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Groups, Lie algebras and Gauss decompositions
for one dimensional tilings
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Abstract

For one dimensional tilings, we will define associated groups and Lie algebras.
Then, we will prove that the groups have Gauss decompositions as well as
that the Lie algebras also have additive Gauss decompositions.
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0. Introduction. In this paper, we will give a certain Lie theoretical approach
to tilings, and establish some basic decompositions. What is a tiling ? A tiling is
roughly a decomposition or a filling of a given space using suitable pieces. Recently it
was found that lots of mathematical areas are deeply related to tilings and associated
topics. However, not so many algebraic approaches have been given. This article
shows that it is possible to study tilings using Lie theory. Mathematically it is very
nice to have certain pure algebraic objects (invariants) arising from tilings.

Tiling | — | Mathematics
Structure | «—— | Pure Algebra

Here we will discuss a tiling of the real line R. Then, we will construct tiling monoids
(Section 2), tiling bialgebras (Section 3), tiling Lie algebras (Section 4) and tiling
groups (Section 5). Then we will establish Gauss decompositions for our tiling groups
(Sections 6,7,8). Also we will reach certain additive Gauss decompositions for tiling
Lie algebras (Section 9). Those decompositions are fundamental in algebra, which
can be very helpful to study many kinds of invariants for mathematical objects.

Next, we will make a rough review of Gauss decompositions. Let us consider the
following system of linear equations:

ar + by = s
cx + dy =t

Generically we can solve it using the so-called Gauss eliminaton. This is correspond-
ing to the following group theoretical decomposition over the field C of complex
numbers (cf. [12]):

e@=(57) (e 1) (5 &) (0 7)



Such a decomposition is sometimes called a Gauss decomposition (in the sense of
Group Theory). There is also a Lie algebra version of this kind of decompositions,
namely additive Gauss decompositions. For example, if we take a Lie algebra sl3(C)
with a standard basis e, h, f satisfying the relations [h, €] = 2e, [h, f] = —2f, [e, f] =
h, then the universal enveloping algebra U(slz(C)) of slo(C) has the following de-
scription (cf. [4]):

U(sh(C)) = Y Ce'fie’.

i,5,k>0

The usual PBW theorem says U(sl2(C)) = 3=, ; 450 Ce*h? ¥, but we can erase “h” in
this new decomposition, which gives some nice application to representation theory.
More precisely, to obtain “locally finiteness” of an infinite dimensional module, we
have to show that h is a “diagonal” operator, which seems to be rather complicated.
However, this new decomposition says directly and visually that it is enough to
confirm for e and f to be “locally nilpotent” operators.

1. Tilings. Let R be the real line. A tile in R is a connected closed bounded
subset of R, namely a closed interval [a,b] whose interior is nonempty. A tiling

T of R is an infinite set of tiles which covers R overlapping, at most, at their

boundaries. In this note, we identify a tiling of R with a bi-infinite sequence of
letters, equivalently saying, a bi-infinite word of letters. Let W = W(7T) be the
set of all finite subwords in 7. If w = X;--- X, € W, then l(w) = r is called the
length of w. Let W, = W,(7) be the set of all finite subwords with length r. Put
Q = Q(T) = W1, the set of all letters appearing in 7. For convenience, we assume
that ( is finite.

2. Tiling monoids. For w = X, --- X, € W, we choose two positions (i, j) with

1 2
1 <14,j7 < r and attach the labels 1 and 2 at X; and X as X; and X respectively.

We note that each of i < j, i = j and 7 > j is allowed. If ¢ = j, then we denote by
12
X, to show that X, has two labels 1 and 2 simultaneously. We call

1 2
X1 Xi o X5 X

a doubly pointed word obtained from w € W. Then D = D(7T) denotes the set of
all doubly pointed words obtained from W. Let M = M(7T) = D U {z, &}, where
z and € are just independent abstract symbols. Now we will introduce a binary
operation on M. Let
1
x = Xp- X X0 X,
1 2
y = Yi...n...n...}’;
be two elements of D. Put a = min{j, k}, b = min{r — j,s — k}, m = max{j, k} —
min{j, k}, n = max{r — j,s — k} — min{r — j, s — k}, and set

