More Automorphism Groups of Countable, Arithmetically Saturated Models of Peano Arithmetic

James H. Schmerl

Abstract

There is an infinite set \mathcal{T} of Turing-equivalent completions of Peano Arithmetic (PA) such that whenever \mathcal{M} and \mathcal{N} are nonisomorphic countable, arithmetically saturated models of PA and $\operatorname{Th}(\mathcal{M}), \operatorname{Th}(\mathcal{N}) \in \mathcal{T}$, then $\operatorname{Aut}(\mathcal{M}) \not \equiv \operatorname{Aut}(\mathcal{N})$.

Investigating the extent to which (the isomorphism type of) a countable, recursively saturated model \mathcal{M} of Peano Arithmetic (PA) is determined by (the isomorphism type of) its automorphism group $\operatorname{Aut}(\mathcal{M})$ has been of interest since the appearance of [2]. Recent progress was made in [8], where it was proved that if \mathcal{M}, \mathcal{N} are countable, arithmetically saturated models of PA and $\operatorname{Aut}(\mathcal{M}) \cong \operatorname{Aut}(\mathcal{N})$, then $\operatorname{Th}(\mathcal{M})^{\prime} \equiv_{T} \operatorname{Th}(\mathcal{N})^{\prime}$. (As usual, X^{\prime} is the Turing-jump of X and \equiv_{T} is Turingequivalence.) The following theorem affirmatively answers Question 5.8 in [8].

Theorem There are infinitely many completions $T_{0}, T_{1}, T_{2}, \ldots$ of PA such that whenever $i<j<\omega$, then
(1) $T_{i} \equiv{ }_{T} T_{j}$,
(2) $\operatorname{Aut}\left(\mathcal{M}_{i}\right) \not \equiv \operatorname{Aut}\left(\mathcal{M}_{j}\right)$ for all countable, arithmetically saturated $\mathcal{M}_{i} \models T_{i}$ and $\mathcal{M}_{j} \vDash T_{j}$.

From Nurkhaidarov [5], one can get 4 completions $T_{0}, T_{1}, T_{2}, T_{3}$ of PA such that (2) of the theorem holds whenever $i<j<4$ and (1) holds whenever $1 \leq i<j<4$, with $T_{0}=$ TA. With some more effort, one can get (1) to hold whenever $i<j<4$. This result was improved in [8, Theorem 6], where the number 4 was increased to any finite n. It was then asked in [8, Question 5.8] if there are infinitely many such completions. The theorem confirms that there are.

It should be remarked that for any countably many completions $T_{0}, T_{1}, T_{2}, \ldots$ of PA, there are (many) countable, arithmetically saturated models $\mathcal{M}_{i} \models T_{i}$ for which $\operatorname{SSy}\left(\mathcal{M}_{i}\right)=\operatorname{SSy}\left(\mathcal{M}_{j}\right)$ whenever $i<j<\omega$.

The proof of the Theorem is much more in the style of [5] than [8, Theorem 6]. In the next two lemmas, we give a quick overview of Nurkhaidarov's proof.

Let $\mathbb{N}=(\omega,+, \times, 0,1, \leq)$ be the standard model of PA and let $\mathrm{TA}=\mathrm{Th}(\mathbb{N})$. For $n, k<\omega$, we let RT_{k}^{n} be infinite Ramsey's Theorem for n-sets and k colors as formalized in second-order arithmetic. Nurkhaidarov [5, Theorem 3.8] proved the following lemma.

Lemma 1 If $2 \leq n<\omega$ and \mathcal{M}, \mathcal{N} are countable, arithmetically saturated models of PA such that $\operatorname{Aut}(\mathcal{M}) \cong \operatorname{Aut}(\mathcal{N})$, then

$$
(\mathbb{N}, \operatorname{Rep}(\operatorname{Th}(\mathcal{M}))) \models \mathrm{RT}_{2}^{n} \quad \text { iff } \quad(\mathbb{N}, \operatorname{Rep}(\operatorname{Th}(\mathcal{N}))) \models \mathrm{RT}_{2}^{n}
$$

