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Tame Topology over dp-Minimal Structures

Pierre Simon and Erik Walsberg

Abstract In this article, we develop tame topology over dp-minimal struc-
tures equipped with definable uniformities satisfying certain assumptions. Our
assumptions are enough to ensure that definable sets are tame: there is a good
notion of dimension on definable sets, definable functions are almost everywhere
continuous, and definable sets are finite unions of graphs of definable continu-
ous “multivalued functions.” This generalizes known statements about weakly
o-minimal, C-minimal, and P-minimal theories.

This article is a contribution to the study of generalizations and variations of o-
minimality. O-minimality is a model-theoretic notion of tame geometry. Over an
o-minimal structure, definable functions are piecewise continuous and there is a well-
behaved notion of dimension for definable sets. Conditions similar to o-minimality
have been investigated, such as weak o-minimality and C-minimality, which imply
analogous—though weaker—tameness properties. More recently, it was observed
in the ordered case that a purely combinatorial condition, dp-minimality, is enough
to imply such properties. The theory of dp-minimal ordered structures can be seen
as a generalization of the theory of weakly o-minimal structures (see Goodrick [4],
Simon [8]). The present article continues this line of work as our results hold over
dp-minimal expansions of divisible ordered abelian groups.

We use a framework which includes both dp-minimal expansions of divisible
ordered abelian groups and dp-minimal expansions of valued fields. We work with
a dp-minimal structure M equipped with a definable uniform structure. We assume
that M does not have any isolated points and that every infinite definable subset of
M has nonempty interior. It follows from the work of Simon [8] that these assump-
tions hold for a dp-minimal expansion of a divisible ordered abelian group. It follows
from the work of Johnson [6] that our assumptions hold for a nonstrongly minimal
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dp-minimal expansions of fields, in particular for a dp-minimal expansion of a valued
field. Our main results are as follows.

(1) Naive topological dimension, acl-dimension, and dp-rank all agree on defin-
able sets and are definable in families.

(2) A definable function is continuous outside of a set of smaller dimension.
(3) Definable sets are finite unions of graphs of continuous definable correspon-

dences U � M l , and U �M k is an open set.
(4) The dimension of the frontier of a definable set is strictly less than the dimen-

sion of the set.
A correspondence is a continuous “multivalued function”; this is made precise below.
The third bullet is as close as we can get to cell decomposition. Note that we
do not say anything about definable open sets. Cubides-Kovacsics, Darnière, and
Leenknegt [1] recently showed that (2)–(4) above hold for P-minimal expansions of
fields. Dolich, Goodrick, and Lippel [2] showed that P-minimal structures are dp-
minimal, so our work yields another proof of (2)–(4) for P-minimal structures. It
follows from Proposition 4.3 below that (4) above holds for expansions of ordered
groups with weakly o-minimal theory, which appears to be novel. Eleftheriou, Has-
son, and Keren [3, Lemma 4.20] have recently shown that (4) holds for nonvalua-
tional weakly o-minimal expansions of ordered groups. Proposition 4.3 generalizes
this as nonvaluational weakly o-minimal expansions of ordered groups have weakly
o-minimal theory by Macpherson, Marker, and Steinhorn [7, Theorem 6.7].

1 Conventions and Assumptions

Throughout, T is a complete NIP theory in a multisorted language L with a
distinguished home sort and M is an jLCj-saturated model of T with home
sort M . Throughout, “definable” without modification means “M-definable,
possibly with parameters.” A definable set A has dp-rank greater than n if, for
0 � i � n, there are formulas �i .x; y/ and infinite sets Bi � M such that for any
.b0; : : : ; bn/ 2 B0 � � � � � Bn, there is an a 2 A such that�

M ˆ �i .a; y/
�
 ! Œy D bi � for all 0 � i � n; y 2 Bi :

The theory T is dp-minimal with respect to the home sort if M has dp-rank 1. We
assume throughout that M is dp-minimal. (See Simon [10, Chapter 4] for more about
dp-ranks.)

We assume that M is equipped with a definable uniform structure. We first recall
the classical notion of a uniform structure on the set M . We let � � M 2 be the set
of .x; y/ such that x D y. Given U; V �M 2, we declare that

U ı V WD
®
.x; z/ 2M 2

W .9y 2M/.x; y/ 2 U; .y; z/ 2 V
¯
:

A basis for a uniform structure on M is a collection B of subsets of M 2 satisfying
the following:

(1) the intersection of the elements of B is equal to �;
(2) if U 2 B and .x; y/ 2 U , then .y; x/ 2 U ;
(3) for all U; V 2 B there is a W 2 B such that W � U \ V ;
(4) for all U 2 B there is a V 2 B such that V ı V � U .

The uniform structure on M generated by B is
QB WD

®
U �M 2

W .9V 2 B/ V � U
¯
:
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Elements of QB are called entourages and elements of B are called basic entourages.
Given U 2 B and x 2M , we declare that

U Œx� WD
®
y W .x; y/ 2 U

¯
:

We say that U Œx� is a ball with center x. We put a topology on M by declaring
that a subset A � M is open if, for every x 2 A, there is a U 2 B such that
U Œx� � A. Assumption (1) above ensures that this topology is Hausdorff. The
collection ¹U Œx� W U 2 Bº forms a neighborhood basis at x for each x 2 M .
Abusing terminology, we say that B is a definable uniform structure if there is a
formula '.x; y; Nz/ such that

B D
®
'.M 2; Nc/

ˇ̌
Nc 2 D

¯
for some definable setD. We assume throughout thatM is equipped with a definable
uniform structure B. On eachM k , we put the product uniform structure generated by
¹U1� � � ��Uk W Ui 2 Bº or, equivalently (because of axiom (1)), by ¹U k W U 2 Bº.
Given x D .x1; : : : ; xk/ 2M

k and U 2 B, we declare that

U Œx� WD
®
.y1; : : : ; yk/ W .8i/.xi ; yi / 2 U

¯
�M k :

We give the main examples of definable uniform structures:
(1) Suppose that � is an M-definable ordered abelian group and that d is a defin-

able �-valued metric on M . We then take B to be the collection of sets of
the form ®

.x; y/ 2M 2
W d.x; y/ < t

¯
for t 2 �:

The typical case is when � DM and d.x; y/ D jx � yj.
(2) Suppose that � is a definable linear order with minimal element and that d is

a definable �-valued ultrametric onM . Then we can put a definable uniform
structure on M in the same way as above. The usual case is when M is a
valued field.