(r+s)— (m+n)
2 .

q=a+b=



If

( Xj—a+1 = Yk‘—a+1 )
() 9 X; = Y,
(. Xjxo = Yy,

then we define a new word

Z1 ZmZms1 " ZmvgZmtgtl " Dmtgn

where ( X i ik
_ p 1 7>
Z, (1<p<m) = {y,, i
y Zm+p (1<p<q@) = Xjatp (= Yi-a+p)
_ Xj+b+p if r—3>s—k
\Zm+q+p (lspsn) o {Yk+b+p if T'—j<3—k'.
Put
P if j>k s | m+2l if 7>k ;o
Z—{m+i if j<k, ]—{e if j<k, T omtatn

If (x) holds and the new word Z; - - - Z,» belongs to W, then we define

1 2
xy:Zl...Zi,...Zj,...ZT,GD,

otherwise we define xy = z. Also we definemz =zm =z aswellasme =em =m
for all m € M. Then, the set M becomes a monoid with the above operation. We
call M the tiling monoid of a given tiling 7. In another sense, M can also be regarded
as an inverse monoid with zero (cf. [9]). Then, some of our basic properties can be
reduced to those of an inverse monoid (cf. [6],[9]).

It might be better for the readers to see several examples of our product here. If
12 2 1 12
x=XYX, y=XYX, v=XYXXY €D, andif XYXXYXeW,

then we have

: 12 12
Xy = XYX, yx = XYX,

1 2 1 2
xv = XYXXY, vx = XYXXYX,
yv = z, vy = z.

Furthermore, we find xyx = x and yxy = y in this case.



3. Tiling bialgebras. Let A = C[M] = ®mem Cm be the monoid algebra of M
over C. Then Cz is a two-sided ideal of A. We set B = B(7) = A/Cz. Then, B is
sometimes called the tiling bialgebra (cf. [1],[10]), of 7. Here, we also consider B as
a Lie algebra with the standard bracket [z,y] = zy — yx. We use the notation 1 for
e mod Cz and the same symbols x € D for their images modulo Cz respectively.
For a subset V' C W, we define E(V) to be the subset of D consisting of all doubly
pointed words obtained from V with the pointed positions of type (i,7 + 1) for all
i > 1, and F(V) the subset of D consisting of all doubly pointed words obtained
from V with the pointed positions of type (¢ + 1,4) for all ¢ > 1.

4. Tiling Lie algebras. Here we will make our Lie theoretical approach to tilings.
For a given tiling 7, we want to make the following substitution:

o: X XX'X" (VX e),

where the letters X’ and X” are totally new symbols. That is, the given bi-infinite

sequence
- XYZ...

is changed into
e XX/X"YYIY”ZZ’Z” ..

by o, and a finite subword
’w=X1X2"'X1- EW

is changed into
o(w) = XK X1 X! Xo X0 X3 - - X, XL X!

Hence, the substitution o creates a new tiling 7* from 7. By the definition,
|T*)| =3 x |QT)|. That is, Q(T*) = { X, X", X" | X € Q(7T) } without
any redundancy. Put V* =o(W (7)) ={ o(w) | we W(T) } Cc W(T*).

Now we define L to be the Lie subalgebra of B(7*) generated by e and f for all
e € Eand f € F, where E = E(V*) and F = F(V*). We call L the tiling Lie
algebra associated with an original tiling 7. Now we define three Lie subalgebras of
L as follows:

L+ = (6 l S E ) )

Ly = (k| h=[efl,ecE, feF),

L. = (f| feF)

Then, we have L = L_ @ Ly ® L, (triangular decomposition cf. [11]). If e € F is
obtained from v € V* with the pointed positions of type (i,¢ + 1), then we denote
by € the element of F' which is obtained from the same v with the opposite pointed
positions of type (i + 1,7). If f = &, then we also define f = e. Note that eée = e
and fff = f in B(T*). We denote by U(a) the universal enveloping algebra of a
Lie algebra a. Then we can obtain the following result.



Proposition 1. Notation is as above. Then, we have U(L) = U(L)U(L+)U(L4)
(additive Gauss decomposition).

The proof of this proposition will be given later (cf. Section 9).