To get the four theories, Nurkhaidarov [5] made use of the existence of countable Scott sets $\mathfrak{X}_{1}, \mathfrak{X}_{2}$, and \mathfrak{X}_{3} such that $\left(\mathbb{N}, \mathfrak{X}_{1}\right) \models \neg \mathrm{R} T_{2}^{2},\left(\mathbb{N}, \mathfrak{X}_{2}\right) \models \mathrm{RT}_{2}^{2}+\neg \mathrm{R} T_{2}^{3}$, and $\left(\mathbb{N}, \mathfrak{X}_{3}\right) \models \mathrm{RT}_{2}^{3}$, obtaining distinct completions $T_{0}, T_{1}, T_{2}, T_{3}$ such that $T_{0}=\mathrm{TA}$ and $\operatorname{Rep}\left(T_{i}\right)=\mathfrak{X}_{i}$ for $i \in\{1,2,3\}$. To get that $T_{1} \equiv_{T} T_{2} \equiv_{T} T_{3}$, we use the following lemma, which is an immediate consequence of Marker [4, Theorem 1.27] and also of a theorem (see [8, Theorem 1.2]) due to Knight and Marker.

Lemma 2 If $\mathfrak{X}_{0}, \mathfrak{X}_{1}, \mathfrak{X}_{2}, \ldots$ are countably many countable Scott sets, then there are distinct completions $T_{0}, T_{1}, T_{2}, \ldots$ of PA such that whenever $i<j<\omega$, then $T_{i} \equiv{ }_{T} T_{j}$ and $\operatorname{Rep}\left(T_{i}\right)=\mathfrak{X}_{i}$.

The proof of the Theorem makes essential use of a result of Patey [7, Theorem 4.14] as a replacement for Ramsey's Theorem in Lemma 1. If $n<\omega$ and X is a subset of an ordered set (such as ω or some M where \mathcal{M} is a model of PA), then $[X]^{n}$ is the set of all strictly increasing n-tuples from X. Let TS_{k}^{n} be the Thin Set Theorem for n-sets and k colors, which asserts the following: for any function $f:[\omega]^{n} \longrightarrow k$, there is an infinite set $X \subseteq \omega$ such that $\left|\left\{f(x): x \in[X]^{n}\right\}\right|<k$. In particular, $\mathrm{TS}_{2}^{n}=\mathrm{RT}_{2}^{n}$. Also, notice that $\mathrm{RCA}_{0} \vdash \mathrm{TS}_{k}^{n} \rightarrow \mathrm{TS}_{k+1}^{n}$. Patey [7] proved that whenever $2 \leq k<\omega$, there is a countable Scott set \mathfrak{X}_{k} such that $\left(\mathbb{N}, \mathfrak{X}_{k}\right) \models \mathrm{TS}_{k+1}^{2}+\neg \mathrm{TS}_{k}^{2}$. Thus, with Lemma 2 available, it suffices to prove the following generalization of Lemma 1 .

Lemma 3 If $2 \leq k, n<\omega$ and \mathcal{M}, \mathcal{N} are countable, arithmetically saturated models of PA such that $\operatorname{Aut}(\mathcal{M}) \cong \operatorname{Aut}(\mathcal{N})$, then

$$
(\mathbb{N}, \operatorname{Rep}(\operatorname{Th}(\mathcal{M}))) \models \mathrm{TS}_{k}^{n} \quad \text { iff } \quad(\mathbb{N}, \operatorname{Rep}(\operatorname{Th}(\mathcal{N}))) \models \mathrm{TS}_{k}^{n} .
$$

Proof We will freely use terminology from [8]. For example, if $G \leq \operatorname{Aut}(\mathcal{K})$ and $a \in K$, then $G_{(a)}$ is the stabilizer of a in G. A basic open subgroup of $\operatorname{Aut}(\mathcal{K})$ is one having the form $\operatorname{Aut}(\mathcal{K})_{(a)}$. Let \mathcal{M}, \mathcal{N} be countable, arithmetically saturated models of PA, and let $\alpha: \operatorname{Aut}(\mathcal{M}) \longrightarrow \operatorname{Aut}(\mathcal{N})$ be an isomorphism. Recall (from [8, Section 4] or [6, Corollary 3.14]) that basic open subgroups are recognizable. This means, in particular, that if $a \in M$ and $H=\operatorname{Aut}(\mathcal{M})_{(a)}$, then there is $b \in N$ such that $\alpha[H]=\operatorname{Aut}(\mathcal{N})_{(b)}$.