(3) Suppose that M expands a group. Let D be a definable set, and suppose
that ¹U Nz W Nz 2 Dº is a definable family of subsets of M which forms a
neighborhood basis at the identity for the topology on M under which M is
a topological group. Then the sets®

.x; y/ 2M 2
W x�1y 2 U Nz

¯
for Nz 2 D

form a definable uniform structure on M .
We assume that M satisfies two topological conditions:

(1) M does not have any isolated points;
(2) (Inf): every infinite definable subset of M has nonempty interior.

The first assumption rules out the trivial discrete uniformity. The second is known for
certain dp-minimal structures. In [8], (Inf) was proved for dp-minimal expansions
of divisible ordered abelian groups. This was generalized in Jahnke, Simon, and
Walsberg [5, Proposition 3.6], where (Inf) was proved under the assumption that
M admits a definable group structure under which M is a topological group and
such that for every entourage U and integer n there is an entourage V such that
.8y 2 V Œ0�/.9x 2 U Œ0�/.n � y D x/. It follows directly from the work of Johnson
[6] that our assumptions hold for any dp-minimal expansion of a field which is not
strongly minimal.
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Proposition 1.1 Let F be a dp-minimal expansion of a field which is not strongly
minimal. Then F admits a definable uniform structure without isolated points, and
every infinite definable subset of F has nonempty interior with respect to this uniform
structure.

Proof It is proved in [6] that F admits a definable topology under which F is a
nondiscrete topological field. It follows that F admits a definable uniform structure
without isolated points. It is also proved in [6] that any infinite definable subset of F
has nonempty interior with respect to this topology.

We finally recall some general notions. Given sets A, B , and C � A � B , we let

Cb D
®
a 2 A W .a; b/ 2 C

¯
for any b 2 B:

We say that a family of sets ¹Ai W i 2 I º is directed if, for every i; j 2 I , there
is a k 2 I such that Ai [ Aj � Ak . Given a subset A of a topological space, we
let cl.A/ be the closure of A, and we let Int.A/ be the interior of A. The frontier
of A is @.A/ D cl.A/ n A. An accumulation point of A is a point p such that every
neighborhood of p contains a point inA other than p. The setA is discrete if it has no
accumulation points. The set A is locally closed if every p 2 A has a neighborhood
U such that U \ A is closed in U . A subset of a topological space is locally closed
if and only if it is the intersection of a closed set and an open set.

Lemma 1.2 A definable locally closed set is the intersection of a definable closed
set and a definable open set.

Proof Suppose thatA is locally closed. For every p 2 A there is aU 2 B such that
U Œp�\A is closed in U Œp�. Note that this is equivalent to U Œp�\A D U Œp�\cl.A/.
Let V be the union of all U Œp� such that p 2 A and U Œp�\A D U Œp�\cl.A/. Then
V \ cl.A/ D A and A lies in the interior of V . Let W be the interior of V . Then W
is open, definable, and W \ cl.A/ D A, as required.

Throughout this article, C is a small set of parameters and A is a C -definable subset
of M k .

2 Dimension

In this section, we develop a theory of dimension for definable subsets of M k . We
begin by noting that (Inf) implies that M eliminates 91.

Lemma 2.1 If D is definable and ¹Ax W x 2 Dº is a definable family of subsets
of M , then there is an n such that if jAxj > n, then Ax is infinite for all x 2 D.

Proof A definable subset of M is discrete if and only if it is finite. Therefore, the
set of x 2 D such thatAx is finite is definable. The lemma follows by saturation.

There are several natural notions of dimension on definable subsets of M k . The
naive topological dimension of a definable set A is the maximal l for which there is
a coordinate projection � W M k ! M l such that �.A/ has nonempty interior. The
acl-dimension, dim. Na=C/, of a tuple Na 2 M k over the base C is the minimal l such
that there is a subtuple Na0 � Na of length l such that Na 2 acl.C Na0/. The acl-dimension
of A is defined to be

dim.A/ WD max
®
dim. Na=C/ W Na 2 A

¯
:
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We can replace C with any base that defines A, so this notion of dimension does not
depend on C (if, say, Na … acl.C Na0/ for Na0 is a subtuple of Na and C � C1, then we
can find Na1 �Ca0 Na such that Na1 … acl.C1 Na

0/). It is easy to see that acl-dimension
is subadditive. If acl satisfies exchange, then by [9, Proposition 3.2], acl-dimension
coincides with dp-rank. In this section, we prove Proposition 2.4, which states that
naive topological dimension, acl-dimension, and dp-rank coincide on definable sets.

Lemma 2.2 If the naive dimension, acl-dimension, or dp-rank of A is equal to k,
then A has nonempty interior.

