More Automorphism Groups of Countable, Arithmetically Saturated Models of Peano Arithmetic

James H. Schmerl

Abstract There is an infinite set \mathcal{T} of Turing-equivalent completions of Peano Arithmetic (PA) such that whenever \mathcal{M} and \mathcal{N} are nonisomorphic countable, arithmetically saturated models of PA and Th(\mathcal{M}), Th(\mathcal{N}) $\in \mathcal{T}$, then Aut(\mathcal{M}) \ncong Aut(\mathcal{N}).

Investigating the extent to which (the isomorphism type of) a countable, recursively saturated model \mathcal{M} of Peano Arithmetic (PA) is determined by (the isomorphism type of) its automorphism group Aut(\mathcal{M}) has been of interest since the appearance of [2]. Recent progress was made in [8], where it was proved that if \mathcal{M} , \mathcal{N} are countable, arithmetically saturated models of PA and Aut(\mathcal{M}) \cong Aut(\mathcal{N}), then Th(\mathcal{M})' \equiv_T Th(\mathcal{N})'. (As usual, X' is the Turing-jump of X and \equiv_T is Turing-equivalence.) The following theorem affirmatively answers Question 5.8 in [8].

Theorem There are infinitely many completions $T_0, T_1, T_2, ...$ of PA such that whenever $i < j < \omega$, then

- (1) $T_i \equiv_T T_j$,
- (2) Aut $(\mathcal{M}_i) \not\cong$ Aut (\mathcal{M}_j) for all countable, arithmetically saturated $\mathcal{M}_i \models T_i$ and $\mathcal{M}_j \models T_j$.

From Nurkhaidarov [5], one can get 4 completions T_0 , T_1 , T_2 , T_3 of PA such that (2) of the theorem holds whenever i < j < 4 and (1) holds whenever $1 \le i < j < 4$, with $T_0 = TA$. With some more effort, one can get (1) to hold whenever i < j < 4. This result was improved in [8, Theorem 6], where the number 4 was increased to any finite *n*. It was then asked in [8, Question 5.8] if there are infinitely many such completions. The theorem confirms that there are.

Received December 24, 2015; accepted May 9, 2016 First published online October 2, 2018

2010 Mathematics Subject Classification: Primary 03H15; Secondary 03C62 Keywords: Peano Arithmetic, Thin Set Theorem, automorphisms, arithmetic saturation © 2018 by University of Notre Dame 10.1215/00294527-2018-0009 It should be remarked that for any countably many completions $T_0, T_1, T_2, ...$ of PA, there are (many) countable, arithmetically saturated models $\mathcal{M}_i \models T_i$ for which $SSy(\mathcal{M}_i) = SSy(\mathcal{M}_j)$ whenever $i < j < \omega$.

The proof of the Theorem is much more in the style of [5] than [8, Theorem 6]. In the next two lemmas, we give a quick overview of Nurkhaidarov's proof.

Let $\mathbb{N} = (\omega, +, \times, 0, 1, \leq)$ be the standard model of PA and let TA = Th(\mathbb{N}). For $n, k < \omega$, we let $\mathbb{R}T_k^n$ be infinite Ramsey's Theorem for *n*-sets and *k* colors as formalized in second-order arithmetic. Nurkhaidarov [5, Theorem 3.8] proved the following lemma.

Lemma 1 If $2 \le n < \omega$ and \mathcal{M} , \mathcal{N} are countable, arithmetically saturated models of PA such that $Aut(\mathcal{M}) \cong Aut(\mathcal{N})$, then

$$(\mathbb{N}, \operatorname{Rep}(\operatorname{Th}(\mathcal{M}))) \models \operatorname{RT}_2^n$$
 iff $(\mathbb{N}, \operatorname{Rep}(\operatorname{Th}(\mathcal{N}))) \models \operatorname{RT}_2^n$.

