a_2 = r+1), \\ 0, & (a_2 < r+1). \end{cases}$$

Define an (r, 1)-function Ψ_1^r as follows:

$$\Psi_1^r(a_0, a_1) = \tau^{-1} \Phi_2^{r+1}(a_0, a_1, r+1)$$

for each (r, 1)-sequence (a_0, a_1) . Then we have that $\|\Psi_i^r(i, j)\|_{i, j=0, 1, \dots, r}$ is an r-cell of \hat{L}_1 , and

$$\alpha \| \Psi_1^r(i, j) \| = (E^{r+1}, \Phi_2^{r+1}) \in L_2.$$

Conversely, let $\|\Psi_{i}^{r}(i, j)\|$ be an r-cell of \hat{L}_{i} . Then we have

$$\alpha \parallel \Psi_1^r(i, j) \parallel = (E^{r+1}, \alpha \Psi_1^r) \in \mathcal{L}_2.$$

Put $\varphi_2^{r+1} = \theta_2^{-1} \circ \alpha \circ \Psi_1^r$. Then we have

$$\varphi_2^{r+1}(\mathbf{a}) = \theta_2^{-1} \alpha \Psi_1^r(\mathbf{a}) = 0$$

for each (r+1, 2)-sequence $\mathbf{a} = (a_0, a_1, a_2)$ with $a_2 < r+1$. Put

$$\psi_1^r(a_0, a_1) = \tau^{-1}\varphi_2^{r+1}(a_0, a_1, r+1).$$

Then

$$\widetilde{\theta}_2 \alpha \| \boldsymbol{\psi}_1^r(\boldsymbol{i}, \boldsymbol{j}) \| = (\boldsymbol{E}^{r+1}, \alpha \boldsymbol{\Psi}_1^r).$$

Secondly we make the inductive assumption that the following relation

$$\tilde{\theta}_i \alpha \hat{K}_{i-1} = \alpha \hat{L}_{r-1}$$

has been proved. Let $\hat{A}_{i}^{r} = (\hat{A}_{i-1}^{r}, \psi_{i}^{r})$ be an r-cell of \hat{K}_{i} . Then $\tilde{\theta}_{i+1}\alpha \hat{A}_{i}^{r} = (\tilde{\theta}_{i}\alpha \hat{A}_{i-1}^{r}, \psi_{i}^{r})$ is an (r+1)-cell of L_{i+1} ,

where

for each (r+1, i+1)-sequence $\mathbf{a} = (a_0, a_1, \dots, a_{i+1})$. In the case $a_{i+1} < r+1$,

$$\alpha \psi_i^r(\mathbf{a}) = 0,$$

$$d_i((\alpha \hat{A}_{i-1}^{r-1})^{\mathbf{a}^{-1}} = d_i(\cdots ((e^{i+1}, 0), 0) \cdots, 0) = 0,$$

$$\phi_{i+1}^{r+1}(a_0, a_1, \cdots, a_{i+1}) = 0 \text{ for } a_{i+1} < r+1.$$

i. e., Put

$$\Psi_i^r(a_0, a_1, \dots, a_i) = \tau^{-1} \Phi_{i+1}^{r+1}(a_0, a_1, \dots, a_i, r+1).$$

By the inductive hypothesis there exists an r-cell \hat{B}_{i-1}^r of \hat{L}_{i-1} such that

$$\alpha \, \hat{B}_{i-1}^r = \widetilde{\theta}_i \alpha \, \hat{A}_{i-1}^r.$$

Since $(\tilde{\theta}_i \alpha \hat{A}_{i-1}^r, \boldsymbol{\theta}_{i+1}^{r+1})$ is an (r+1)-cell of L_{i+1} , for each (r+1, i+2)-sequence **a** we have

$$\sum_{i=0}^{i+2} (-1)^{j} \, \boldsymbol{\emptyset}_{i+1}^{r+1}(\mathbf{a}^{(j)}) + \boldsymbol{l}_{i} ((\tilde{\boldsymbol{\theta}}_{i} \, \alpha \, \hat{\boldsymbol{A}}_{i-1}^{r})^{\mathbf{a}^{-1}} = 0.$$

Especially in the case $\mathbf{a} = (a_0, a_1, \dots, a_{i+1}, r+1)$ and $\mathbf{b} = (a_0, a_1, \dots, a_{i+1})$, we have

$$\sum_{j=0}^{l+1} (-1)^{j} \Psi_{i}^{r}(\mathbf{b}^{(j)}) + \hat{l}_{i-1}(\hat{B}_{i-1}^{r} \mathbf{b}^{-1}) = 0.$$

Namely, $\tilde{\theta}_i \alpha \hat{K}_i \subset \alpha \hat{L}_i$.