Proof It is clear from the definition of naive dimension that if the naive dimension
of A equals k, then A has nonempty interior. We show that if dim.A/ D k, then
A has nonempty interior. Our proof also shows that if dp-rk.A/ D k, then A has
nonempty interior. We only use four properties of acl-dimension which hold as well
for dp-rank. We first collect these properties. Let D;E � M lCk be definable, and
let � WM lCk !M l be the projection onto the first l coordinates. Then:

(1) dim.D/ D 0 if and only if D is finite, and dim.M/ D 1;
(2) dim.D [E/ D max¹dim.D/; dim.E/º;
(3) dim is subadditive:

dim.D/ � dim
�
�.D/

�
Cmax

®
dim.Db/ W b 2M

k
¯
:

(See, e.g., [10, Chapter 4] for proofs that these properties hold for dp-rank.) We
prove the proposition by applying induction to k. If k D 1, then (1) and (2) above
imply that dim.A/ D 1 if and only if A is infinite, and (Inf) implies that A is infinite
if and only if A has nonempty interior. This establishes the base case.

Suppose that k � 2 and that dim.A/ D k. The inductive hypothesis implies,
for all b 2 M , that dim.Ab/ D k � 1 if and only if Ab has nonempty interior in
M k�1. Let B � M �M k�1 be the set of .b; Na/ 2 A such that Na … Int.Ab/. Then
dim.Bb/ � k � 2 for every b 2 M . Subadditivity shows that dim.B/ � k � 1,
so by (2) we have dim.A n B/ D k. It suffices to show that A n B has interior
in M k . After replacing A with A n B , we suppose that Ab is an open subset of
M k�1 for all b 2 M . Let � W A ! M k�1 be the projection onto the last k � 1
coordinates. If ��1. Nc/ is finite for all Nc 2 M k�1, then subadditivity would imply
that dim.A/ � k � 1. Therefore, we fix a Nc 2 M k�1 such that ��1. Nc/ is infinite,
and we let Q � M be the set of b such that .b; Nc/ 2 A. For all b 2 Q there is a
U 2 B such that ¹bº � U Œ Nc� � A. Given U 2 B, we let PU � Q be the set of b
such that ¹bº �U Œ Nc� � A. If U; V;W 2 B andW � U \ V , then PU [PV � PW .
Thus ¹PU W U 2 Bº is a directed definable family of subsets of Q. It follows that
for every n there is a U 2 B such that jPU j � n. As M eliminates 91, there is a
U 2 B such that PU is infinite. Fix such a U . As PU has nonempty interior, there
is an open V � PU . Then V � U � A. Thus A has nonempty interior.

The next lemma gives a converse to Lemma 2.2.

Lemma 2.3 The following are equivalent:
(1) A has dp-rank k;
(2) there are sequences of pairwise distinct singletons Il D .al

i W i < !/ for
l < k such that I0 � � � � � Ik�1 � A;

(3) there are mutually C -indiscernible sequences of pairwise distinct singletons
Il D .a

l
i W i < !/, l < k, such that I0 � � � � � Ik�1 � A;
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(4) A has nonempty interior;
(5) dim.A/ D k.

Proof Lemma 2.2 shows that both (1) and (5) imply (4). If A has nonempty inte-
rior, then there are definable openU0; : : : ; Uk�1 �M such thatU0�� � ��Uk�1 � A,
and it easily follows that (4) implies (3). It is obvious that (3) implies (2) and easy
to see that (2) implies (5). It remains to show that (2) implies (1). If there are
sequences as in (2), then we obtain an inp-pattern of size k by considering the for-
mulas �l .xI a

l
i / WD .x D a

l
i /. Therefore, (2) implies (1).

Now we can prove the following.

Proposition 2.4 The acl-dimension, naive dimension, and dp-rank of A coincide.

In the following proof, we apply the fact that coordinate projections do not increase
acl-dimension or dp-rank.

Proof We prove the proposition by showing that the following are equivalent for
all n:

(1) the naive dimension of A is at least n;
(2) dim.A/ � n;
(3) dp-rk.A/ � n.

If � W M k ! M n is a coordinate projection such that �.A/ has nonempty interior,
then Lemma 2.3 implies that dim �.A/ D dp-rk �.A/ D n, so dim.A/ � n and
dp-rk.A/ � n. Thus (1) implies both (2) and (3). Suppose that dim.A/ � n. There
is a coordinate projection � W M k ! M n such that dim.�.A// D n. Lemma 2.2
implies that �.A/ has nonempty interior, so the naive dimension of A is at least n.
Thus (2) implies (1). Suppose that dp-rk.A/ � n. By [9, Corollary 3.5], there is
a coordinate projection � W M k ! M n such that dp-rk �.A/ D n. Lemma 2.2
implies that �.A/ has nonempty interior, so the naive dimension of A is at least n.
Thus (3) implies (2).

The following corollary was proved in a more general setting (see [9]). We include
the easy topological proof that works in this setting.

Corollary 2.5 Let ¹Dx W x 2 M
lº be a definable family of subsets of M k . Then

for any d � k, the set of parameters x 2M l for which dim.Dx/ D d is definable.

Proof The naive topological dimension is definable in families: dim.Dx/ � d just
if there is a coordinate projection of Dx to some M d with nonempty interior.

We say that a definable B � A is almost all of A if dim.A n B/ < dim.A/. We
say that a property holds almost everywhere on A if it holds on a definable subset of
A which is almost all of A. If A is open and A n B has empty interior in A, then it
follows from Lemma 2.2 that B is almost all of A.

Lemma 2.6 Suppose that A is open. Suppose that B � A is definable and dense
in A. Then the interior of B is dense in A and B is almost all of A.