To get the four theories, Nurkhaidarov [5] made use of the existence of countable Scott sets $\mathfrak{X}_1, \mathfrak{X}_2$, and \mathfrak{X}_3 such that $(\mathbb{N}, \mathfrak{X}_1) \models \neg \mathbb{RT}_2^2$, $(\mathbb{N}, \mathfrak{X}_2) \models \mathbb{RT}_2^2 + \neg \mathbb{RT}_2^3$, and $(\mathbb{N}, \mathfrak{X}_3) \models \mathbb{RT}_2^3$, obtaining distinct completions T_0, T_1, T_2, T_3 such that $T_0 = \mathsf{TA}$ and $\operatorname{Rep}(T_i) = \mathfrak{X}_i$ for $i \in \{1, 2, 3\}$. To get that $T_1 \equiv_T T_2 \equiv_T T_3$, we use the following lemma, which is an immediate consequence of Marker [4, Theorem 1.27] and also of a theorem (see [8, Theorem 1.2]) due to Knight and Marker.

Lemma 2 If $\mathfrak{X}_0, \mathfrak{X}_1, \mathfrak{X}_2, \ldots$ are countably many countable Scott sets, then there are distinct completions T_0, T_1, T_2, \ldots of PA such that whenever $i < j < \omega$, then $T_i \equiv_T T_j$ and $\operatorname{Rep}(T_i) = \mathfrak{X}_i$.

The proof of the Theorem makes essential use of a result of Patey [7, Theorem 4.14] as a replacement for Ramsey's Theorem in Lemma 1. If $n < \omega$ and X is a subset of an ordered set (such as ω or some M where M is a model of PA), then $[X]^n$ is the set of all strictly increasing *n*-tuples from X. Let TS_k^n be the Thin Set Theorem for *n*-sets and k colors, which asserts the following: for any function $f : [\omega]^n \longrightarrow k$, there is an infinite set $X \subseteq \omega$ such that $|\{f(x) : x \in [X]^n\}| < k$. In particular, $\mathsf{TS}_2^n = \mathsf{RT}_2^n$. Also, notice that $\mathsf{RCA}_0 \vdash \mathsf{TS}_k^n \longrightarrow \mathsf{TS}_{k+1}^n$. Patey [7] proved that whenever $2 \le k < \omega$, there is a countable Scott set \mathfrak{X}_k such that $(\mathbb{N}, \mathfrak{X}_k) \models \mathsf{TS}_{k+1}^2 + \neg \mathsf{TS}_k^2$. Thus, with Lemma 2 available, it suffices to prove the following generalization of Lemma 1.

Lemma 3 If $2 \le k, n < \omega$ and \mathcal{M} , \mathcal{N} are countable, arithmetically saturated models of PA such that $Aut(\mathcal{M}) \cong Aut(\mathcal{N})$, then

$$(\mathbb{N}, \operatorname{Rep}(\operatorname{Th}(\mathcal{M}))) \models \mathsf{TS}_k^n \quad iff \quad (\mathbb{N}, \operatorname{Rep}(\operatorname{Th}(\mathcal{N}))) \models \mathsf{TS}_k^n.$$

Proof We will freely use terminology from [8]. For example, if $G \leq \operatorname{Aut}(\mathcal{K})$ and $a \in K$, then $G_{(a)}$ is the stabilizer of a in G. A basic open subgroup of $\operatorname{Aut}(\mathcal{K})$ is one having the form $\operatorname{Aut}(\mathcal{K})_{(a)}$. Let \mathcal{M} , \mathcal{N} be countable, arithmetically saturated models of PA, and let α : $\operatorname{Aut}(\mathcal{M}) \longrightarrow \operatorname{Aut}(\mathcal{N})$ be an isomorphism. Recall (from [8, Section 4] or [6, Corollary 3.14]) that basic open subgroups are recognizable. This means, in particular, that if $a \in M$ and $H = \operatorname{Aut}(\mathcal{M})_{(a)}$, then there is $b \in N$ such that $\alpha[H] = \operatorname{Aut}(\mathcal{N})_{(b)}$.

