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COMMUTATIVITY OF OPERATORS

MASARU NAGISA, MAKOTO UEDA, AND SHUHEI WADA

ABSTRACT. For two bounded positive linear operators a, b on a Hilbert space, we
give conditions which imply the commutativity of a,b. Some of them are related
to well-known formulas for indefinite elements, e.g., (a +b)" =3, (¥)a™ """ etc.
and others are related to the property of operator monotone functions. We also
give a condition which implies the commutativity of a C*-algebra.

1. INTRODUCTION

Ji and Tomiyama ([5]) give a characterization of commutativity of C*-algebra,
where they also give a condition that two positive operators commute. For bounded
linear operators on a Hilbert space H, we slightly generalize their result as follows:

Theorem 1. Let a and b be self-adjoint operators on H. Then the following are
equivalent.
(1) ab = ba.
(2) exp(a + b) = exp(a) exp(b).
(3) There ezist a positive integer n > 2 and distinct non-zero real numbers
ti,ta,...,th_1 such that

fori=1,2,...,n—1.
(4) There ezist a positive integer n > 2 and distinct non-zero real numbers
tl; t2, cee 7tn—1 such that

n—1
a® — (t:b)" = (a —t:b) D _a" 7 (t:b)k
k=0

fori=1,2,...,n—1.

DePrima and Richard([2]), and Uchiyama([11],[12]) independently prove that, for
any positive operators a and b, the following conditions are equivalent:

(1) ab = ba.
(2) ab™ + b™a is positive for all n € N.

We give a little weakened condition for two operators commuting,.



Ji and Tomiyama, and Wu([14]) use a commutativity condition of two operators
and a gap of monotonicity and operator monotonicity of functions to characterize
commutativity of C*-algebras. With a similar point of view, we can get the following
result:

Theorem 2. Let A be a unital C*-algebra. Then the following are equivalent.

(1) A is commutative.

(2) There erists a continuous, increasing function f on [0,00) such that f is not
concave and operator monotone for A.

(3) Whenever positive operators a and b in A satisfy ab+ ba > 0, ab® + b%a > 0.

2. PROOF OF THEOREM 1

Lemma 3. Let a and b be self-adjoint operators on H, and f be a continuous
function on the spectrum Sp(a) of a. Then ab = ba implies that f(a)b = bf(a).

Proof. We can choose a sequence {p, } of polynomials which converges to f uniformly
on Sp(a). So we have

f(@)b = lim pa(@)b = lim bpa(a) = b (a).

Lemma 4. Let a, b be self-adjoint operators on H and k be a positive integer. If
afba = a**1b, then ab = ba.
Proof. We put p the orthogonal projection of H onto Ker(a). We remark that

Ker a = Ker a® = --- = Ker a**!, pa=ap=0.

Since
0 = a*bap = a**'bp = a1 (1 — p)bp,
we have (1 — p)bp = 0. The self-adjointness of b implies

b= pbp + (1 - p)b(1 — p).

So we have
ab—ba=(p+ (1—p))(ab—ba) = (1—p)(ab— ba) — pba
= (1 — p)(ab — ba) — pbpa = (1 — p)(ab — ba).
Since a*(ab — ba) = 0, we can get ab = ba. O

Proof of Theorem 1. (1)=-(2), (1)=-(3) and (1)=-(4) are trivial.
(2)=(1) The element exp(a + b) is self-adjoint, so we have

exp(a) exp(b) = exp(b) exp(a).



We apply Lemma 3 for the function f(z) = logz on Sp(exp(a)). Since log(exp(a)) =
a, we have

aexp(b) = exp(b)a.