Conversely, let $\hat{B}_{i}^{r} = (\hat{B}_{i-1}^{r}, \Psi_{i}^{r})$ be an r-cell of \hat{L}_{i} . Then we have

$$\alpha \hat{B}_{i}^{r} = (\alpha \hat{B}_{i}^{r}, \alpha \Psi^{r})$$

and by the inductive hypothesis there exists an r-cell \hat{A}_{i-1}^r of \hat{K}_{i-1} such that

$$\widetilde{\theta}_i \alpha \hat{A}_{i-1}^r = \alpha \hat{B}_{i-1}^r$$

Let φ_{i+1}^{r+1} be an (r+1, i+1)-function defined as follows:

$$\boldsymbol{\varphi}_{l+1}^{r+1}(\mathbf{a}) = \theta_{l+1}^{-1} \boldsymbol{\alpha} \, \boldsymbol{\mathcal{Y}}_{l}^{r}(\mathbf{a}) - d_{i} \left((\boldsymbol{\alpha} \, \hat{A}_{l-1}^{r})^{\mathbf{a}^{-1}} \right)$$

for each (r+1, i+1)-sequence a. Then

$$\varphi_{i+1}^{r+1}(a_0, a_1, \dots, a_{i+1}) = 0$$
 for $a_{i+1} < r+1$.

Define ψ_{l}^{r} as follows:

$$\psi_{i}^{r}(a_0, a_1, \dots, a_i) = \tau^{-1} \varphi_{i+1}^{r+1}(a_0, a_1, \dots, a_i, r+1)$$

for each (r, i)-sequence (a_0, a_1, \dots, a_i) .

Then we have

$$\alpha \Psi_i^r(\mathbf{a}) = \theta_{i+1}(\alpha \Psi_i^r(\mathbf{a}) + d_i((\alpha \hat{A}_{i-1}^r)^{\mathbf{a}^{-1}}),$$

and if $(\hat{A}_{l-1}^r \ \psi_l^r)$ is an r-cell of \hat{K}_l we have

$$\widetilde{\theta}_{i+1} \alpha (\widehat{A}_{i-1}^r, \ \psi_i^r) = (\widetilde{\theta}_i \alpha \ \widehat{A}_{i-1}^r, \ \alpha \ \Psi_i^r) = \alpha \ \widehat{B}_i^r.$$

Therefore we can complete this proof by showing that $(\hat{A}_{i-1}^r, \psi_i^r)$ is an r-cell of \hat{K}_i . Since $(\alpha \hat{B}_{i-1}^r, \alpha \Psi_i^r)$ is an (r+1)-cell of L_{i+1} ,

$$\sum_{i=0}^{t+2} (-1)^{i} \Psi_{i}^{r}(\mathbf{a}^{(j)}) + \mathbf{l}_{i}((\alpha \hat{B}_{i-1}^{r})^{\mathbf{a}^{-1}}) = 0$$

for each (r+1, i+2)-sequence $\mathbf{a} = (a_0, a_1, \dots, a_{i+2})$. Consequently,

$$\sum_{j=0}^{i+2} (-1)^{j} \theta_{i+1} \alpha \psi_{i}^{r}(\mathbf{a}^{(j)}) + \sum_{j=0}^{i+2} (-1)^{j} \theta_{i+1} d_{i}((\alpha \hat{A}_{i-1}^{r})^{(\mathbf{a}^{(j)})^{-1}}) + l_{i} \tilde{\theta}_{i}(\alpha \hat{A}_{i-1}^{r})^{\mathbf{a}^{-1}} = 0.$$

