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ABSTRACT. Let $A$ be a bounded linear operator acting on infinite dimensional
separable Hilbert space $H$ . Let $H_{0}(A)$ denote the quasi-nilpotent part

$H_{0}(A)=\{x\in H : \lim_{n\rightarrow\infty}||A^{n}x||^{\frac{1}{n}}=0\}$

of an operator $A$ , and let $H(q)$ denote the class of $A\in B(H)$ for which $H_{0}(A-$

$\lambda I)=ker(A-\lambda I)^{q}$ for all complex numbers $\lambda$ and some integer $q\geq 1$ . In this
paper we prove that if $A$ is an algebraically class $H(q)$ operator, then generalized
Weyl’s theorem holds for $A$ . We also show that if $A$ is an algebraically class $H(q)$

operator, then $f(A)$ satisfies genralized Weyl’s theorem for every analytic function
$f$ in an open neighborhood of $\sigma(A)$ . More generally we prove that generalized a-
Weyl’s theorem holds for $A$ and $f(A)$ , where $A$ is algebraically class $H(q)$ operator.
By this we generalize some recent results in the literature.

1. INTRODUCTION

Let $B(H)$ and $K(H)$ denote, respectively, the algebra of bounded linear operators
and the ideal of compact operators acting on infinite dimensional separable Hilbert
space $H$ . If $A\in B(H)$ we shall write $N(A)$ and $R(T)$ for the null space and the
range of $A$ , respectively. Also, let $\alpha(A)$ $:=dimN(A),$ $\beta(A)$ $:=dimN(A^{*})$ , and let
$\sigma(A),$ $\sigma_{a}(A)$ and $\pi_{0}(A)$ denote the spectrum, approximate point spectrum and point
spectrum of $A$ , respectively.

An operator $A\in B(H)$ is called Redholm if it has closed range, finite dimensional
null space, and its range has finite co-dimension. The index of a Redholm operator
is given by

$I(A)$ $:=\alpha(A)-\beta(A)$ .
A Fredholm operator $A$ is called Weyl if it is of index zero, and Browder if its ascent
and descent are finite, equivalently ([23], Theorem 7.9.3) if $A$ is Fredholm and $ A-\lambda$

is invertible for sufficiently small $|\lambda$ I $>0,$ $\lambda\in \mathbb{C}$ . The essential spectrum $\sigma_{e}(A)$ , the
Weyl spectrum $\sigma_{w}(A)$ and the Browder spectrum $\sigma_{b}(A)$ of $A$ are defined by $[22, 23]$

$\sigma_{e}(A)=$ { $\lambda\in \mathbb{C}$ : $ A-\lambda$ is not Fredholm},
$\sigma_{w}(A)=$ { $\lambda\in \mathbb{C}$ : $ A-\lambda$ is not Weyl},
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$\sigma_{b}(A)=$ { $\lambda\in \mathbb{C}$ : $ A-\lambda$ is not Browder},
respectively. Evidently

$\sigma_{e}(A)\subseteq\sigma_{w}(A)\subseteq\sigma_{b}(A)=\sigma_{e}(A)\cup acc\sigma(A)$ ,

where we write accK for the accumulation points of $K\subseteq \mathbb{C}$ . If we write $isoK=$
$K\backslash accK$ , then we let

$\pi_{00}(A):=\{\lambda\in iso\sigma A:0<\alpha(A-\lambda)<\infty\}$ ,
$p_{00}(A)$ $:=\sigma(A)\backslash \sigma_{b}(A)$ .

Definition 1.1. We say that Weyl’s theorem holds for $A$ if
$\sigma(A)\backslash \sigma_{w}(A)=\pi_{\alpha)}(A)$ .

Definition 1.2. We say that the genemlized Weyl’s theorem holds for A provided
$\sigma(A)\backslash \sigma_{Bw}(A)=E(A)$ ,

where $E(A)$ and $\sigma_{Bw}(A)$ denote the isolated point of the spectrum which are eigen-
values (no restriction on multiplicity) and the set of all complex numbers $\lambda$ for which
$A-\lambda I$ is not B-Weyl, respectively.