Proof It suffices to show that the interior of B is dense in A. We fix a definable
open V � A and show that B has nonempty interior in V . We only consider the case
V D A; the general case follows in the same way. It thus suffices to show that B has
nonempty interior. For i � k, let Vi �M be nonempty open definable sets such that
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V1�� � ��Vk � A. For each i � k, we fix some countably infinite Ii � Vi . Applying
saturation, we take W 2 B such that, for each i , the neighborhoods W Œa�, a 2 Ii

are pairwise disjoint. Then for any choice of Na D .a1; : : : ; ak/ 2 I1 � � � � � Ik , there
is a Ny 2 B \W Œ Na�; that is, there is a .y1; : : : ; yk/ 2 B such that yi 2 W Œai � holds
for every i . For i � k, let �i .x; Ny/ be given by x 2 W Œyi �, where x ranges over M
and Ny D .y1; : : : ; yk/ ranges over B . For every .a1; : : : ; ak/ 2 I1 � � � � � Ik , there
is a Ny 2 B such that for each i � k and b 2 Ii , �i .b; Ny/ holds if and only if b D ai .
Thus the formulas �i .x; Ny/ witness dp-rk.B/ D k. Lemma 2.3 shows that B has
nonempty interior.

The following corollary will prove useful.

Corollary 2.7 Suppose that A is open, and let A1; : : : ; An be definable sets which
cover A. There is an i � n such that Ai has nonempty interior in A. In fact, almost
every point in A is in the interior of some Ai .

Proof We fix a definable open V � U and show that V contains a point in the
interior of some Ai . There is an i � n such that Ai is dense in some open subset of
V , as otherwise the union of the Ai is nowhere dense. Lemma 2.6 implies that this
Ai has nonempty interior in V .

3 Correspondences and Generic Continuity

In this section we prove Proposition 3.7, which shows that a definable function
M k ! M l is continuous almost everywhere. We prove a stronger result which,
loosely speaking, states that definable “multivalued functions” are continuous almost
everywhere. We first introduce the notion of a “multivalued function” that we will
use.

3.1 Correspondences A correspondence f W E � F consists of definable sets
E;F together with a definable subset Graph.f / of E � F such that

0 <
ˇ̌®
y 2 F W .x; y/ 2 Graph.f /

¯ˇ̌
<1 for all x 2 E:

Let f W E � F be a correspondence. Given x 2 E, we let f .x/ be the set of y 2 F
such that .x; y/ 2 Graph.f /. Note that saturation implies that there is a n 2 N such
that jf .x/j � n for all x. The image of f is the coordinate projection of Graph.f /
onto F . Given a definable B � E, we let f jB be the correspondence B � F

whose graph is Graph.f / \ ŒB � F �. We say that f is constant if f .x/ D f .x0/

for all x; x0 2 E. If jf .x/j D m for every x 2 E, then we say that f is an
m-correspondence. Given correspondences f W E � F and g W F � G, we define
the composition f ı g W E � G to be the correspondence such that

Graph.f ı g/ D Graph.f / ı Graph.g/:

Given U 2 B, we say that .f .x/; f .x0// 2 U if for every y 2 f .x/ there is a
y0 2 f .x0/ such that .y; y0/ 2 U and for every y0 2 f .x0/ there is a y 2 f .x/ such
that .y; y0/ 2 U . We say that f is continuous at x 2 E if for every V 2 B there is a
U 2 B such that .f .x/; f .x0// 2 V whenever .x; x0/ 2 U . Note that a continuous
1-correspondence is a continuous function. In the remainder of this paragraph, we
prove several simple lemmas about correspondences which will be useful.
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Lemma 3.1 Let U � M k be open and definable, and let f W U � M l

be a continuous m-correspondence. Every p 2 U has a neighborhood V such
that there are definable continuous functions g1; : : : ; gm W V ! M l such that
Graph.gi / \ Graph.gj / D ; when i ¤ j and

Graph.f jV / D Graph.g1/ [ � � � [ Graph.gm/:

Proof Fix p 2 U . Let f .p/ D ¹q1; : : : ; qmº. Let W0 2 B be such that
.qi ; qj / … W0 for all i; j � m such that i ¤ j , and let W 2 B be such that
W ıW � W0. Let V be an open neighborhood of p such that .f .p/; f .p0// 2 W

for all p0 2 V . Fix p0 2 V , and let f .p0/ D ¹q0
1; : : : ; q

0
mº. For each i � m, there is a

j � m such that .qi ; q
0
j / 2 W . As the balls W Œqi � are pairwise disjoint, we see that

for each i � m there is a unique j � m such that .qi ; q
0
j / 2 W . We have shown that

for every p0 2 V and q 2 f .p/ there is a unique q0 2 f .p0/ such that .q; q0/ 2 W .
For i � m, we let gi W V ! M l be the definable function such that gi .p

0/ 2 W Œqi �

and gi .p
0/ 2 f .p0/ for every p0 2 V . Continuity of the gi ’s follows easily from the

continuity of f . It is clear that the graphs of the gi ’s are pairwise disjoint.

Lemma 3.2 Let U � M k be open and definable, and let f W U � M l be
a continuous correspondence. Almost every p 2 U has a neighborhood V such
that there are definable continuous functions g1; : : : ; gm W V ! M l such that
Graph.gi / \ Graph.gj / D ; when i ¤ j and

Graph.f jV / D Graph.g1/ [ � � � [ Graph.gm/:

Proof Let m be such that jf .p/j � m for all p 2 U . For each i � m, let Ai � U

be the set of p such that jf .p/j D i . By Corollary 2.7, almost every element of U
is contained in the interior of some Ai . An application of Lemma 3.1 shows that the
conclusion of the lemma holds for any element of the interior of some Ai .

The next lemma is a straightforward generalization of a familiar fact about graphs of
continuous functions. We leave the proof to the reader.