Especially, in the case $a_{i+2} = \tau + 1$, $b = (a_0, a_1, \dots, a_{i+1})$, we have

$$\sum_{j=0}^{i+1} (-1)^{j} \boldsymbol{\tau} \, \psi_{i}^{r}(\mathbf{b}^{(j)}) + \sum_{j=0}^{i+2} (-1)^{j} d_{i}(((\boldsymbol{\alpha} \, \hat{A}_{i-1}^{r})^{\mathbf{a}^{-1}})^{(j)}) + \theta_{i+1}^{-1} \boldsymbol{l}_{i} \, \widetilde{\theta}_{i} \, \alpha \, (\hat{A}_{i-1}^{r})^{\mathbf{b}^{-1}}) = 0,$$

$$\sum_{i=0}^{i+1} (-1)^{i} \psi_{i}^{r}(\mathbf{b}^{(i)}) + \tau^{-1} \left(\mathbf{p} d_{i} + \theta_{i+1}^{-1} \mathbf{l}_{i} \ \widetilde{\theta}_{i} \right) \alpha \left(\widehat{A}_{i-1}^{r} \right)^{b-1} = 0.$$

Substituting k_i for $rd_i + \theta_{i+1}^{-1} l_i \widetilde{\theta}_i$ and \widehat{k}_{i-1} for $\tau^{-1} \circ k_i \circ \alpha$ we obtain

$$\sum_{j=0}^{i+1} (-1)^j \psi_i^r(\mathbf{b}^{(j)}) + \hat{k}_{i-1}(\hat{A}_{i-1}^r)^{b-1} = 0.$$

Thus $(\hat{A}_{i-1}^r, \psi_i^r)$ is an r-cell of \hat{K}_i .

THEOREM 4.2. On the assumptions mentioned above, $\hat{\mathbf{G}} \approx \hat{\mathbf{H}}$ That is to say, there exists for each i an isomorphism η_i : $\hat{G}_i \approx \hat{H}_i$ such that η_i is an η_i -isomorphism if i>1, and such that there exists for each i an η_1 -isomorphism $\tilde{\eta}_i$ of \hat{K}_i on \hat{L}_i , $\tilde{\eta}_i$ being an η_i -prolongation of $\tilde{\eta}_{i-1}$ with some i-cochain \hat{d}_{i-1} .

PROOF. Put

$$\eta_i = \tau^{-1} \circ \theta_{\ell+1} \circ \tau, \quad \widetilde{\eta}_i = \alpha^{-1} \circ \widetilde{\theta}_{i+1} \circ \alpha \quad \text{and} \quad \widehat{d}_{i-1} = \tau^{-1} \circ d_i \circ \alpha.$$

By lemma 4.1, it is justified that $\tilde{\gamma}_i$ is a mapping from \hat{K}_i onto \hat{L}_i . It is easy to see that

 η_i is an isomorphism from \hat{G}_i onto \hat{H}_i , $\tilde{\eta}_i$ preserves dimension and is (1-1), \hat{d}_{i-1} is an *i*-cochain of \hat{K}_{i-1} over \hat{G}_i .

Since \hat{G}_1 and \hat{H}_1 operate trivially on \hat{G}_i and \hat{H}_i $(i \ge 2)$, respectively, η_i is an η_i isomorphism.

For each cell $\|\psi_1^r(i,j)\|$ of \hat{K}_1 , we have

$$\widetilde{\eta}_1 \| \psi_1^r(i,j) \| = \alpha^{-1} \widetilde{\theta}_2 \alpha \| \psi_1^r(i,j) \| = \| \tau^{-1} \theta_2 \tau(\psi_1^r(i,j)) \| = \| \eta_1 \psi_1^r(i,j) \|.$$

Put $\hat{B}_{i}^{r} = \widetilde{\eta}_{i} \hat{A}_{i}^{r}$, i. e., $\alpha \hat{B}_{i}^{r} = \widetilde{\theta}_{i+1} \alpha \hat{A}_{i}^{r}$.