Suppose that \mathcal{K} is any countable, arithmetically saturated model of PA, and let $G=\operatorname{Aut}(\mathcal{K})$. We will say that a basic open subgroup $H<G$ is maximal if whenever $a \in K$ is such that $H \leq G_{(a)}<G$, then $H=G_{(a)}$. We let $\Omega_{\omega}(\mathcal{K})$ (or simply Ω_{ω} when no confusion is likely) be the smallest interstice of \mathcal{K}; that is, Ω_{ω} is the set of nonstandard elements that are less than all the definable nonstandard elements of \mathcal{K}. The arithmetic saturation of \mathcal{K} implies that $\Omega_{\omega} \neq \varnothing$. We now define a subgroup $H<G$ to be (n, k)-Ramsey, where $2 \leq k, n<\omega$, if each of the following holds.
(1) H is a maximal basic open subgroup.
(2) $H=G_{(a)}$ for some $a \in \Omega_{\omega}$.
(3) Suppose that $H_{i, j}$ are conjugates of H, for $i<n$ and $j<k$, such that $H_{0, j}, H_{1, j}, \ldots, H_{n-1, j}$ are pairwise distinct for each $j<k$. Then there are $r<s<k$, a permutation $\pi: n \longrightarrow n$, and $h \in G$ such that $h H_{i, r} h^{-1}=H_{\pi(i), s}$ for each $i<n$.
As already noted, those subgroups H satisfying (1) are recognizable. It is obvious that those subgroups $H \leq G$ satisfying (3) are recognizable. We next will prove that (n, k)-Ramsey subgroups are recognizable by showing that those subgroups $H \leq G$ satisfying (2) are recognizable. A cut I of \mathcal{K} is an icut if $I<\Omega_{\omega} \cup \omega$ and it is closed under all \varnothing-definable functions $f: K \longrightarrow K$ such that $f(x)<\omega$ whenever $x<\omega$. A set $\gamma \subseteq K$ is an igap if there is $a \in \Omega_{\omega}$ such that if $I \subseteq K$ is the largest icut for which $a \notin I$ and $J \subseteq K$ is the smallest icut for which $a \in J$, then $\gamma=J \backslash I$. It follows from [8, Lemma 4.4(d)] that setwise stabilizers of igaps are recognizable. But a consequence of Bamber and Kotlarski [1, Theorem 3.8] is that a subgroup $H \leq G$ satisfies (2) iff it is the setwise stabilizer of an igap.

Hence, (n, k)-Ramsey subgroups are recognizable, so, to complete the proof, we need only prove the following:
$(*)$ For a countable, arithmetically saturated $\mathcal{K} \models \mathrm{PA}$, $\operatorname{Aut}(\mathcal{K})$ has an (n, k) Ramsey subgroup iff $(\mathbb{N}, \operatorname{Rep}(\operatorname{Th}(\mathcal{K}))) \models \mathrm{TS}_{k}^{n}$.
Let $T=\operatorname{Th}(\mathcal{K})$ and $G=\operatorname{Aut}(\mathcal{K})$.
(\Longrightarrow) : Let $f:[\omega]^{n} \longrightarrow k$ be a function in $\operatorname{Rep}(T)$. We want an infinite $X \in \operatorname{Rep}(T)$ such that $\left|\left\{f(x): x \in[X]^{n}\right\}\right|<k$.