492

Suppose that \mathcal{K} is any countable, arithmetically saturated model of PA, and let $G = \operatorname{Aut}(\mathcal{K})$. We will say that a basic open subgroup H < G is maximal if whenever $a \in K$ is such that $H \leq G_{(a)} < G$, then $H = G_{(a)}$. We let $\Omega_{\omega}(\mathcal{K})$ (or simply Ω_{ω} when no confusion is likely) be the smallest interstice of \mathcal{K} ; that is, Ω_{ω} is the set of nonstandard elements that are less than all the definable nonstandard elements of \mathcal{K} . The arithmetic saturation of \mathcal{K} implies that $\Omega_{\omega} \neq \emptyset$. We now define a subgroup H < G to be (n, k)-Ramsey, where $2 \leq k, n < \omega$, if each of the following holds.

- (1) H is a maximal basic open subgroup.
- (2) $H = G_{(a)}$ for some $a \in \Omega_{\omega}$.
- (3) Suppose that $H_{i,j}$ are conjugates of H, for i < n and j < k, such that $H_{0,j}, H_{1,j}, \ldots, H_{n-1,j}$ are pairwise distinct for each j < k. Then there are r < s < k, a permutation $\pi : n \longrightarrow n$, and $h \in G$ such that $hH_{i,r}h^{-1} = H_{\pi(i),s}$ for each i < n.

As already noted, those subgroups H satisfying (1) are recognizable. It is obvious that those subgroups $H \leq G$ satisfying (3) are recognizable. We next will prove that (n, k)-Ramsey subgroups are recognizable by showing that those subgroups $H \leq G$ satisfying (2) are recognizable. A cut I of \mathcal{K} is an *icut* if $I < \Omega_{\omega} \cup \omega$ and it is closed under all \emptyset -definable functions $f : K \longrightarrow K$ such that $f(x) < \omega$ whenever $x < \omega$. A set $\gamma \subseteq K$ is an *igap* if there is $a \in \Omega_{\omega}$ such that if $I \subseteq K$ is the largest icut for which $a \notin I$ and $J \subseteq K$ is the smallest icut for which $a \in J$, then $\gamma = J \setminus I$. It follows from [8, Lemma 4.4(d)] that setwise stabilizers of igaps are recognizable. But a consequence of Bamber and Kotlarski [1, Theorem 3.8] is that a subgroup $H \leq G$ satisfies (2) iff it is the setwise stabilizer of an igap.

Hence, (n, k)-Ramsey subgroups are recognizable, so, to complete the proof, we need only prove the following:

(*) For a countable, arithmetically saturated $\mathcal{K} \models \mathsf{PA}$, $\mathsf{Aut}(\mathcal{K})$ has an (n,k)-Ramsey subgroup iff $(\mathbb{N}, \mathsf{Rep}(\mathsf{Th}(\mathcal{K}))) \models \mathsf{TS}_k^n$.

Let $T = \text{Th}(\mathcal{K})$ and $G = \text{Aut}(\mathcal{K})$.

 (\Longrightarrow) : Let $f : [\omega]^n \to k$ be a function in $\operatorname{Rep}(T)$. We want an infinite $X \in \operatorname{Rep}(T)$ such that $|\{f(x) : x \in [X]^n\}| < k$.

Let H < G be (n,k)-Ramsey, and let $a \in \Omega_{\omega}$ be such that $H = G_{(a)}$. Whenever $B \subseteq K$ is \emptyset -definable and $a \in B$, then $B \cap \omega$ is an infinite set in Rep(T). We now claim that there is a \emptyset -definable $D \subseteq K$ such that $a \in D$ and $|\{f(x) : x \in [\omega \cap D]^n\}| < k$. For, if not, then by recursive saturation, for each j < k, there are $b_{0,j} < b_{1,j} < \cdots < b_{n-1,j}$ such that $\operatorname{tp}(b_{0,j}) = \operatorname{tp}(b_{1,j}) = \cdots = \operatorname{tp}(b_{n-1,j}) = \operatorname{tp}(a)$ and $\widehat{f}(b_{0,j}, b_{1,j}, \dots, b_{n-1,j}) = j$, where \widehat{f} is the definitional extension of f to all of $[K]^n$. Then $H_{i,j} = G_{(b_{i,j})}$ is a counterexample to (3).