Let $\mathbf{a} = (a_0, a_1, \dots, a_j)$ be an (r, j)-sequence and we denote it by **b** when we consider it as an (r+1, j)-sequence, then

$$\alpha(\hat{B}_{i}^{\mathbf{r}\mathbf{a}}) = (\alpha \hat{B}_{i}^{\mathbf{r}})^{\mathbf{b}} = (\tilde{\theta}_{i+1} \alpha \hat{A}_{i}^{\mathbf{r}})^{\mathbf{b}} = \tilde{\theta}_{i+1} \alpha(\hat{A}_{i}^{\mathbf{a}}),$$

i. e.,
$$(\widetilde{\eta}_i \hat{A}_i^r)^a = \widetilde{\eta}_i (\hat{A}_i^{ra}).$$

Let $\hat{K}_1 = K(\hat{G}_1)$ and $\hat{L}_1 = K(\hat{H}_1)$ be (\hat{G}_1, σ) -complex and (\hat{H}_1, σ') -complex, respectively. Defining \hat{A}_i^r by $(\cdots((\hat{A}_i^r, \psi_2^r), \psi_3^r)\cdots, \psi_i^r)$, we have

$$\sigma\left(\hat{A}_{i}^{r}\right) = \sigma\left(\hat{A}_{i}^{r}\right) = \hat{A}_{i}^{r}$$

and then $\tilde{\eta}_1 \sigma(\hat{A}_1^r) = \tilde{\eta}_1 \hat{A}_1^r$.

On the other hand by the definition of $\tilde{\eta}_i$,

$$\sigma'(\widetilde{\gamma}_i \, \hat{A}_i^r) = \sigma'(\alpha^{-1} \, \widetilde{\theta}_{i+1} \, \alpha \, \hat{A}_i^r) = \sigma'(\alpha^{-1} \, \widetilde{\theta}_2 \, \alpha \, \hat{A}_i^r) = \alpha^{-1} \, \widetilde{\theta}_2 \, \alpha \, \hat{A}_i^r = \widetilde{\gamma}_1 \, \hat{A}_i^r.$$

Thus, we have

$$\widetilde{\eta}_1 \, \sigma (\overset{\bullet}{A}_i^r) = \sigma' (\widetilde{\eta}_i \, \overset{\bullet}{A}_i^r)$$

for each τ -cell \hat{A}_i^{τ} of \hat{K}_i .

Let us consider the property of \hat{d}_{i-1} :

$$\begin{split} & \mathcal{V} \, \hat{d}_{i-1}(\hat{A}_{i-1}^{t+1}) = \sum_{j=0}^{t+1} (-1)^{j} \, \hat{d}_{t-1}(\hat{A}_{i-1}^{t+1}(\mathcal{G})) = \tau^{-1}(\mathcal{V} \, d_{i}(\alpha \, \hat{A}_{i-1}^{t+1})) \\ &= \tau^{-1}(k_{i} \, \alpha \, \hat{A}_{i-1}^{t+1} - \theta_{i+1}^{-1} \, l_{i} \, \widetilde{\theta}_{i}(\alpha \, \hat{A}_{i-1}^{t+1})) \\ &= \hat{k}_{i-1} \, \hat{A}_{i-1}^{t+1} - \eta_{i+1}^{-1} \, \hat{l}_{i-1} \, \widetilde{\gamma}_{i}(\hat{A}_{i-1}^{t+1}). \end{split}$$

To finish the proof, we must prove that

$$\widetilde{\eta}_i \, \widehat{A}_i^r = (\widetilde{\eta}_{i-1} \, \widehat{A}_{i-1}^r, \, \Psi_i^r)$$

for each τ -cell $\hat{A}_{i}^{r} = (\hat{A}_{i-1}^{r}, \psi_{i}^{r})$ of \hat{K}_{i} , where Ψ_{i}^{r} is defined as follows:

$$\Psi_{i}^{r}(\mathbf{a}) = \eta_{i}(\psi_{i}^{r}(\mathbf{a}) + \hat{d}_{i-1}(\hat{A}_{i-1}^{r})^{\mathbf{a}^{-1}})$$

for each (r, i)-sequence a.

Since $\widetilde{\eta}_i = \alpha^{-1} \circ \widetilde{\theta}_{i+1} \circ \alpha$,

$$\begin{split} \widetilde{\eta}_{i} \, \widehat{A}_{i}^{r} &= \alpha^{-1} \big(\widetilde{\theta}_{i} \, \alpha \, \hat{A}_{i-1}^{r}, \, \, \emptyset_{i+1}^{r+1} \big) = (\alpha^{-1} \, \widetilde{\theta}_{i} \, \alpha \, \hat{A}_{i-1}^{r}, \, \, \alpha^{-1} \, \emptyset_{i+1}^{r+1} \big) \\ &= (\widetilde{\eta}_{i-1} \, \hat{A}_{i-1}^{r}, \, \, \alpha^{-1} \emptyset_{i+1}^{r+1}), \end{split}$$

where

for each (r+1, i+1)-sequence a.