Let $X$ be a Banach space. An operator $A\in B(X)$ is called $B$-Redholm by
Berkani [3] if there exists $n\in N$ for which $A^{n}$ is closed and the restriction of $A$ on it

$A_{n}$ : $A^{n}(X)\rightarrow A^{n}(X)$

is Fredholm in the usual sense, and B-Weyl if in addition $A_{n}$ has index zero. Note
that, if the generalized Weyl’s theorem holds for $A$ , then so does Weyl’s theorem
[3]. We say that Browder’s theorem holds for $A$ if

$\sigma(A)\backslash \sigma_{w}(A)=p_{00}(A)$ .

For a $A\in B(H)$ , let $H_{0}(A)$ denote the quasi-nilpotent part

$H_{0}(A)=\{x\in H : \lim_{n\rightarrow\infty}||A^{n}x||^{\frac{1}{\mathfrak{n}}}=0\}$

of the operator $A$ , and let $H(q)$ denote the class of $A\in B(H)$ for which $H_{0}(A-\lambda I)=$

$ker(A-\lambda I)^{q}$ for all complex numbers $\lambda$ and some integer $q\geq 1$ . The class $H(q)$

is large, it contains, amongst others, the classes consisting of generalized scalar,
hyponormal, p-hyponormal $(0<p<1)$ and M-hyponormal operators on a Hilbert
space (see [2, 14, 29]. An operator $A$ is called class $H(q)$ if it belongs to the class
$H(q)$ . An operator $A$ is called algebraically class $H(q)$ , simply alg-H $(q)$ , if $p(A)$ is
class $H(q)$ for some non-constant polynomial $p$ .

In [44], H. Weyl proved that weyl’s theorem holds for hermitian operators. Weyl’s
theorem has been extended $hom$ hermitian operators to hyponormal and Toeplitz
operators [11], and to several classes of operators including semi-normal operators
([7, 8]). Recently W.Y.Lee [31] showed that Weyl’s theorem holds for algebraically
hyponormal operators. R.Curto and Y.M.Han [13] have extended Lee’s results to
algebraically paranormal operator $A\in B(H)$ , where $H$ is a separable Hilbert space.
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In [17] the authors showed that Weyl’s theorem holds for algebraically p-hyponormal
operators. In [33] the authors showed that Weyl’s theorem holds for algebraically
$(p, k)$-quasihyponormal or paranormal operator $A\in B(H)$ , where $H$ is a general
Hilbert space. Berkani [3] showed that if $A$ is a hyponormal operator, then $A$ satis-
Pes generalized Weyl’s theorem $\sigma_{Bw}(A)=\sigma(A)\backslash E(A)$ , and the B-Weyl spectrum
$\sigma_{Bw}(A)$ of $A$ satisfies the spectral mapping theorem.

B.Duggal et $al[18]$ showed that Weyl’s theorem holds for $f(A)$ , where $f$ is an
analytic function on an open neighborhhod of $\sigma(A)$ in the case where $A$ is an al-
gebraically class $H(q)$ operator. In this paper we prove that if $A$ is algebraically
class $H(q)$ operator, then generalized Weyl’s theorem holds for $A$ . We also show
that if $A$ is algebraically class $H(q)$ operator, then genralized Weyl’s theorem holds
for $f(A)$ , where $f$ is an analytic function in an open neighborhood of $\sigma(A)$ . More
generally we prove that Generalized a-Weyl’s theorem holds for $A$ and $f(A)$ , where
$A$ is algebraically class $H(q)$ operator. Other related results are also given.

2. MAIN RESULTS

Lemma 2.1. [18] Let $A$ be a class $H(q)$ opemtor and $\lambda\in \mathbb{C}$ . If $\sigma(A)=\{\lambda\}$ , then
$ A=\lambda$ .

Lemma 2.2. Let $A$ be a quasinilpotent algebraically class $H(q)$ operator. Then $A$

is nilpotent.

Proof. Assume that $p(A)$ is a class $H(q)$ operator for some nonconstant polynomial
$p$ . Since $\sigma(p(A))=p(\sigma(A))$ , the operator $p(A)-p(O)$ is quasinilpotent. Thus
Lemma 2.1 would imply that

$cA^{m}(A-\lambda_{1})\ldots(A-\lambda_{n})\equiv p(A)-p(O)=0$ ,

where $m\geq 1$ . Since $A-\lambda_{i}$ is invertible for every $\lambda\neq 0$ , we must have $A^{m}=0$ . $\square $

In [18] the authors proved that if $A$ is an algebraically class $H(q)$ operator, then $A$

is isoloid by using some properties of a Kato type operator. In the following lemma
we will prove the same result by using a simple techniques as Curto [13] has used
for algebraically paranormal operators.