Repeated the same argument, we can show ab = ba.
(3)=(1) Since (a + ¢;b)" is self-adjoint, we have

— (n kn—kk__n N\ kik n—k C
> ()t =3 (p)dta =120

k=0 k=0 k

This means that

1 .o t?—2 (n) (an—lb _ ban—l) 0
1ty - 32 (7215 (a"~2b2 — b2a"2) 0
i tn.—l . tz:% (n'r—ll) (ab"“.l _ bn—-la) 0

So we have a® b = ba"~!. When n is even, we have ab = ba, by using Lemma 3
and the fact a = (a® 1)/,
We assume that n is odd. Then we have

a2b — (an—1)2/n—1b — b(an—1)2/n—1 — ba2.
If we apply the same argument for the relation

(a + tib)n

=a" + t;(a” b+ a" " 2ba + .- -+ ba™" 1) + £2(-- ) (n) thankpk,

then we can get
a” b+ a"2%ba 4 - -+ + ba""! = na™" b,

Using the commutativity of a? and b, we have
a1 = a" ?ba.

By Lemma 4, it follows that ab = ba.
(4)=(1) By using the same argument as (3)=-(1), we can get that a coefficient of
1771 vanishes, that is, '
ab™ ! — bab™? = 0.

By Lemma 4, we can get ab = ba. O

Remark 5. On the implication (2)= (1), the following srtonger result is known for
self-adjoint matrices (see [3], [4], [9] and [10]). If self-adjoint matrices a, b satisfy
the condition

Trace(exp(a + b)) = Trace(exp(a) exp(b)),
then ab = ba.



3. OPERATOR MONOTONE FUNCTIONS

Let f be a continuous function on [0,00). We call f a matrix monotone (resp.
matrix concave) function of order n if it satisfies the following condition:

a,be M,(C),0<a<b= f(a) < f(b)
(resp. a,be M,(C),0<a<b,0<t<1
= f(ta+ (1 —t)b) > tf(a) + (1 =t)f(b) ).

When f is matrix monotone of order n for any n, f is called operator monotone. We
call a function f operator monotone for a C*-algebra A if, for a,b € A,0<a <b
implies 0 < f(a) < f(b). The following fact is well-known([7]:Theorem 2.1). Here
we give a different proof of this.

Lemma 6. If f : [0,00) — [0, 00) is continuous and matriz monotone of order 2n,
then f is matriz concave of order n.

Proof. For a,b € M,,(C)* and 0 <t < 1, we put

X = (g g) Y = (\/I_fi_t _‘/\}?) € Mn(C).
Then we have

vow [ ta+(1—=1t EHI-1)(b-a)
YXY_(\/t(l—t)(b—a) (1 —t)a+tb )

< ta+(1—t)b+e 0
0 (1 —t)a +tb+ L2 (g — b)?

for any positive number €. By the assumtion for f, we can get
Y*f(X)Y = f(Y*XY)

flta+ (1 —t)b+e) 0
<< 0 f((l—t)a+tb+ﬂ1%t’(a—b)’“’))'

Since € is arbitrary, we have

tf(a) + (1 —t)f(b) < f(ta + (1 —1)b).

a

As an application of this lemma, we can see that the exponential function exp(-)
is increasing and convex but not matrix monotone of order 2. By Theorem 2, we
can get another proof of Wu’s result [14].

Let f be an operator monotone function on (0, 00), that is, f is a matrix monotone
function on (0, 00) of order n for any n € N. Then f has the analytic continuation on
the upper half plane H, = {z € C | Imz > 0} and also has the analytic continuation



on the lower half plane H_ by the reflection across (0, 00). By Pick function theory,
it is known that f is represented as follows:

f(2) = £(0) + Bz + / T g,

0o Atz
- where 8 > 0 and w is a positive measure with
® A
——dw(\) < +00
/0 T <+

(see [1]:page 144). We denote by P, the closed right half plane {z € C | Rez > 0}
and by C(S) the closed convex hull of a subset S of C. We consider the case that
f(0) > 0. Then we can easily check f(P,) C P;. For a € B(H), we denote by W (a)
its numerical range

{(a€, &) | i€l =1} c C.
By Kato’s theorem ([6]:Theorem 7), if W(a) is contained in P, then we have

W(f(A)) C C(f(Py)).

Proposition 7. Let a,b € B(H) be positive and f, f, be operator monotone func-
tions from [0, 00) to [0, 00). . ‘
(1) If ab+ ba > 0, then af(b) + f(b)a > 0.