Let $H<G$ be (n, k)-Ramsey, and let $a \in \Omega_{\omega}$ be such that $H=G_{(a)}$. Whenever $B \subseteq K$ is \varnothing-definable and $a \in B$, then $B \cap \omega$ is an infinite set in $\operatorname{Rep}(T)$. We now claim that there is a \varnothing-definable $D \subseteq K$ such that $a \in D$ and $\left|\left\{f(x): x \in[\omega \cap D]^{n}\right\}\right|<k$. For, if not, then by recursive saturation, for each $j<k$, there are $b_{0, j}<b_{1, j}<\cdots<b_{n-1, j}$ such that $\operatorname{tp}\left(b_{0, j}\right)=\operatorname{tp}\left(b_{1, j}\right)=\cdots=\operatorname{tp}\left(b_{n-1, j}\right)=\operatorname{tp}(a)$ and $\hat{f}\left(b_{0, j}, b_{1, j}, \ldots, b_{n-1, j}\right)=j$, where \hat{f} is the definitional extension of f to all of $[K]^{n}$. Then $H_{i, j}=G_{\left(b_{i, j}\right)}$ is a counterexample to (3).
(\Longleftarrow) : Suppose that $(\mathbb{N}, \operatorname{Rep}(T)) \models \mathrm{TS}_{k}^{n}$. We next construct a complete type. Let $\left\langle\varphi_{m}(\bar{x}, y): m<\omega\right\rangle$ be a computable sequence of $\mathscr{L}_{\mathrm{PA}}$-formulas that define all the \varnothing-definable functions from K^{n} into K and nothing else. Let $\left\langle\psi_{m}(x, y): m<\omega\right\rangle$ be a computable sequence of $\mathscr{L}_{\mathrm{PA}}$-formulas that define all the \varnothing-definable functions from K into K and nothing else. (These two sequences can be obtained independently of T.) Let f_{m} be the function defined by $\varphi_{m}(\bar{x}, y)$, and let g_{m} be the function defined by $\psi_{m}(x, y)$. We obtain a T-arithmetic sequence $\left\langle\theta_{m}(x): m<\omega\right\rangle$ of
$\mathscr{L}_{\text {PA }}$-formulas such that the following hold for all $m<\omega$, where we let X_{m} be the set defined by $\bigwedge_{\ell<m} \theta_{\ell}(x)$ (so that $K=X_{0} \supseteq X_{1} \supseteq X_{2} \supseteq \cdots$).
(4) The set $X_{m} \cap \omega$ is infinite.
(5) $\left|\left\{f_{m}(\bar{x}): \bar{x} \in\left[X_{m+1}\right]^{n}\right\}\right|<k$.
(6) $g_{m} \upharpoonright X_{m+1}$ is either constant or injective.

We can obtain such a sequence $\left\langle\theta_{m}(x): m<\omega\right\rangle$ by recursion as follows. Let $X_{0}=K$. Now suppose that we have X_{m} and that $X_{m} \cap \omega$ is infinite and $X_{m} \cap \omega \in \operatorname{Rep}(T)$. The function $f_{m} \upharpoonright\left[X_{m}\right]^{n}$ is also in $\operatorname{Rep}(T)$; therefore, since $(\mathbb{N}, \operatorname{Rep}(T)) \models \mathrm{TS}_{k}^{n}$, there is an infinite $Y \in \operatorname{Rep}(T)$ such that $Y \subseteq X_{m}$ and $\left|\left\{f_{m}(\bar{x}): \bar{x} \in[Y]^{n}\right\}\right|<k$. Then there is an infinite $Z \in \operatorname{Rep}(T)$ such that $Z \subseteq Y$ and $g_{m} \upharpoonright Z$ is either constant or injective. Let $\theta(x)$ be an $\mathscr{L}_{\mathrm{PA}}$-formula that defines a set $X \subseteq X_{m}$ such that $Z=X \cap \omega$. Let $a \in K \cup\{\infty\}$ be the greatest such that $g_{m} \upharpoonright\{x \in X: x<a\}$ is constant or injective and that $\left|\left\{f_{m}(\bar{x}): \bar{x} \in[\{x \in X: x<a\}]^{n}\right\}\right|<k$, and then let $\theta_{m+1}(x)=\theta(x) \wedge x<a$. Note that a is nonstandard and definable in \mathcal{K}. Thus, $X_{m+1} \cap \omega$ is infinite and $X_{m+1} \cap \omega \in \operatorname{Rep}(T)$.

One easily checks that the $\theta_{m}(x)$'s satisfy (4)-(6). The set $\left\{\theta_{m}(x): m<\omega\right\}$ determines a complete type of T. To see why it does, consider a \varnothing-definable $D \subseteq K$. Let $m<\omega$ be such that g_{m} is the characteristic function of D. Then, since X_{m+1} is infinite, (6) implies that g_{m} is either constantly 0 or constantly 1 on X_{m+1}. Thus, either $D \supseteq X_{m+1}$ or $K \backslash D \supseteq X_{m+1}$.

We have yet to say anything about the effectiveness of the construction of this sequence, but it should be clear that it can be obtained by a construction that is arithmetic in T, so we assume that that is the case. Now, by the arithmetic saturation of \mathcal{K}, there is $a \in \bigcap\left\{X_{m}: m<\omega\right\}$. (In fact, a is unique up to automorphic images.) Clearly, $a \in \Omega_{\omega}$. Let $p(x)=\operatorname{tp}(a)$.