Examples. (1) Let 7 be a trivial tiling, that is,
T : - XXXXX---.

This original tiling never produces sl;. To obtain sly, our method says that we need
a new tiling 77*, that is,
T XX X'XX'X'XX'X'XX'X"XX'X"--- .
Then,
V*={XX'X" XX'X"'XX'X" XX'X"'XX'X"XX'X", ---}

keeps all local information which 7 has.
(2) Let 7 be a Fibonacci-type tiling, that is for instance,

T : - - XYXXYXYX..-.

Then,

T - XX'X'"YYY'XX'X'XX'X"YYY'XX'X"YYY'XX'X". .. |
and
V*={ XX'X" YYY" XX'X'XX'X" XX'X"YY'Y" YYY'XX'X" ...}

In this case, without using our substitution o, we can locally obtain sl; from 7. In
fact, we see

1 2 2 1 12 21 1 2 21
<XX, XX>C:<XY, XY>:<YX, YX>’:5[(2,C),

since there are no subwords X XX and Y'Y in 7. However, we need the substitution
o and the associated new tiling 7* to obtain a nice property as a global structure
like a Gauss decomposition.

5. Tiling groups. For each t € C and £ € EUF, we put z¢(t) = 1+t € B(T*)*,
where B(7*)* is the multiplicative group of all units in B(7*). Let G be the
subgroup of B(T™*)* generated by z¢(t) for all { € EU F and t € C. We call G the
tiling group associated with an original tiling 7. For each £ € E U F and u € C*,
we set
we(w) = ze(wag(—uae(u)
= 1-¢6—E6+uE—u'§,
he(u) = we(w)we(—1) )
— 14 (u—1)e€+ (ul - 1EE



Then, we define three subgroups of G as follows:

G, = (z(t) | eeE, teC),
Go = (he(u) | E€ EUF, ueC*),
G- = (zs(t) | feF, teC).

Then, we can establish the following result.

Proposition 2. Notation is as above. Then we have G = G+GzGoG+ (Gauss
decomposition).

The proof of this proposition will be given later (cf. Section 8). For a € W(7T™)
with a = XY and £ € FU F, we say £ - « if and only if

E=2Z12s XY - 2,
with {7,7} = {1,2} : namely (7, 5) = (1,2) or (i,5) = (2,1). Let

Us+ = (xe(t) | teC, €€, EFa),

Ua,— (IB{(t)'tEC,EEF,f"C!),

T, (he(u) | ueC*, §E€ EUF, £Fa),
Ga = <Ua,i>

for each a € W,(T™).

6. Some relations. We will find several relations in our group G. For { € EU F
and s,t € C, we have

(R1)  ze(s)ze(t) = ze(s +2),
which can be obtained by direct computation:
(1+s)A+t) =1+sE+tE =1+ (s+t)§

with £€2 = 0. In G, the commutator [g1, go] means g1g29; *g5 " for g1, 92 € G as usual.
Let [H,H] = ( [g1,92) | 91,92 € H ) be the derived subgroup of a subgroup, H, of
G. For a € W,(T™*), we have

(R2) [Ua,-i-’ Ua,+] = [Ua,—a Ua,—] =1,
which is confirmed by the reason that there is no pattern
XX

in W(T™*) and by the fact that the relation £n = 0 holds for all

EmeE€E,={C€E | (Fa}



or
£,n€Fa={C€F|C|_a}'

One can also obtain a general commutation formula for U, + and Ug 4, but we do
not use it explicitly here. For each £ € E U F, we have

(R3) (ze(t), z¢(t) | te C)~SL(2,C),

which is actually given by the correspondence:

w0 — (5 1) w0—(;7)

For £,mn € EU F and for u,v € C*, we have
(R4)  he(u)he(v) = he(uv),

(R5)  he(u)hy(v) = hy(v)he(u),

(RS) he(u) = he(u™),

which are given by the direct computation. For £ € EU F and u € C*, and for
a € Wa(T*), we have

(R7) hg(u)Ua,ihg(’u)—1= a,t-

This is obtained from the observation that for each n € E U F' with n - a we can
find some u; € C* and some 7; - o such that

k
he(wnhe(w)™ = > wini,
=1

and the relation
he(w)zy (t)he(u) ™ = Ty, (ust) - - - T, (ust)
obtained from the remark after (R2).