Lemma 3.3 Let f W A � M l be a continuous correspondence. Then Graph.f /
is a closed subset of A �M l . If A is open, then Graph.f / is a locally closed subset
of M k �M l .

The following lemma is well known for continuous functions. Lemma 3.1 reduces
Lemma 3.4 to the case of a continuous function f . We again leave the details to the
reader.

Lemma 3.4 Suppose that A is open, and let f W A � M be a continuous
m-correspondence. Let � W A �M ! A be the coordinate projection. Then every
p 2 Graph.f / has a neighborhood V � Graph.f / such that �.V / is open and the
restriction of � to V is a homeomorphism onto its image.

3.2 Generic continuity In this section we prove Proposition 3.7, which states that
a definable correspondence M k � M l is continuous almost everywhere. We first
prove two lemmas which we use in the proof of Proposition 3.7 and in several other
places.
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Lemma 3.5 Let C D ¹Cx W x 2 M
lº be a directed definable family of subsets of

M k . If [
x2M l

Cx

has nonempty interior, then there is an element of C with nonempty interior.

Proof Suppose that the union of C has nonempty interior. We show that there is a
k-dimensional element of C . For 1 � i � k, let Uk be open definable subsets of M
such that

U1 � � � � � Uk �

[
x2M l

Cx :

For each 1 � i � k, let Ii � Ui be a countable set. Let I D I1 � � � � � Ik . As C

is directed, for every finite J � I there is a y 2 M l such that J � Cy . Saturation
gives a y 2 M l such that I � Cy . Lemma 2.3 implies that this Cy has nonempty
interior in M k .

(Inf) implies that there are no infinite definable discrete subsets ofM . A straightfor-
ward inductive argument extends this to any M k .

Lemma 3.6 There is no infinite definable discrete subset of M k .

Proof We apply induction to k. The base case follows from (Inf). We fix k > 2

and suppose toward a contradiction thatD �M k is definable, infinite, and discrete.
For all x 2 D there is a U 2 B such that U Œx� \D D ¹xº. Applying saturation, fix
a U 2 B such that U Œx�\D D ¹xº holds for infinitely many x 2 D. After replacing
D with the set of such x if necessary, we suppose that if x; y 2 D and x ¤ y, then
.x; y/ … U . Let �1 WM

k !M k�1 be the projection onto the first k�1 coordinates,
and let �2 W M

k ! M be the projection onto the last coordinate. We first suppose
that �1.D/ is finite. This implies that there is a d 2 �1.D/ such that ��1

1 .d/\D is
infinite. Then �2Œ�

�1
1 .d/\D� is infinite and discrete. This contradicts the base case,

so we may assume that �1.D/ is infinite. Applying the inductive assumption, we fix
an accumulation point w of �1.D/. Let U 0 2 B be such that U 0 ı U 0 � U . We
declare thatW D U 0Œw��M andD0 D D\W . Note thatD0 is infinite. If x; y 2 D0,
then .�1.x/; w/ 2 U

0 and .�1.y/; w/ 2 U
0 so .�1.x/; �1.y// 2 U . If x; y 2 D0 and

.�2.x/; �2.y// 2 U , then as .�1.x/; �1.y// 2 U , we would also have .x; y/ 2 U ,
which implies that x D y. Thus if x; y 2 D0 and x ¤ y, then .�2.x/; �2.y// … U .
This implies that �2.D

0/ is discrete and therefore finite. As D0 is infinite, there is a
d 2 �2.D

0/ such that ��1
2 .d/\D0 is infinite. Then �1Œ�

�1
2 .d/\D0� is infinite and

discrete. This contradicts the inductive assumption.

Proposition 3.7 Let V � M k be a definable open set. Every correspondence
V � M l is continuous on an open dense subset of V , and thus is continuous almost
everywhere on V .

Proof As M l is equipped with the product topology, it suffices to show that every
correspondence f W V � M is continuous on an open dense set. By Lemma 2.6,
it suffices to show that the set of points of continuity of f W V � M is dense. It
is therefore enough to fix an open V 0 � V and show that f is continuous on some
point in V 0. To simplify notation, we assume that V 0 D V , which does not result in
any loss of generality.
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We first treat the case k D 1. We suppose towards a contradiction that f is
discontinuous at every point in V . Let n be such that jf .p/j � n for all p 2 V .
For every i � n, we let Ai be the set of p 2 V such that jf .p/j D i . Applying
Corollary 2.7, fix i � n such that Ai has nonempty interior in V . After replacing
V with a smaller definable open set if necessary, we suppose that V � Ai . Let
B � B � V be the set of .W; p/ such that for all W 0 2 B there is a q 2 W 0Œp� such
that .f .p/; f .q// … W . For every p 2 V there is a W 2 B such that .W; p/ 2 B .
As the family ¹BW W W 2 Bº is directed, we apply Lemma 3.5 and fix a W 2 B

such that BW has nonempty interior in V . After replacing V with a smaller defin-
able open set if necessary, we suppose that V � BW . For every p 2 V there are
q 2 V arbitrarily close to p such that .f .p/; f .q// … W . Fix U 2 B such that
U ı U � W . Let D � V �M i be the set of .p; Ny/ such that Ny D .y1; : : : ; yi /

and f .p/ D ¹y1; : : : ; yiº. Let � W D ! V be the coordinate projection. As D
is infinite, an application of Lemma 3.6 gives an accumulation point .p; Ny/ 2 D.
Thus U Œ.p; Ny/� \ D is infinite, so �.U Œ.p; Ny/� \ D/ is also infinite and thus has
nonempty interior in V . Let V 0 be a definable open subset of �.U Œ.p; Ny/� \ D/.
Note that if x 2 V 0, then .f .x/; f .p// 2 U . Fix q 2 V 0. For all r 2 V 0, we have
.f .q/; f .p// 2 U and .f .r/; f .p// 2 U , so therefore .f .q/; f .r// 2 W . This is
a contradiction as there are r’s arbitrarily close to q satisfying .f .q/; f .r// … W .
Thus f must be a continuous at some point in V .