Lemma 2.3. Let $A$ be an algebraically class $H(q)$ operator. Then $A$ is isoloid.

Proof. Let $\lambda\in iso\sigma(A)$ and let

$ P:=\frac{1}{2\pi i}\int_{\partial D}(\mu-T)^{-1}d\mu$
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be the associated Riesz idempotent, where $D$ is a closed disk centered at $\lambda$ which
contains no other points of $\sigma(A)$ . We can then represent $A$ as the direct sum

$A=\left\{\begin{array}{ll}A_{1} & 0\\0 & A_{2}\end{array}\right\}$ , where $\sigma(A_{1})=\{\lambda\}$ and $\sigma(A_{2})=\sigma(A)\backslash \{\lambda\}$ .

Since $A$ is a class $H(q)$ operator, $p(A)$ is a class $H(q)$ operator for some nonconstant
polynomial $p$ . Since $\sigma(A_{1})=\lambda$ , we must have

$\sigma(p(A_{1}))=p(\sigma(A_{1}))=\{p(\lambda)\}$ .
Therefore $p(A_{1})-p(\lambda)$ is quasinilpotent. Since $p(A_{1})$ is a class $H(q)$ operator, it
follows from lemma 2.1 that $p(A_{1})-p(\lambda)=0$ . Put $q(z)$ $:=p(z)-p(\lambda)$ . Then
$q(A_{1})=0$ , so $A_{1}$ is algebraically class $H(q)$ operator. Since $ A_{1}-\lambda$ is qu$as$inilpotent
and algebraically class $H(q)$ operator, it follows from Lemma 2.2 that $ A_{1}-\lambda$ is
nilpotent. Therefore $\lambda\in\pi_{0}(A_{1})$ , and hence $\lambda\in\pi_{0}(A)$ . This shows that $A$ is
isoloid. $\square $

Recall that Duggal et $al[18]$ have extended Weyl’s theorem to algebraically class
$H(q)$ operators. It is known [3] that Weyl’s theorem don’t imply Generalized Weyl’s
theorem. In the following theorem we will extend generalized Weyl’s theorem to
algebraically class $H(q)$ operators. We start by the following lemma
Lemma 2.4. [18] Let $A\in B(H)$ be algebraically class $H(q)$ operator. Then $A$ has
SVEP, $i.e.$ , the single valued extension property.

It is known that SVEP is stable under the functional calculus, i.e., if $A\in B(H)$

has SVEP, then so does $f(A)$ for each $f(A)$ analytic on an open neighborhood of
$\sigma(A)$ . The following lemma is immediate.
Lemma 2.5. Let $A\in B(H)$ be algebraically class $H(q)$ opemtor. Then $f(A)$ has
SVEP for each analytic function $f$ on a neighborhood of $\sigma(A)$ .
Theorem 2.1. Let $A$ be an algebraically class $H(q)$ operator. Then genemlized
Weyl’s theorem holds for $A$ .

Proof. Assume that $\lambda\in\sigma(A)\backslash \sigma_{Bw}(A)$ . Then $A-\lambda I$ is B-Weyl and not invertible.
We claim that $\lambda\in\partial\sigma(A)$ . Assume to the contrary that $\lambda$ is an interior point of
$\sigma(A)$ . Then there exists a neigborhood $U$ of $\lambda$ such that $dim(A-\mu)>0$ for all
$\mu\in U$ . It follows from ([19], Theorem 10) that $A$ does not have SVEP. On the other
hand, since $p(A)$ is a class $H(q)$ operator for nonconstant polynomial $p$ , it follows
from Lemma 2.4 that $p(A)$ has SVEP. Hence by ([29], Theorem 3.3.9), $A$ has SVEP,
a contradiction. Therefore $\lambda\in\partial\sigma(A)$ . Conversely, assume that $\lambda\in E(A)$ , then $\lambda$ is
isolated in $\sigma(A)$ . Rom ([27], Theorem 7.1) we have $X=M\oplus N$ , where $M,$ $N$ are
closed subspaces of $X,$ $U=(A-\lambda I)|_{M}$ is an invertible operator and $V=(A-\lambda I)|_{N}$