7. Several Lemmas. We need three lemmas to show Proposition 2.
Lemma 3. Let o € W5(7™). Then, we have G4 = Uy +Un zToUq +.
Proof of Lemma 3. Let g € G, and write

g = gy (t1)we, (t2) - - - Tgi (E)

with§, €e EUF and t; € Cfori=1,2,...,k. For each g € G, we fix one expression
in this way. Then, we put

L(g)=(& & | 1<i<k)



as a Lie subalgebra of L, and define E(g) = E N L(g) and F(g) = F N L(g). Let
G(g) be the subgroup of G generated by z¢(t) for all £ € E(g) U F(g) and t € C.
Then we have that L(g) is isomorphic to the direct sum of finite copies of sl(2,C),
and that G(g) is isomorphic to the direct product, &, of finite copies of SL(2,C).
Therefore, setting

Ue(g) = (ze(t) | €€ E(g), teC),
T(g) = (he(w) | £€ E(g)UF(g), ueC*),
U_(g) = (xz(t) | £E€ F(g), teC),

we obtain G(9) = U,(9)U-(9)T(9)U+(g). In fact, there is a Gauss decomposition
& =4, U T, where 4, (resp. U_) is the upper (resp. lower) triangular unipotent
part of ® and ¥ is the diagonal part of &, and we see that 1, and ¥ are corresponding
to U+(g) and T(g) respectively. Therefore, we see

9 € G(9) CUq+Ua,-ToUsq,+,

which implies G, = Uy, +Uq,—~TaUq,+. Similarly we can obtain G, = Uy, Uy + TU,, .
Q.E.D

For each o € Wa(T™*), we define

(;,:]: = < J:Uﬂ,:bm_l | S Ua,:i:a :6 € W2(T*)7 ﬂ 7{'- « >’
T, = (T | BeWaT"), B#a).

Then we obtain the following two lemmas.

Lemma 4. Let a, 3 € W2(7T™*). Then we have:
(1) Gy = Ua,iUc’x,j: = Uc’x,ﬂ:Ua,i,

(2) Go =T, T, = T.T,,

(3) TaUp .+ = Up 4T,

Proof of Lemma 4. (1) follows from the definition of U, ;. (2) follows from (RS5).
(3) follows from (R7). Q.E.D.

Lemma 5. Let o € W5(7T™). Then, we have U, U, , = U, . Uq+.
Proof of Lemma 5. Let £ € E with £ - 3, where
B e Wo(T"), B#a,

and let
T =Ty, (t1) -+ - Ty, (),
y = z4(s),
where
n,nM€E, mta nka t,seC.



Then, we see
k k ‘
ye€r Tty =4+ ) tlnn €+ Y stild, [ €]),
i=1 i=1
and all the components at the right hand side mutually commute. Hence, we obtain

yaze(t)zly ™ = (cae(t)r g, (stit) - - ag, (stat),

where & = [#), [, £]] for 1 <4 < k. We note that z¢,(st;t') belongs to U, , if & # 0,
and that z¢, (st;t’) must be omitted if §; = 0. Anyway we reached

yrze(t)e 'yt e U,

which implies U, U}, , = U/, U, . Similarly we can prove Uy +U, _ = U, _Uq,+.
Q.E.D.

8. Proof of Proposition 2. Put X = G.G_GoG+. Let £ €« EUF and t € C.
Then, there is & € W5(T*) such that £ F a. If £ € E, then z¢(t)X = X. If £ € F,
then we have, in the same way as in [12],

ze(t)X

m

Uy X
Ua,~(G+G-GoG)

Ua,~(Ug, 4 Ua ) (Us, _Us, - )(TaT,) (Ua, 1 Us, 4 )
UL, Uo,—Ul, _UsyUs,—ToUa s ToUL, .
UL,+U¢;,— (Ua,—Ua,+Ua,—TaUa,+)To’¢U¢;,+

U, Uly_(UayUny-TolUa ) TSk 4

U, Ua iUl _Up - ToT Ua UL, |
G.G_GoG, = X.