We now apply induction to k > 2. We again suppose towards a contradiction that
f is discontinuous at every point in V . For every p 2 V there is a W 2 B such that
there exist q 2 V arbitrarily close to p satisfying .f .p/; f .q// … W . Arguing as in
the case k D 1, we may suppose that W 2 B is such that for all p 2 V there are
q 2 V arbitrarily close to p satisfying .f .p/; f .q// … W . After replacing V with a
smaller definable open set if necessary, we suppose that V D V0 � V1 for definable
open V0 � M and V1 � M k�1. Given Ny 2 V1, we let f Ny W V0 � M be the
correspondence given by f Ny.t/ D f .t; Ny/. Then for all Ny 2 V1, the correspondence
f Ny is continuous away from finitely many points of V0. It follows by subadditivity
that the set of .t; Ny/ 2 V0 � V1 such that f Ny is discontinuous at t has dimension at
most k � 1 and is therefore nowhere dense. After replacing V0 and V1 with smaller
definable open sets if necessary, we suppose that f Ny W V0 � M is continuous for
all Ny 2 V1. Let U 2 B be such that U ı U � W . For O 2 B, let BO � V

be the set of .t; Ny/ such that if t 0 2 OŒt�, then .f Ny.t/; f Ny.t
0// 2 U . For every

.t; Ny/ 2 V there is an O 2 B such that .t; Ny/ 2 BO . The family ¹BO W O 2 Bº

is directed, so applying Lemma 3.5, we fix an O 2 B such that BO has nonempty
interior in V0 � V1. After replacing V0 and V1 with smaller open sets if necessary,
we suppose that V0 � V1 � BO and V0 � V0 � O . Thus if Ny 2 V1 and t; t 0 2 V0,
then .f .t; Ny/; f .t 0; Ny// 2 U . Fix t 2 V0, and let f t W V1 � M be given by
f t . Ny/ D f .t; Ny/. Applying the inductive hypothesis, we fix a Nz 2 V1 at which f t is
continuous. After replacing V1 with a smaller open set if necessary, we may suppose
that .f t . Ny/; f t . Nz// 2 U holds for all Ny 2 V1. Suppose that .s; Ny/ 2 V0 � V1. Then�

f .t; Ny/; f .t; Nz/
�
2 U and

�
f .t; Ny/; f .s; Ny/

�
2 U:

As U ı U � W , we conclude that�
f .t; Nz/; f .s; Ny/

�
2 W for all .s; Ny/ 2 V0 � V1:
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This gives a contradiction as there are .s; Ny/ arbitrarily close to .t; Nz/ such that
.f .t; Nz/; f .s; Ny// … W .

Definable closure will not in general agree with algebraic closure, so it should not in
general be the case that the graph of a continuous correspondence is a finite union of
graphs of definable functions. Corollary 3.8 allows us to make up for this in some
circumstances. Corollary 3.8 is a direct consequence of Lemma 3.2 and Proposi-
tion 3.7.

Corollary 3.8 LetU �M k be open and definable, and let f W U � M l be a cor-
respondence. Almost every p 2 U has a neighborhood V such that there are continu-
ous definable functions g1; : : : ; gm W V !M l such that Graph.gi /\Graph.gj / D ;

when i ¤ j and
Graph.f jV / D Graph.g1/ [ � � � [ Graph.gm/:

4 A Decomposition

We now show that every definable set is a finite union of graphs of correspondences.
A more complicated argument can be used to show that every definable set is a finite
disjoint union of graphs of correspondences. We do not prove this as the weaker
result suffices for our purposes. As before, we let A � M k be some C -definable
subset.

Proposition 4.1 There are C -definable sets A1; : : : ; An � A which cover A such
that each Ai is, up to permutation of coordinates, the graph of a C -definable contin-
uous m-correspondence f W Ui � M k�d , where Ui � M

d is a C -definable open
set and 0 � d � k.

If d D 0, then we identify the graph of f W M 0 ! M k with a finite subset of M k .
If d D k, then we identify the graph of f W U � M 0 with U . In this way, we
regard any open definable subset of M k and any finite subset of M k as the graph of
a correspondence.

Proof By saturation, it suffices to prove the following. For any Na 2 A there is
a C -definable set A0 which is, up to a permutation of coordinates, the graph of
a C -definable continuous m-correspondence U � M k�d for some C -definable
open U � M d and satisfies Na 2 A0 � A. Fix Na D .a1; : : : ; ak/ 2 A. Let
d D dim. NajC/. By definition of dimension, up to a permutation of variables, we
have .adC1; : : : ; ak/ 2 acl.Ca1; : : : ; ad /. It follows that there is a C -definable
set B � M d and a C -definable correspondence f W B � M k�d such that
Na 2 Graph.f /. After intersecting Graph.f / with A and replacing B with a smaller
C -definable set if necessary, we may assume that Graph.f / � A. Lemma 2.3 shows
that dim.B n Int.B// < d so as .a1; : : : ; ad / 2 B and dim.a1; : : : ; ad jC/ D d , we
have .a1; : : : ; ad / 2 Int.B/. Let N be such that jf .x/j � N for all x 2 B . For each
1 � i � N , let Ei � Int.B/ be the set of x such that jf .x/j D i . Corollary 2.7
shows that

dim
�
Int.B/ n

�
Int.E1/ [ � � � [ Int.EN /

��
< d;

so .a1; : : : ; ad / 2 Int.Em/ for some 1 6 m 6 N . Fix such an m. Let U � Int.Em/

be the set of points that have a neighborhood on which f is continuous. Proposi-
tion 3.7 shows that U is almost all of Int.Em/ so .a1; : : : ; ad / 2 U . The restriction
of f to U is a continuous m-correspondence. We take A0 D Graph.f jU /.
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From Proposition 4.1 and Lemma 3.3, we immediately have the following.