is a quasinilpotent operator. Since $A$ is algebraically class $H(q)$ operator, $V$ is also
algebraically class $H(q)$ operator, from Lemma 2.2 $V$ is nilpotent. Therefore $A-\lambda I$

is Drazin invertible ([39], Proposition 6) and ([28], Corollary 2.2). By ([5], Lemma
4.1) $A-\lambda I$ is a B-Redholm operator of index $0$ . Thus $\lambda\in\sigma(A)\backslash \sigma_{Bw}(A)$ . $\square $
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As consequences of the previous theorem, we obtain

Corollary 2.1. [18] Let $A$ be an algebraically class $H(q)$ operator. Then Weyl’s
theorem holds for $A$ .

Corollary 2.2. [3] Let $A$ be an algebraically hyponormal operator. Then generalized
Weyl’s theorem holds for $A$ .

Corollary 2.3. [45] Let $A$ be a p-hyponormal operator. Then generalized Weyl’s
theorem holds for $A$ .

Corollary 2.4. [45] Let $A$ be M-hyponormal. Then generalized Weyl’s theorem
holds for $A$ .

Corollary 2.5. [17] Let $A$ be an algebraically p-hyponormal operator. Then Weyl’s
theorem holds for $A$ .

Corollary 2.6. Let $A$ be an algebraically M-hyponormal operator. Then genemlized
Weyl’s theorem holds for $A$ .

Corollary 2.7. Let $A$ be an algebraically totally paranormal operator. Then gener-
alized Weyl’s theorem holds for $A$ .

Theorem 2.2. Let $A$ be an algebraically class $H(q)$ opemtor. Then generalized
Weyl’s theorem holds for $f(A)$ for every analytic function $f$ in a neighborhood of
$\sigma(A)$ .

Proof. Since $A$ is isoloid by Lemma 2.3, has the SVEP and satifies generalized Weyl’s
theorem, it follows from ([46], Theorem 2.2) that $f(A)$ satisfies generalized Weyl’s
theorem. $\square $

As a consequence of the previous theorem, we obtain

Corollary 2.8. [18] Let $A$ be an algebraically class $H(q)$ operator. Then Weyl’s
theorem holds for $f(A)$ for every analytic function $f$ in a neighborhood of $\sigma(A)$ .

Corollary 2.9. [5] Let $A$ be an algebmically hyponormal operator. Then generalized
Weyl’s theorem holds for $f(A)$ for every analytic function $f$ in a neighborhood of
$\sigma(A)$ .

Corollary 2.10. [45] Let $A$ be an algebmically p-hyponormal operator. Then gener-
alized Weyl’s theorem holds for $f(A)$ for every analytic function $f$ in a neighborhood
of $\sigma(A)$ .

Corollary 2.11. [45] Let $A$ be an algebraically M-hyponorma operator. Then gener-
alized Weyl’s theorem holds for $f(A)$ for every analytic function $f$ in a neighborhood
of $\sigma(A)$ .

Corollary 2.12. [46] Let $A$ be an algebraically paranormal operator. Then general-
ized Weyl’s theorem holds for $f(A)$ for every analytic function $f$ in a neighborhood
of $\sigma(A)$ .
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The essential approximate point spectrum $\sigma_{ea}(A)$ is defined by
$\sigma_{ea}(A)=\cap$ {$\sigma_{a}(A+K):K$ is a compact operator}

where $\sigma_{a}(T)$ is the approximate point spectrum of $T$ . By definition
$\sigma_{ab}(A)=\cap$ {$\sigma_{a}(A+K):TK=KT$ and $K\in K(H)$ },

We consider the set
$\Phi_{+}^{-}(H)=$ {$A\in B(H)$ : $T$ is left semi-IFMredholm and ind $A\leq 0$}.

V. Rako\v{c}evi\v{c} [35] proved that
$\sigma_{ea}(A)=\{\lambda\in \mathbb{C}:A-\lambda\not\in\Phi_{+}^{-}(H)\}$

and the inclusion $\sigma_{ea}(f(A))\subset f(\sigma_{ea}(A))$ holds for all functions $f(z)$ which are
analytic on some open neighborhood of $\sigma(T)$ with no restriction on $A$ . The next
theorem shows the spectral mapping theorem on the essential approximate point
spectrum of algebraically class $H(q)$ operators.