We claim that there are at most $k-1 n$-types $q\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)$ such that the formula $x_{0}<x_{1}<\cdots<x_{n-1}$ is in $q(\bar{x})$ and $p\left(x_{i}\right) \subseteq q(\bar{x})$ for all $i<n$. For, suppose that $q_{0}(\bar{x}), q_{1}(\bar{x}), \ldots, q_{k-1}(\bar{x})$ form a counterexample. Let $\alpha_{0}(\bar{x}), \alpha_{1}(\bar{x}), \ldots, \alpha_{k-1}(\bar{x})$ be pairwise contradictory formulas such that $\alpha_{j}(\bar{x}) \in q_{j}(\bar{x})$ for $j<k$. Let $m<\omega$ be such that $f_{m}(\bar{b})=j$ whenever $\mathcal{K} \vDash \alpha_{j}(\bar{b})$. Let $j<k$ be such $f_{m}(\bar{x}) \neq j$ whenever $\bar{x} \in\left[X_{m+1}\right]^{n}$. But then it cannot be that $p\left(x_{i}\right) \subseteq q_{j}(\bar{x})$ for all $i<n$. This contradiction proves the claim.

Now let $H=G_{(a)}$. We show that H is (n, k)-Ramsey.
(1) By definition, H is a basic open subgroup. Since a is not definable, $H \neq G$. Although the argument that H is maximal basic open is well known, we include it. Suppose that $H \leq G_{(b)}<G$. Then there is an $m<\omega$ such that $g_{m}(a)=b$. Then $g_{m} \upharpoonright X_{m+1}$ is either constant or injective. If $g_{m} \upharpoonright X_{m+1}$ were constant, then b would be definable so that $G_{(b)}=G$. Hence, $g_{m} \upharpoonright X_{m+1}$ is injective, so there is $\ell<\omega$ such that such that $g_{\ell} g_{m}(x)=x$ for all $x \in X_{m+1}$. Therefore, $g_{\ell}(b)=a$. Hence, $G_{(b)} \leq G_{(a)}=H$.
(2) This is obvious as $a \in \Omega_{\omega}$.
(3) Suppose that the $H_{i, j}$'s are as given in (3). Let $h_{i, j} \in G$ be such that $H_{i, j}=h_{i, j} H h_{i, j}^{-1}$. Let $a_{i, j}=h_{i, j}(a)$, so that $H_{i, j}=G_{\left(a_{i, j}\right)}$. Since, for each $j<k$, the subgroups $H_{0, j}, H_{1, j}, \ldots, H_{n-1, j}$ are pairwise distinct, it must be that
$a_{0, j}, a_{1, j}, \ldots, a_{n-1, j}$ are pairwise distinct. Without loss of generality, assume that $a_{0, j}<a_{1, j}<\cdots<a_{n-1, j}$, and let $\bar{a}_{j}=\left\langle a_{0, j}, a_{1, j}, \ldots, a_{n-1, j}\right\rangle$.

By the claim proved earlier, there are $r<s<k$ such that $\operatorname{tp}\left(\bar{a}_{r}\right)=\operatorname{tp}\left(\bar{a}_{s}\right)$. By the homogeneity of \mathcal{K}, there is $h \in G$ such that $h\left(a_{i, r}\right)=a_{i, s}$ for all $i<n$. Then, $h H_{i, r} h^{-1}=H_{i, s}$ for each $i<n$.

We end with two corollaries of the Theorem. The first is from the abstract.
Corollary 4 There is an infinite set \mathcal{T} of Turing-equivalent completions of PA such that whenever \mathcal{M} and \mathcal{N} are nonisomorphic countable, arithmetically saturated models and $\operatorname{Th}(\mathcal{M}), \operatorname{Th}(\mathcal{N}) \in \mathcal{T}$, then $\operatorname{Aut}(\mathcal{M}) \nRightarrow \operatorname{Aut}(\mathcal{N})$.