Let $\mathbf{b} = (b_0, b_1 \dots, b_i)$ be an (r, i)-sequence, and let \mathbf{a} be an (r+1, i+1)-sequence defined by $\mathbf{a} = (b_0, b_1, \dots, b_i, r+1)$. Then we have

$$\begin{split} &(\boldsymbol{\alpha}^{-1}\,\boldsymbol{\theta}_{i+1}^{r+1})\!(\mathbf{b}) = \boldsymbol{\tau}^{-1}(\boldsymbol{\theta}_{i+1}^{r+1}(\mathbf{a})) \\ &= \boldsymbol{\tau}^{-1}\,\boldsymbol{\theta}_{i+1}(\boldsymbol{\alpha}\,\boldsymbol{\psi}_{i}^{r}(\mathbf{a}) + \boldsymbol{d}_{i}\,\boldsymbol{\alpha}\,(\boldsymbol{\hat{A}}_{i-1}^{r})) = \eta_{i}\,\boldsymbol{\psi}_{i}^{r}(\mathbf{b}) + \eta_{i}\,\boldsymbol{\hat{d}}_{i-1}(\boldsymbol{\hat{A}}_{i-1}^{r}). \end{split}$$

Thus $\tilde{\eta}_i$ is an η_i -prolongation of $\tilde{\eta}_{i-1}$.

REMARK. We can extend theorem 4.2 to the following form and its proof is very similar to that of theorem 4.2:

Let (G_i, k_i) , (G_i', k_i') , (H_i, l_i) and (H_i', l_i') be systems, not necessarily being the natural systems of spaces, and assume that

 $G_1 = 0$ and $H_1 = 0$,

 G_1' operates trivially on G_i' $(i \ge 2)$, H_1' operates trivially on H_i' $(i \ge 2)$, there exists an isomorphism τ such that $\tau: G_{i-1} \approx G_i$ $(i \ge 2)$ and

$$\tau: H'_{i-1} \approx H_i \ (i \geq 2),$$

 $k'_{i-1} = \tau^{-1} \circ k_i \circ \alpha$ and $l'_{i-1} = \tau^{-1} \circ l_i \circ \alpha$ where α is the isomorphism defined in § 2,

 $k_i(\cdots((e^{i+2}, 0), 0)\cdots, 0) = 0$ and $l_i(\cdots((E^{i+2}, 0), 0)\cdots, 0) = 0$ where e^{i+2} and E^{i+2} are the matrices defined at the beginning of this section,

 (G_i, k_i) and (H_i, l_i) are isomorphic.

Then we have that (G_i', k_i') and (H_i', l_i') are isomorphic.

THEOREM 4.3. Let (G_i', k_i') be a system such that $k'_i(\cdots((e'^{i+2}, 0), 0), \cdots, 0)$ = 0. Then there exists a space of loops whose natural system is isomorphic to (G_i', k_i') if and only if G_1' operates trivially on G_i' $(i \ge 2)$.

PROOF. The condition is evidently necessary. To prove the sufficiency, let $G_{\mathbf{i}}'$ be a multiplicative group of left operators which operate trivially on $G_{\mathbf{i}}'$ $(i \ge 2)$. Define a system (G_i, k_i) as follows:

$$G_1 = 0$$

there exists an isomorphism $\tau: G'_{i-1} \approx G_i \ (i \ge 2)$,

 $k_i = \tau \circ k'_{i-1} \circ \alpha^{-1}$ where α is the isomorphism defined in § 2, $k_i = 0$ on the complementary of the image of α

Then, by Postnikov's theorem (see § 1), there exists a topological space X whose natural system is isomorphic to (G_i, k_i) . Let \hat{X} be the space of loops on X, then it is easy to see that the natural system of \hat{X} and (G_i', k_i') are isomorphic.