 (\Leftarrow) : Suppose that $(\mathbb{N}, \operatorname{Rep}(T)) \models \operatorname{TS}_k^n$. We next construct a complete type. Let $\langle \varphi_m(\overline{x}, y) : m < \omega \rangle$ be a computable sequence of $\mathcal{L}_{\mathsf{PA}}$ -formulas that define all the \emptyset -definable functions from K^n into K and nothing else. Let $\langle \psi_m(x, y) : m < \omega \rangle$ be a computable sequence of $\mathcal{L}_{\mathsf{PA}}$ -formulas that define all the \emptyset -definable functions from K into K and nothing else. (These two sequences can be obtained independently of T.) Let f_m be the function defined by $\varphi_m(\overline{x}, y)$, and let g_m be the function defined by $\psi_m(x, y)$. We obtain a T-arithmetic sequence $\langle \theta_m(x) : m < \omega \rangle$ of

 $\mathcal{L}_{\mathsf{PA}}$ -formulas such that the following hold for all $m < \omega$, where we let X_m be the set defined by $\bigwedge_{\ell < m} \theta_{\ell}(x)$ (so that $K = X_0 \supseteq X_1 \supseteq X_2 \supseteq \cdots$).

- (4) The set $X_m \cap \omega$ is infinite.
- (5) $|\{f_m(\overline{x}) : \overline{x} \in [X_{m+1}]^n\}| < k.$
- (6) $g_m \upharpoonright X_{m+1}$ is either constant or injective.

We can obtain such a sequence $\langle \theta_m(x) : m < \omega \rangle$ by recursion as follows. Let $X_0 = K$. Now suppose that we have X_m and that $X_m \cap \omega$ is infinite and $X_m \cap \omega \in \operatorname{Rep}(T)$. The function $f_m \upharpoonright [X_m]^n$ is also in $\operatorname{Rep}(T)$; therefore, since $(\mathbb{N}, \operatorname{Rep}(T)) \models \operatorname{TS}_k^n$, there is an infinite $Y \in \operatorname{Rep}(T)$ such that $Y \subseteq X_m$ and $|\{f_m(\overline{x}) : \overline{x} \in [Y]^n\}| < k$. Then there is an infinite $Z \in \operatorname{Rep}(T)$ such that $Z \subseteq Y$ and $g_m \upharpoonright Z$ is either constant or injective. Let $\theta(x)$ be an \mathcal{L}_{PA} -formula that defines a set $X \subseteq X_m$ such that $Z = X \cap \omega$. Let $a \in K \cup \{\infty\}$ be the greatest such that $g_m \upharpoonright \{x \in X : x < a\}$ is constant or injective and that $|\{f_m(\overline{x}) : \overline{x} \in [\{x \in X : x < a\}]^n\}| < k$, and then let $\theta_{m+1}(x) = \theta(x) \land x < a$. Note that a is nonstandard and definable in \mathcal{K} . Thus, $X_{m+1} \cap \omega$ is infinite and $X_{m+1} \cap \omega \in \operatorname{Rep}(T)$.

One easily checks that the $\theta_m(x)$'s satisfy (4)–(6). The set $\{\theta_m(x) : m < \omega\}$ determines a complete type of T. To see why it does, consider a \emptyset -definable $D \subseteq K$. Let $m < \omega$ be such that g_m is the characteristic function of D. Then, since X_{m+1} is infinite, (6) implies that g_m is either constantly 0 or constantly 1 on X_{m+1} . Thus, either $D \supseteq X_{m+1}$ or $K \setminus D \supseteq X_{m+1}$.

We have yet to say anything about the effectiveness of the construction of this sequence, but it should be clear that it can be obtained by a construction that is arithmetic in *T*, so we assume that that is the case. Now, by the arithmetic saturation of \mathcal{K} , there is $a \in \bigcap \{X_m : m < \omega\}$. (In fact, *a* is unique up to automorphic images.) Clearly, $a \in \Omega_{\omega}$. Let $p(x) = \operatorname{tp}(a)$.