Lemma 2.6. Let $A\in B(H)$ and $\lambda\in \mathbb{C}$ . If $ A-\lambda$ is semi-$F\succ edholm$ and it has finite
ascent, then ind $(A-\lambda)\leq 0$ .

Proof. If $ A-\lambda$ has finite descent, then ind $(A-\lambda)=0$ by Theorem V 6.2 of [41].
If $ A-\lambda$ does not have finite descent, then

$n$ ind $(A-\lambda)=\dim N(A-\lambda)^{n}$ –dim $ R((T-\lambda)^{n})^{\perp}\rightarrow-\infty$ .
Hence ind $(A-\lambda)<0$ .

Corollary 2.13. Let $A\in B(H)$ be algebmically class $H(q)$ opemtor. If $ A-\lambda$ is
semi-Fredholm for some $\lambda\in \mathbb{C}$ , then ind $(A-\lambda)\leq 0$ .

Theorem 2.3. Let $A\in B(H)$ be algebraically class $H(q)$ opemtor. Then
$\sigma_{ea}(f(A))=f(\sigma_{ea}(A))$

for every functions $f(z)$ which is analytic on some open neighborhood $G$ of $\sigma(A)$ .

Proof. It suffices to show that $f(\sigma_{ea}(A))\subseteq\sigma_{ea}(f(A))$ . We may assume that $f$ is
nonconstant. Let $\lambda\not\in\sigma_{ea}(f(A))$ and

$f(z)-\lambda=g(z)\Pi_{j=1}^{n}(z-\lambda_{j})$

where $\lambda_{j}\in G$ and $g(z)\neq 0$ for all $z\in G$ . Then
$f(A)-\lambda=g(A)\Pi_{j=1}^{n}(A-\lambda_{j})$ .

Since $\lambda\not\in\sigma_{ea}(f(A))$ and all operators on the right side of above equality commute,
each $(A-\lambda_{j})$ is left semi-Fredholm and ind $(A-\lambda_{j})\leq 0$ by the previous corolary.
Thus $\lambda_{j}\not\in\sigma_{ea}(A)$ and $\lambda\not\in f(\sigma_{ea}(A))$ . $\square $
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We say that a-Browder’s theorem holds for $A$ if $\sigma_{ea}(A)=\sigma_{ab}(A)$ . It is well known

a-Browder’s $theorem\Rightarrow Browder’ s$ theorem.

In general [6] Weyl’s theorem does not hold for operators having SVEP only, but a-
Browder’s theorem holds for operator having SVEP only as we will show in Theorem
2.4.

Theorem 2.4. Assume $A\in B(H)$ has SVEP. Then a-Browder’s theorem holds for
$A$ .

Proof. It is well known that $\sigma_{ea}(A)\subseteq\sigma_{ab}(A)$ . Conversely, assume that $\lambda\in\sigma_{a}(A)\backslash $

$\sigma_{ea}(A)$ . Then $A-\lambda\in\Phi_{+}^{-}(H)$ and $ A-\lambda$ is not bounded below. Since $A$ has SEVP
and $A-\lambda\in\Phi_{+}^{-}(H),$ [ $2$ , Theorem 2.6] implies that $ A-\lambda$ has finite acsent. Hence
[36, Theorem 2.1] would imply that $\lambda\in\sigma_{a}(A)\backslash \sigma_{ab}(A)$ . This implies that a-Browder
theorem holds for A. $\square $

Corollary 2.14. Let $A\in B(H)$ be algebraically class $H(q)$ opemtor. Then a-
Browder’s theorem holds for $f(A)$ for every analytic function on a neighborhood of
$\sigma(A)$ .

Proof. By applying Theorem 2.3 we get
$\sigma_{ab}(f(A))=f(\sigma_{ab}(A))=f(\sigma_{ea}(A))=\sigma_{ea}(f(A))$ .

Therefore a-Browder’s theorem holds for $f(A)$ . $\square $

Let $SBF_{+}$ be the class of all upper semi-Redholm operators, $SBF_{+}^{-}$ the class of
$A\in SBF_{+}$ such that $ind(A)\leq 0$ , and let

$\sigma_{SBF_{+}^{-}}(A)=$ { $\lambda\in \mathbb{C}$ : $A-\lambda I$ is not in $SBF_{+}^{-}$ }
be called the semi-B-essential approximate point spectrum.