(2) IfSp(b) C fa([0,00)), afy (b)+fa'(b)a = O for alln and ), C(fa(P1)) C R,
then ab = ba.

Proof. (1) We may assume that a is invertible, replacing a by a + € (¢ > 0). Then
we can define the new inner product on H by

(& m = (a&,n), §&n €N

It suffices to show that the positivity of Reb with respect to (-, -) implies the positivity
of Ref(b) with respect to (-,-). Since Reb > 0 is equivalent to

W(b) = {(b€,€) | (£,) =1} C Py

and W(f(b)) € C(f(Py)) C Py, we have Ref(b) > 0.
(2) In the same setting in (1), if we get W (b) C R, this implies ab = ba. By the
argument of (1) and the assumption, we have

W (f7' (b)) C Py and W(b) = W (fu(f7'(0)) € C(fa(P4))
for any n. So we have W(b) C N, C(f.(Py)) C R. O

In [13], Uchiyama defines the function u(t) on [—a;, 00) as follows:

u(t) = (t+a1)™(t +az)™ - - - (t + ax)™,



where a; < a3 < ... < ax, v > 0, and he shows that the inverse function f(x) =
u~!(z) becomes operator monotone on [0,00) if y; > 1. We assume that f(0) > 0

(i.e., ay S O) and
vy=Y %>L
7:a; <0

Then f(z) is a holomorphic function from D into D, where D = C\ (—00,0] = {2z €
C\ {0} | =7 < argz < w}. For z = re? (0 < 0 < w/2), we set z + a; = r;€%
(=1,2,...,k). Then we have

k
0< O <---<6; < and argu(z) =Z’yj0,- > 0.
=1
This means that |argf(z)| < %|a.rgz| if 0 < |argz| < 7/2. Since
— — T s
C(f(Py)) c C({z € D | |argz| < 5}) C{zeD||argz| < é;}

T (P2) € T ({z € D | argz| < 7)) € {2 € D | |arge| < )

C(f*(Py)) CC(f(C(f"(Py))) C {2z € D | |argz| < 5%},

we can get

NTU"(Py) R

Corollary 8. Let a,b € B(H) be positive and the function u have the following

- form:

u(t) = (t+a1)" (¢t +az)™ - - (t +ax)™,
where a1 < az < ... < ak, v > 0, a1 <0, » > 1 and Zj:a,-go')’j > 1. If
au™(b) + u™(b)a > 0 for all n € N, then we have ab = ba.

Proof of Theorem 2. (1)=(2) and (1)=-(3) are trivial.

(2)=(1) If A is not commutative, then there exists a irreducible representation 7
of A on a Hilbert space H with dimH > 1. Let K be a 2-dimensional subspace of H.
By Kadison’s transitivity theorem(see [8]), for any positive operator T' € B(K)(=
M,(C)), we can choose a positive element a € A such that w(a)[x = T. By the
assumption and Lemma 6, f is not matrix monotone of order 2. This means that
we can choose S,T € B(K) such that

0< S <Tand f(S) £ f(T).
So there exist a,b € A such that
0<a<band n(a) = S,7(b) =T.



Since f(S) = f(n(a)) = 7(f(a)) and f(T) = f(n(b)) = w(f(b)), this contradicts to
the operator monotonicity of f for A.

(3)=>(1) Let a, b be positive in A. If b is invertible, then (a+t)b+b(a+t) becomes
positive for ¢t > ||a||||b]|||b~*||. So we may assume that (a +t)(b+ s) + (b+ s)(a + t)
is positive for some positive numbers s, t. By the assumption, we have

(a+t)"(b+s)+(b+s)(a+t)>" >0 forallneN.

By Corollary 8, we have (a +t)(b+s) = (b+ s)(a +t), i.e., ab = ba. Therefore A is
commutative. ]

Using the same method as the proof of (3)=-(1), we can see the following condition
(4) also becomes an equivalent condition in Theorem 2:

(4) Whenever positive operators a and b in A satisfy au(b) + u(b)a > 0 for a
function u as in Corollary 8, au?(b) + u?(b)a > 0.
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