§ 5. Fibering

1. By theorem 4.3, we have the following theorem:

THEOREM 5.1. For two systems $G' = (G_i', k_i')$ and $G = (G_i, k_i)$ given in theorem 4.3 and in its proof, there exists a fibering (E, X, F, p) such that the natural systems of X and F are isomorphic to G and G' respectively.

2. Let G_1 and H_1 be multiplicative groups of left operators on abelian groups G_i and H_i $(i \ge 2)$, respectively, and assume that the following sequence is exact:

$$\longrightarrow F_i \xrightarrow{f_i} G_i \xrightarrow{g_i} H_i \xrightarrow{h_i} F_{i-1} \xrightarrow{\cdots} \cdots \xrightarrow{H_2} H_2 \xrightarrow{h_2} F_1 \xrightarrow{g_1} G_1 \xrightarrow{g_1} H_1 \xrightarrow{h_1} 0.$$

We now consider two systems $G = (G_i, k_i)$ and $H = (H_i, l_i)$ and denote their cell-complexes by K_i and L_i . In this section we assume that the following relations hold:

- 1) g_i is an onto-homomorphism: $G_i \rightarrow H_i$,
- 2) $g_i(x_1x_i) = g_1(x_1)g_i(x_i)$ for all elements $x_1 \in G_1$ and $x_i \in G_i$
- 3) $g_{i+1} \circ k_i = l_i \circ \overline{g}_i$, defining $\overline{g}_1 \colon K_1 \to L_1$ by $\overline{g}_1 \parallel d_{ij} \parallel = \parallel g_1 d_{ij} \parallel$ and \overline{g}_i on K_i by $\overline{g}_i A_i^r = (\overline{g}_{i-1} A_{i-1}^r, g_i \circ \varphi_i^r)$ for each r-cell $A_i^r = (A_{i-1}^r, \varphi_i^r)$ of K_i , inductively.

LEMMA 5.2. We have

$$g_1(\sigma_{a_0a_1}(A_j^r)) = \sigma_{a_0a_1}(\overline{g}_j A_j^r)$$

for each r-cell $A_j^r = (\cdots ((A_1^r, \varphi_3^r), \varphi_3^r) \cdots, \varphi_j^r)$ of K_j and for each (r, i)-sequence $\mathbf{a} = (a_0, a_1, \cdots, a_i)$.

PROOF. By definitions

$$g_1(\sigma_{\boldsymbol{a}_0\boldsymbol{a}_1}(A_1')) = g_1(\sigma_{\boldsymbol{a}_0\boldsymbol{a}_1}(A_1')) = \sigma_{\boldsymbol{a}_0\boldsymbol{a}_1}(\widetilde{g}_1 A_1').$$

On the other hand

$$\sigma_{a_0a_1}(\overline{g}_i\,A_j^r)=\sigma_{a_0a_1}(\cdots((\overline{g}_1A_1^r,\ g_2\circ\varphi_2^r),\ g_3\circ\varphi_3^r)\cdots,\ g_j\circ\varphi_j^r)=\sigma_{a_0a_1}(\overline{g}_1\,A_1^r).$$

LEMMA 5.3. If $\bar{g}_{i-1}(K_{i-1}) \subset L_{i-1}$, $\bar{g}_i(K_i) \subset L_{i-1}$

PROOF. Let $A_i^r = (A_{i-1}^r, \varphi_i^r)$ be an r-cell of K_i , then we have

$$\sigma_{a_0a_1}(A_{i-1}^r)\varphi_i^r(\mathbf{a}^{(o)}) + \sum_{i=1}^{i+1} (-1)^j \varphi_i^r(\mathbf{a}^{(j)}) + k_{i-1}(A_{i-1}^r) = 0$$

for each (r, i+1)-sequence $\mathbf{a} = (a_0, a_1, \dots, a_{i+1})$.