Definition 2.1. We say that $A$ obeys genemlized a-Weyl’s theorem if
$\sigma_{SBF_{+}^{-}}(A)=\sigma_{ap}(A)\backslash E^{a}(A)$ ,

where $E^{a}(A)$ is the set of all eigenvalues of A which are isolated in $\sigma_{ap}(A)$ .
Definition 2.2. An operator $A\in B(H)$ is said to be obeys a-weyl’s theorem if

$\sigma_{ap}(A)\backslash \sigma_{SF_{+}^{-}}(A)=E_{0}^{a}(A)$ ,

where $E_{0}^{a}$ is the set of all isolated points of $\sigma_{ap}(A)$ which are eigenvalues of finite
multiplicity and $\sigma_{SF_{+}^{-}}(A)$ is the set of all $\lambda\in \mathbb{C}$ for which $A-\lambda I$ is not an upper
semi-Fredholm operators with $ind(A-\lambda I)\leq 0$ .

Recall [6] that
Generalized a-Weyl’s $theorem\Rightarrow Generalized$ Weyl’s $theorem\Rightarrow Weyl’ s$ theorem

$\Rightarrow Browder’ s$ theorem.
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Generalized a-Weyl’s $theorem\Rightarrow a- Weyl’ stheorem\Rightarrow Weyl’ s$ theorem

$\Rightarrow Browder’ s$ theorem.

Generalized a-Weyl’s $theorem\Rightarrow a- Weyl’ stheorem\Rightarrow a- Browder’ s$ theorem
$\Rightarrow$ Browder’s theorem.

The converse of the previous implications are false (see [6, Examples 3.12]).

Theorem 2.5. Let $A^{*}$ be algebraically class $H(q)$ operator. Then generalized a-
Weyl’s theorem holds for $A$ .

Proof. We have to prove that $\sigma_{ap}(A)\backslash \sigma_{SBF_{+}^{-}}(A)=E^{a}(A)$ . For this, assume that
$\lambda\in\sigma_{ap}(A)\backslash \sigma_{SBF_{+}^{-}}(A)$ . Then $A-\lambda I$ is an upper semi-B- Redholm operator and
$ind(A-\lambda I)\leq 0$ . Hence for $n$ large enough, $A-(\lambda+\frac{1}{n})I$ is an upper semi Fredholm
operator and $ind(A-(\lambda+\frac{1}{n})I)=ind(A-\lambda I)[6]$ . Therefore $ind(A-(\lambda+\frac{1}{n})I)\leq 0$ .
Since $A^{*}$ has SVEP, [4] implies that $ind(A-(\lambda+\frac{1}{n})I)\geq 0$ . Thus $ind(A-(\lambda+\frac{1}{n})I)=$

$0$ . It follows that $ind(A-\lambda I)=0$ . This implies that $A-\lambda I$ is a B-Redholm
operator of index zero. Since $A^{*}$ has SVEP, we have $\sigma(A)=\sigma_{ap}(A)$ and we have
$\lambda\in\sigma(A)\backslash \sigma_{BW}(A)$ . Then it follows from Theorem 2.1 that $\lambda\in E(A)$ . Hence
$\lambda\in E^{a}(A)$ . Conversely, let $\lambda\in E^{a}(A)$ . Then $\lambda$ is an isolated point of $\sigma_{ap}(A)=\sigma_{a}(A)$ .
Therefore $\overline{\lambda}$ is an isolated point of $\sigma(A^{*})$ . Let $P$ be the spectral projection

$P=\int_{\partial B_{0}}(\lambda_{0}I-A^{*})^{-1}d\lambda_{0}$ ,

where $B_{0}$ is an open disk centred at A which contains no other points of $\sigma(A^{*})$ . Then
$A^{*}$ can be represented as the direct sum

$A^{*}=A_{1}\oplus A_{2}$ , where $\sigma(A_{1})=\{\overline{\lambda}\}$ and $\sigma(A_{2})=\sigma(A^{*}\backslash \{\overline{\lambda}\})$ .