Therefore, GX = X, which shows G = X. Similarly we can establish G = G_G GG _.
We have finished to prove Proposition 2.

i

Il

I

9. Proof of Proposition 1. We set IT = W5(7*), and Q = @4enZa. We define

deg(é)=a if £€E, £F
deg(é) = —a if £€F, (Fa.

Then, denoting by L, the subspace of L consisting of all elements of degree u, we
have L = ®ueqL,. Let A={ pe @ | L,#0 }, the grading set of L. Put

A+ = AN (Zael’l Zzoa \ {0})a
A = AN senZ<oa \ {0}).

For each a € II, we set
Al(a) = Az\{zxa},

il:a = @ueA;:(a) Lua

Sa ( Lig ).



We note that S, normalizes L, ,, and we also see

U(Ls) = U(Lra)U(Lyy) = U(Lyo)U(Lsa),
U(Lso)U(Leq) = U(LE)U(Lta)-

First, we will establish U(Sy) = U(Lo)U(L_o)U(Ly). Let z € U(S,). We can
suppose, for our purpose, that z is of the form:

=68 &k,

where §; € EUF with & I a for 1 <17 < k. We fix this expression £ = &; - - - €. Let
L(z) be the Lie subalgebra of L generated by &; and § forall 1 < i < k. Then, L(x)
is isomorphic to the direct sum, £, of finite copies of s{(2,C). Therefore, we have
U(L(z)) = U(L+(z))U(L_(z))U(Ls(z)) with Ly(z) = L(z) N Ly. In fact, there is
an additive Gauss decomposition U(L) = U(LL)U(L_)U(Ly), where £ (resp. £_)
is the upper (resp. lower) triangular nilpotent part of £, and we see that £, and
L_ are corresponding to L (z) and L_(z) respectively (cf. [4]). Hence,

z € U(Ly(z))U(L-(2)U(Ly(z))
C U(Lo)U(L-o)U(La),

which shows

U(Sa) = U(La)U(L-o)U(La).
Now we put 9 = U(L.)U(L_)U(L,). Then, for every a € II, we obtain

UL-a)D) = U(L_o)U(L)UL-)U(Ly))

U(L—o) U(Le)U(La)) U(L_)U(L—-a)) U(La)U(Ly,))
U(L)U(L—o)U(L_ o JU(La)U(L—a)U(La)lU(Lg)
U(LU(L_ o) U(L—a)U (Lo )U(L—o)U(La)U(Lg,)
U(L)U (Lo )U(La)U(L_a)U(La)U(L)
U(L)U(La)U(L_ o U(L—a)U(La)U(L)

UL UL ULy ) =D.

Hence, U(L)Y) = 2, which implies (L) = ). Similarly we can establish (L) =
U(L_YU(LL)U(L-). We have just finished to prove Proposition 1.

10. Remarks. (1) There is a number theoretical way to construct interesting
tilings and study them (cf. [2], [3]). One may be interested in pure mathematical
approaches to tilings and aperiodic orders (cf. [6], [7], [8], [9]), which often induce
several algebraic structures. For example in [10], we already found that a cou-
ple of one-dimensional tilings 7 and 7" are locally nondistinguishable (or locally
indistinguishable) if and only if the corresponding bialgebras with triangular de-
compositions are isomorphic. Here we obtained groups and Lie algebras associated
with one dimensional tilings.



(2) Gauss decompositions are important to study group structures. For example,
if G = UL U_UyU, is a Gauss decomposition, then modulo conjugacy an element
of G can be expressed as an element of U_UyU,. In many cases, we have a unique
expression of elements in U_UyU,.. This is very helpful to study group invariants.
(3) Quite recently a new development was given in extended affine Lie theory.
Namely, Bruhat decompositions and Gauss decompositions were established in some
groups defined by extended affine Lie algebras with nullity 2 (cf. [13]). We hope that
this helps to generalize our method here to higher dimensional tilings, at least 2 di-
mensional tilings. The main idea arises from K. Saito’s marking at his extended
affine root systems related to singularity theory.

(4) We used and fixed our special substitution ¢ for our purpose. However, one can
use other substitutions for further developments keeping Gauss decompositions. In
this paper, we did not make any comparison among tilings, substitutions and Gauss
decompositions. '
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