We claim that there are at most k - 1 *n*-types $q(x_0, x_1, \ldots, x_{n-1})$ such that the formula $x_0 < x_1 < \cdots < x_{n-1}$ is in $q(\overline{x})$ and $p(x_i) \subseteq q(\overline{x})$ for all i < n. For, suppose that $q_0(\overline{x}), q_1(\overline{x}), \ldots, q_{k-1}(\overline{x})$ form a counterexample. Let $\alpha_0(\overline{x}), \alpha_1(\overline{x}), \ldots, \alpha_{k-1}(\overline{x})$ be pairwise contradictory formulas such that $\alpha_j(\overline{x}) \in q_j(\overline{x})$ for j < k. Let $m < \omega$ be such that $f_m(\overline{b}) = j$ whenever $\mathcal{K} \models \alpha_j(\overline{b})$. Let j < k be such $f_m(\overline{x}) \neq j$ whenever $\overline{x} \in [X_{m+1}]^n$. But then it cannot be that $p(x_i) \subseteq q_j(\overline{x})$ for all i < n. This contradiction proves the claim.

Now let $H = G_{(a)}$. We show that H is (n, k)-Ramsey.

(1) By definition, *H* is a basic open subgroup. Since *a* is not definable, $H \neq G$. Although the argument that *H* is maximal basic open is well known, we include it. Suppose that $H \leq G_{(b)} < G$. Then there is an $m < \omega$ such that $g_m(a) = b$. Then $g_m \upharpoonright X_{m+1}$ is either constant or injective. If $g_m \upharpoonright X_{m+1}$ were constant, then *b* would be definable so that $G_{(b)} = G$. Hence, $g_m \upharpoonright X_{m+1}$ is injective, so there is $\ell < \omega$ such that such that $g_{\ell}g_m(x) = x$ for all $x \in X_{m+1}$. Therefore, $g_{\ell}(b) = a$. Hence, $G_{(b)} \leq G_{(a)} = H$.

(2) This is obvious as $a \in \Omega_{\omega}$.

(3) Suppose that the $H_{i,j}$'s are as given in (3). Let $h_{i,j} \in G$ be such that $H_{i,j} = h_{i,j}Hh_{i,j}^{-1}$. Let $a_{i,j} = h_{i,j}(a)$, so that $H_{i,j} = G_{(a_{i,j})}$. Since, for each j < k, the subgroups $H_{0,j}, H_{1,j}, \ldots, H_{n-1,j}$ are pairwise distinct, it must be that

 $a_{0,j}, a_{1,j}, \ldots, a_{n-1,j}$ are pairwise distinct. Without loss of generality, assume that $a_{0,j} < a_{1,j} < \cdots < a_{n-1,j}$, and let $\overline{a}_j = \langle a_{0,j}, a_{1,j}, \ldots, a_{n-1,j} \rangle$.

By the claim proved earlier, there are r < s < k such that $tp(\overline{a}_r) = tp(\overline{a}_s)$. By the homogeneity of \mathcal{K} , there is $h \in G$ such that $h(a_{i,r}) = a_{i,s}$ for all i < n. Then, $hH_{i,r}h^{-1} = H_{i,s}$ for each i < n.

We end with two corollaries of the Theorem. The first is from the abstract.

Corollary 4 There is an infinite set \mathcal{T} of Turing-equivalent completions of PA such that whenever \mathcal{M} and \mathcal{N} are nonisomorphic countable, arithmetically saturated models and $\operatorname{Th}(\mathcal{M})$, $\operatorname{Th}(\mathcal{N}) \in \mathcal{T}$, then $\operatorname{Aut}(\mathcal{M}) \ncong \operatorname{Aut}(\mathcal{N})$.