Proof Let $\mathcal{T}=\left\{T_{0}, T_{1}, T_{2}, \ldots\right\}$, where the T_{i} 's are as in the Theorem. Let $\mathcal{M} \vDash T_{i}$ and $\mathcal{N} \vDash T_{j}$ be nonisomorphic countable, arithmetically saturated models. If $i \neq j$, then the Theorem implies that $\operatorname{Aut}(\mathcal{M}) \not \equiv \operatorname{Aut}(\mathcal{N})$. However, if $i=j$, then necessarily $\operatorname{SSy}(\mathcal{M}) \neq \operatorname{SSy}(\mathcal{N}), \operatorname{so} \operatorname{Aut}(\mathcal{M}) \nsubseteq \operatorname{Aut}(\mathcal{N})$ by [3].

The next corollary improves [8, Theorem 6.3].
Corollary 5 There are infinitely many completions $T_{0}, T_{1}, T_{2}, \ldots$ of PA such that whenever $i<j<\omega$, then
(1) $T_{i} \equiv{ }_{T} T_{j}$,
(2) $\operatorname{Aut}\left(\mathcal{M}_{i}\right) \not \models \operatorname{Aut}\left(\mathcal{M}_{j}\right)$ for all saturated $\mathcal{M}_{i} \models T_{i}$ and $\mathcal{M}_{j} \models T_{j}$.

Proof Let $T_{0}, T_{1}, T_{2}, \ldots$ be as in the Theorem, so that (1) holds. For (2), suppose that $\mathcal{M}_{i} \models T_{i}$ and $\mathcal{M}_{j} \models T_{j}$ are saturated. Let $\mathcal{N}_{i} \prec \mathcal{M}_{i}$ and $\mathcal{N}_{j} \prec \mathcal{M}_{j}$ be minimal arithmetically saturated. Then, $\operatorname{Aut}\left(\mathcal{N}_{i}\right) \nsubseteq \operatorname{Aut}\left(\mathcal{N}_{j}\right)$ by the Theorem. Then [8, Lemma 6.4] implies that $\operatorname{Aut}\left(\mathcal{M}_{i}\right) \not \neq \operatorname{Aut}\left(\mathcal{M}_{j}\right)$.

References

[1] Bamber, N., and H. Kotlarski, "On interstices of countable arithmetically saturated models of Peano arithmetic," Mathematical Logic Quarterly, vol. 43 (1997), pp. 525-40. Zbl 0884.03042. MR 1477620. DOI 10.1002/malq.19970430408. 493
[2] Kaye, R., R. Kossak, and H. Kotlarski, "Automorphisms of recursively saturated models of arithmetic," Annals of Pure and Applied Logic, vol. 55 (1991), pp. 67-99. Zbl 0748.03023. MR 1134917. DOI 10.1016/0168-0072(91)90098-7. 491
[3] Kossak, R., and J. H. Schmerl, "The automorphism group of an arithmetically saturated model of Peano arithmetic," Journal of the London Mathematical Society (2), vol. 52 (1995), pp. 235-44. Zbl 0905.03024. MR 1356139. DOI 10.1112/jlms/52.2.235. 495
[4] Marker, D. E., "Degrees coding models of arithmetic," Ph.D. dissertation, Yale University, New Haven, Conn., 1983. MR 2633115. 492
[5] Nurkhaidarov, E. S., "Automorphism groups of arithmetically saturated models," Journal of Symbolic Logic, vol. 71 (2006), pp. 203-16. Zbl 1101.03030. MR 2210062. DOI 10.2178/jsl/1140641169. 491, 492
[6] Nurkhaidarov, E. S., and J. H. Schmerl, "Automorphism groups of saturated models of Peano arithmetic," Journal of Symbolic Logic, vol. 79 (2014), pp. 561-84. Zbl 1337.03052. MR 3224980. DOI 10.1017/jsl.2013.15. 492
[7] Patey, L., "The weakness of being cohesive, thin or free in reverse mathematics," Israel Journal of Mathematics, vol. 216 (2016), pp. 905-55. Zbl 1368.03018. MR 3557471. DOI 10.1007/s11856-016-1433-3. 492
[8] Schmerl, J. H., "Automorphism groups of countable arithmetically saturated models of Peano arithmetic," Journal of Symbolic Logic, vol. 80 (2015), pp. 1411-34. Zbl 1368.03042. MR 3436376. DOI 10.1017/jsl.2015.1. 491, 492, 493, 495

Department of Mathematics
University of Connecticut
Storrs, Connecticut USA
james.schmerl@uconn.edu