Corollary 4.2 Every definable subset ofM k is a finite union of locally closed sets.
Every definable subset of M k is a Boolean combination of definable open sets.

We now show that the dimension of the frontier of A is strictly less than the dimen-
sion of A.

Proposition 4.3 dim @.A/ < dimA.

Proof If A D A1 [ � � � [ An, then @.A/ � @.A1/ [ � � � [ @.An/. Therefore, if
A1; : : : ; An � A are definable sets which cover Ai and dim.Ai / < dim @.Ai / holds
for every i , then dim.A/ < dim @.A/. Applying Corollary 4.2, we may assume that
A is locally closed. We let dim @.A/ D l . Let � WM k !M l be the projection onto
the first l coordinates. After permuting coordinates if necessary, we assume that
�Œ@.A/� is l-dimensional. By Lemma 2.3, there are sequences Jm D .am

i W i < !/

for 1 � m � l such that
J1 � � � � � Jl � �

�
@.A/

�
:

Given Nr D .r1; : : : ; rl / 2 !
l , we let a Nr D .a1

r1
; : : : ; al

rl
/. Applying saturation, we

let W0 2 B be such that

W0Œa
m
i � \W0Œa

m
j � D ; for any 1 6 m 6 l and distinct i; j < !:

For every Nr 2 !l , we pick an x0
Nr in A such that W0Œx

0
Nr � intersects @.A/ \ ��1.a Nr /.

As A is locally closed, for each x0
Nr , there is a W 2 B such that W Œx0

Nr � is disjoint
from @.A/. Applying saturation, pick an entourage W1 contained in W0 such that

W1Œx
0
Nr � \ @.A/ D ; for all Nr 2 !l :

Pick points x1
Nr as before with W1 replacing W0 and iterate. In the end, we obtain a

nested sequence of entourages .Wn W n < !/ and points ¹xn
Nr 2 A W . Nr; n/ 2 !

lC1º

such that WnŒx
n
Nr � intersects @.A/ \ ��1.a Nr / and WnC1Œx

n
Nr � is disjoint from @.A/ for

all .n; Nr/. We let  be a formula such that

B D
®
 .M 2; Nb/ W Nb 2M q

¯
:

For each n, we let Nbn 2M
q be such that

 .M 2; Nbn/ D Wn:

Given variables Nx D .x1; : : : ; xk/, we define formulas

�m. Nx; a
m
i / WD xm 2 W0Œa

m
i � for 1 6 m 6 l; i < !

and

�lC1. Nx; Nbi ; NbiC1/ WD
�
@.A/ \Wi Œ Nx� ¤ ;

�
^

�
@.A/ \WiC1Œ Nx� D ;

�
for i < !:

This yields an ict-pattern of depth l C 1 based on A. Thus, dim.A/ � l C 1.

Let B � A. The relative interior of B in A is the set of p 2 B for which there is an
open U �M k such that p 2 U and U \ A � B .

Corollary 4.4 Suppose that B � A is definable and that dim.B/ D dim.A/.
Then the relative interior of B in A is almost all of B .
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Proof Let I be the relative interior of B in A. Then B n I � @.A nB/. Therefore,

dim.B n I / 6 dim @.A n B/ < dim.A n B/ � dim.A/ D dim.B/:

So I is almost all of B .

Corollary 4.5 Let B1; : : : ; Bm be definable subsets of A which cover A. Then
almost every element of A is contained in the relative interior of Bi in A for some
i � m.

Proof After permuting the Bi if necessary, we may suppose that n < m is such
that dim.Bi / < dim.A/ when i < n and dim.Bi / D dim.A/ when i � n. Then
Bn [ � � � [ Bm is almost all of A. Let Ii be the relative interior of Bi in A for each
i 6 m. By Corollary 4.4, Ii is almost all of Bi for every i � n. It follows that
In [ � � � [ Im is almost all of A.

We are mainly interested in the following proposition in the case when M admits a
definable group operation which is compatible with the definable uniform structure.
Then M k is also a group and is hence topologically homogeneous. In this case, we
view the following proposition as stating that almost every point in A is “topologi-
cally nonsingular.”

Proposition 4.6 Let dim.A/ D d . Almost every p 2 A has a neighborhood
V � A for which there is a coordinate projection � WM k !M d such that �.V / is
open and the restriction of � to V is a homeomorphism onto its image.

Proof Let A1; : : : ; Am � A be definable sets which cover A such that each
Ai is, up to permutation of coordinates, the graph of a definable continuous
m0-correspondence f W Ui � M k�d , where Ui � M d is a definable open
set and 0 � d � k. We suppose that n � m is such that dim.Ai / < dim.A/ when
i < n and dim.Ai / D dim.A/ when i � n. For each n � i � m, we let Ii be
the relative interior of Ai in A. As An [ � � � [ Am is almost all of A, Corollary 4.5
shows that almost every element of A is an element of some Ii . It suffices to fix
i � n and show that the proposition holds for some p 2 Ii . By Lemma 3.4, there
is an open U � M k and a coordinate projection � W M k ! M d such that p 2 U ,
�.U \Ai / is open, and the restriction of � to U \Ai is a homeomorphism onto its
image. After replacing U with a smaller open set if necessary, we may assume that
U \A � Ai . We let V D U \A. Then �.V / is open and �jV is a homeomorphism
onto its image.