Proof Let $\mathcal{T} = \{T_0, T_1, T_2, ...\}$, where the T_i 's are as in the Theorem. Let $\mathcal{M} \models T_i$ and $\mathcal{N} \models T_j$ be nonisomorphic countable, arithmetically saturated models. If $i \neq j$, then the Theorem implies that $\operatorname{Aut}(\mathcal{M}) \ncong \operatorname{Aut}(\mathcal{N})$. However, if i = j, then necessarily $\operatorname{SSy}(\mathcal{M}) \neq \operatorname{SSy}(\mathcal{N})$, so $\operatorname{Aut}(\mathcal{M}) \ncong \operatorname{Aut}(\mathcal{N})$ by [3].

The next corollary improves [8, Theorem 6.3].

Corollary 5 There are infinitely many completions $T_0, T_1, T_2, ...$ of PA such that whenever $i < j < \omega$, then

- (1) $T_i \equiv_T T_j$,
- (2) Aut $(\mathcal{M}_i) \ncong$ Aut (\mathcal{M}_j) for all saturated $\mathcal{M}_i \models T_i$ and $\mathcal{M}_j \models T_j$.

Proof Let $T_0, T_1, T_2, ...$ be as in the Theorem, so that (1) holds. For (2), suppose that $\mathcal{M}_i \models T_i$ and $\mathcal{M}_j \models T_j$ are saturated. Let $\mathcal{N}_i \prec \mathcal{M}_i$ and $\mathcal{N}_j \prec \mathcal{M}_j$ be minimal arithmetically saturated. Then, $\operatorname{Aut}(\mathcal{N}_i) \ncong \operatorname{Aut}(\mathcal{N}_j)$ by the Theorem. Then [8, Lemma 6.4] implies that $\operatorname{Aut}(\mathcal{M}_i) \ncong \operatorname{Aut}(\mathcal{M}_j)$.

References

- Bamber, N., and H. Kotlarski, "On interstices of countable arithmetically saturated models of Peano arithmetic," *Mathematical Logic Quarterly*, vol. 43 (1997), pp. 525–40. Zbl 0884.03042. MR 1477620. DOI 10.1002/malq.19970430408. 493
- [2] Kaye, R., R. Kossak, and H. Kotlarski, "Automorphisms of recursively saturated models of arithmetic," *Annals of Pure and Applied Logic*, vol. 55 (1991), pp. 67–99. Zbl 0748.03023. MR 1134917. DOI 10.1016/0168-0072(91)90098-7. 491
- [3] Kossak, R., and J. H. Schmerl, "The automorphism group of an arithmetically saturated model of Peano arithmetic," *Journal of the London Mathematical Society* (2), vol. 52 (1995), pp. 235–44. Zbl 0905.03024. MR 1356139. DOI 10.1112/jlms/52.2.235. 495
- [4] Marker, D. E., "Degrees coding models of arithmetic," Ph.D. dissertation, Yale University, New Haven, Conn., 1983. MR 2633115. 492
- [5] Nurkhaidarov, E. S., "Automorphism groups of arithmetically saturated models," *Journal of Symbolic Logic*, vol. 71 (2006), pp. 203–16. Zbl 1101.03030. MR 2210062. DOI 10.2178/jsl/1140641169. 491, 492
- [6] Nurkhaidarov, E. S., and J. H. Schmerl, "Automorphism groups of saturated models of Peano arithmetic," *Journal of Symbolic Logic*, vol. 79 (2014), pp. 561–84. Zbl 1337.03052. MR 3224980. DOI 10.1017/jsl.2013.15. 492
- [7] Patey, L., "The weakness of being cohesive, thin or free in reverse mathematics," *Israel Journal of Mathematics*, vol. 216 (2016), pp. 905–55. Zbl 1368.03018. MR 3557471. DOI 10.1007/s11856-016-1433-3. 492

James H. Schmerl

[8] Schmerl, J. H., "Automorphism groups of countable arithmetically saturated models of Peano arithmetic," *Journal of Symbolic Logic*, vol. 80 (2015), pp. 1411–34. Zbl 1368.03042. MR 3436376. DOI 10.1017/jsl.2015.1. 491, 492, 493, 495

Department of Mathematics University of Connecticut Storrs, Connecticut USA james.schmerl@uconn.edu

496