Transforming this expression by g_i we have

$$\sigma_{\mathbf{a}_0 \mathbf{a}_1}(\tilde{\mathbf{g}}_{i-1} A_{i-1}^r) \cdot \mathbf{g}_i \boldsymbol{\varphi}_i^r(\mathbf{a}^{(0)}) + \sum_{i=0}^{i+1} (-1)^i \mathbf{g}_i \boldsymbol{\varphi}_i^r(\mathbf{a}^{(i)}) + \mathbf{g}_i \mathbf{k}_{i-1}(A_{i-1}^r \mathbf{a}^{-1}) = 0.$$

But

$$g_i k_{i-1}(A_{i-1}^r)^{\mathbf{a}^{-1}} = l_{i-1} \overline{g}_{i-1}(A_{i-1}^r)^{\mathbf{a}^{-1}} = l_{i-1}((\overline{g}_{i-1} A_{i-1}^r)^{\mathbf{a}^{-1}}).$$

Thus we have that $\bar{g}_i A_i^r$ is contained in L_i .

THEOREM 5.4. There exists a fibering (E, X, F, p), in the sense of Serre (4), such that the natural systems of E and X are isomorphic to G and H respectively and its homotopy exact sequence is the above given exact sequence.

PROOF. Define a mapping $\bar{g}: K(G) \to K(H)$ by $\bar{g}(A_1^r, A_2^r, \cdots) = (\bar{g}_1 A_1^r, \bar{g}_2 A_2^r, \cdots)$. By Postnikov's theorem we have two spaces Y and X whose natural systems are isomorphic to G and H respectively. Let $g^*: Y \to X$ be the barycentric extension of \bar{g} . Construct a fibering (E, X, F, p) by the method of Cartan-Serre [6] as follows:

Let E be a space of pairs $(y, \omega(t))$ where $y \in Y$ and $\omega(t)$ is a path of X such that $\omega(0) = g^*(y)$. Y is a deformation retract of E and therefore all natural systems of E are isomorphic to G.

The map $p: E \to X$ such that $p(y, \omega(t)) = \omega(1)$ makes E a fiber space with base space X and fiber F which is a subspace of E consisting of pairs $(y, \omega(t))$ such that $\omega(1)$ is a fixed point of X.

In the following diagram which consists of the given exact sequence and the homotopy exact sequence of this fiber space E:

it is easily verified that $\rho'' \circ j' = g_i \circ \rho'$. And then we have, for each $a \in \pi_i(F)$,

$$\boldsymbol{g}_{i} \boldsymbol{\rho}' \boldsymbol{j} (\boldsymbol{a}) = \boldsymbol{\rho}'' \boldsymbol{j}' \boldsymbol{j} (\boldsymbol{a}) = 0,$$

that is to say,

$$\rho' j(a) \in g_i^{-1}(0) = image \ of f_i$$
.

Since g_{i+1} maps G_{i+1} onto H_{i+1} , f_i is an isomorphism and therefore we can define

$$\rho: \pi_i(F) \to F_i$$
 by $\rho(a) = f_i^{-1} \rho' j(a)$.

And then we have $f_i \circ \rho = \rho' \circ j$.

On the other hand, since $\rho \circ \partial = f_i^{-1} \circ \rho' \circ j \circ \partial = 0$ and $h_{i+1} \circ \rho'' = 0$, we have

 $\rho \circ \partial = h_{i+1} \circ \rho''$.

By the five lemma, we can conclude that $\rho: \pi_i(F) \to F_i$ is an isomorphism (onto). Thus the proof is complete.

References

- (1) M.M. Postnikov: Determination of the homology groups of a space by means of the homotopy invariants, Doklady Akad. Nauk SSSR, 76(3) (1951), 159-362.
- (2) M. M. Postnikov: On the homotopy type of polyhedra, ibid, 76 (6) (1951), 789-791.
- (3) S. Eilenberg and S. MacLane: Relations between homology and homotopy groups of spaces, Ann. of Math., 46(1945), 480-509.
- (4) J.-P. Serre: Homologie singulière des espaces fibrés, Ann. of Math., 54 (1951), 425-505.
- (5) H. Cartan and J.-P. Serre: Espaces fibres et groups d'homotopie. I, C. R. Paris, 234(1952), 288-290.
- (6) J.-P. Serre: Cohomologie modulo 2 des complexes d'Eilenberg-MacLane, Comment. Math. Helv., 27 (1953), 198-232.
- (7) P.J. Hilton: Report on three papers by M.M. Postnikov, 1952.
- (8) S. Eilenberg: Singular homology theory, Ann. of Math., 45 (1944), 407-447.