Proposition 4.7 Let f W M k ! M l be a definable function such that
jf �1.p/j < 1 for all p 2 M l . Almost every p 2 M k has a neighborhood V
such that the restriction of f to V is injective.

Proof Let� be the diagonal ¹.x; x/ W x 2M kº inM k�M k . LetD �M k�M k

be the set of .x; y/ 2 M k � M k such that x ¤ y and f .x/ D f .y/. For each
x 2 M k , there are at most finitely many y 2 M k such that .x; y/ 2 D. Thus
dim.D/ 6 k and so dim @.D/ < k. As � and D are disjoint, this implies that
dim.cl.D/ \�/ < k. Let B be the set of p 2 M k such that .p; p/ … cl.D/. Then
B is almost all of M k . Fix p 2 B . There is an open neighborhood V of p such
that ŒV � V � \ D D ;. If x; y 2 V and x ¤ y, then as .x; y/ … D, we have
f .x/ ¤ f .y/. Thus f is injective on V .
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5 One-Variable Functions

In this final section, we prove two results about one-variable functions.

Proposition 5.1 Let f W M ! M be a definable function. All but finitely many
p 2M have an open neighborhood V on which one of the following holds:

(1) the restriction of f to V is constant;
(2) f .V / is open and the restriction of f to V is a homeomorphism onto its

image.

Proof It is enough to show that the set of p satisfying either (1) or (2) above is
dense. Fix a definable open U � M . We show that U contains a point at which
either (1) or (2) holds. We first suppose that the restriction of f to U does not have
finite fibers. Then there is a p 2 U for which there are infinitely many q 2 U
satisfying f .q/ D f .p/. This implies that there is a definable open V � U such
that f .q/ D f .p/ for all q 2 V . Then (1) holds at any point in V . We now
suppose that f jU has finite fibers. After applying Proposition 3.7 and replacing U
with a smaller definable open set if necessary, we suppose that f is continuous on U .
After applying Proposition 4.7 and replacing U with a smaller definable open set if
necessary, we assume that f jU is injective. Then f .U / is infinite and thus contains
a definable open set W . By Proposition 3.7, there is a definable open W 0 � W such
that .f jU /�1 is continuous on W 0. Then .f jU /�1.W 0/ is infinite and thus contains
a definable open set V � U . The restriction of f to this V is a homeomorphism
onto its image.

Finally, we characterize when algebraic closure on M admits exchange.

Proposition 5.2 Exactly one of the following holds:
(1) there is a nonempty definable open U � M and a locally constant corre-

spondence U � M with infinite image;
(2) acl satisfies exchange.

Proof Let �1; �2 W M
2 ! M be the projections onto the first and second coor-

dinates, respectively. We first suppose that acl satisfies exchange and show that (1)
does not hold. Suppose towards a contradiction that U � M is definable and open
and that f W U � M is a locally constant correspondence with infinite image. The
restriction of �1 to Graph.f / has finite fibers, and hence

dim Graph.f / D dim.U / D 1:

If .a; b/ 2 Graph.f /, then there is an open neighborhood V � U of a such that
.a0; b/ 2 Graph.f / for all a0 2 V . Therefore the restriction of �2 to Graph.f / has
infinite fibers, so as acl admits exchange, we have

dim Graph.f / � 1C dim �2

�
Graph.f /

�
:

As f has infinite image dim �2ŒGraph.f /� D 1, so dim Graph.f / D 2, which is a
contradiction. We now suppose that acl does not satisfy exchange. Then there is a
set of parameters K �M and a; b 2M such that

b 2 acl
�
K [ ¹aº

�
n acl.K/ and a … acl

�
K [ ¹bº

�
:

This implies that there is a K-definable D � M �M such that .a; b/ 2 D, and,
for every a0 2 M , there are only finitely many b0 2 M such that .a0; b0/ 2 D.
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As a … acl.K [ ¹bº/, a is an interior point of ¹x 2 M W .x; b/ 2 Dº.
Let D0 be the K-definable set of .p; q/ 2 D such that p is an interior point
of ¹x 2 M W .x; q/ 2 Dº. If .p; q/ 2 D0, then p is an interior point of
¹x 2 M W .x; q/ 2 D0º. After replacing D with D0 if necessary, we suppose
that p is an interior point of ¹x 2 M W .x; q/ 2 Dº for all .p; q/ 2 D. This
implies that �1.D/ is open. We declare that V D �1.D/ and let g W V � M be
the K-definable correspondence such that Graph.f / D D. If q 2 g.p/ for some
p 2 V , then p is in the interior of ¹x 2 M W q 2 f .x/º. Let N be such that
jg.p/j 6 N for all p 2 V . For 1 6 i 6 N , let Ei be the set of p 2 V such that
jg.p/j D i . As ˇ̌

V n
�
Int.E1/ [ � � � [ Int.EN /

�ˇ̌
<1;

we have a 2 Int.En/ for some n. We let U D Int.En/ and let f be the restriction
of g to U . As b is in the image of f and b … acl.K/, f must have infinite image.
We show that f is locally constant. Let p 2 U and f .p/ D ¹q1; : : : ; qnº. It follows
by definition of V that for every 1 6 i 6 n, we can choose a neighborhood Wi � U

of p such that qi 2 f .p
0/ for any p0 2 Wi . Let W be the intersection of the Wi .

If p0 2 W , then ¹q1; : : : ; qnº � f .p/. As p0 2 En, we have jf .p/j D n so
¹q1; : : : ; qnº D f .p/. Thus f .p/ is constant on W .
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