Then $\overline{\lambda}I-A_{2}$ is invertible. We have to consider two cases.

Case where $\lambda=0$ . Assume that $\lambda=0$ . Then $\sigma(A_{1})=\{0\}$ . Since $A_{1}$ is alge-
braically class $H(q)$ operator, it follows that $A_{1}=0$ by Lemma 2.1. Therefore
$\overline{\lambda}I-A^{*}=0\oplus\overline{\lambda}-A_{2}$ .

Case where $\lambda\neq 0$ . Since $A_{1}$ is invertible algebraically class $H(q)$ operator, it
follows that $A_{1}^{-1}$ is algebraically class $H(q)$ operator. Then $||A_{1}||=|\lambda|$ and $||A_{1}^{-1}||=$

$\frac{1}{\lambda}$ Therefore for any $x\in R(P)$ , we have

$||x||\leq||A_{1}^{-1}||||A_{1}x||=\frac{1}{|\lambda|}||A_{1}x||\leq\frac{1}{|\lambda|}|\lambda|||x|=||x||$ .

Hence $\frac{1}{\lambda}A_{1}$ is unitary. Therefore $A_{1}$ is normal and $\overline{\lambda}I-A_{1}$ is also normal. Since
$\overline{\lambda}-A_{1}$ is quasinilpotent and the only normal quasinilpotent operator is zero, it
follows that $\overline{\lambda}-A^{*}=0\oplus\overline{\lambda}I-A_{2}$ . Now since $\overline{\lambda}I-A_{2}$ is invertible, it is known
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that $\overline{\lambda}I-A^{*}$ has finite acsent and descent. Therefore $\lambda I-A$ has finite ascent and
descent. This implies that $\lambda\in\sigma_{a}(A)\backslash \sigma_{SBF_{+}^{-}}(A)$ . Which completes the proof. $\square $

Let
$A_{2}(H)=$ { $A\in B(H)$ : $ind(A-\lambda I)ind(A-\mu I)\geq 0$ , for $al1\lambda,$ $\mu\in \mathbb{C}\backslash \sigma_{SF+}(A)$ }.

An operator $A\in B(H)$ is said to be approximate-isoloid (abbrev. a-isoloid) if every
isolated point of $\sigma_{a}(A)$ is an eigenvalue of $A$ and isoloid if every isolated point of
$\sigma(A)$ is an eigenvalue of $A$ . Clearly, if $A$ is a-isoloid then it is isoloid. However, the
converse is not true.

Lemma 2.7. Let $A$ be algebraically class $H(q)$ operator. Then $A$ is a-isoloid.

Proof. Since $A^{*}$ is algebraically class $H(q)$ operator, Theorem 2.5 would imply that
a-Weyl’s theorem holds for $A$ and $\sigma(A)=\sigma_{a}(A)$ . If we assume that $\lambda\in iso\sigma_{a}(A)=$

$iso\sigma(A)$ , then $\overline{\lambda}\in iso\sigma(A^{*})$ . Since $A^{*}$ is algebraically class $H(q)$ operator, we have
$A^{*}$ is isoloid by Lemma 2.3. Then $N(\overline{\lambda}I-A^{*})\neq\{0\}$ . Since $N(\overline{\lambda}-A^{*})\subseteq N(\lambda I-A)$

[18], we have $N(\lambda I-A)\neq 0$ . Thus $A$ is a-isoloid. $\square $

Lemma 2.8. Let $A$ be algebraically class $H(q)$ operator. Then $A\in A_{2}(H)$ .

Proof. Let $\lambda\in \mathbb{C}\backslash \sigma_{SF+}(A)$ . Since $N(\overline{\lambda}-A^{*})\subseteq N(\lambda I-A)$ , we have $ind(A-\lambda I)\geq 0$ .
Which implies that $A\in A_{2}(H)$ . $\square $

Theorem 2.6. Let $A$ be algebmically class $H(q)$ opemtor. Then $f(A)$ obeys gener-
alized a-Weyl’s theorem for every analytic function $f$ on a neigborhood of $\sigma(A)$ .

Proof. Since $A$ is a-isoloid, $A\in A_{2}(H)$ and $A$ obey’s generalized a-Weyl’s theorem,
[10, Theorem 2.2] implies that $f(A)$ obeys generalized a-Weyl’s theorem. $\square $
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