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More Automorphism Groups of Countable,
Arithmetically Saturated Models of Peano Arithmetic

James H. Schmerl

Abstract There is an infinite set T of Turing-equivalent completions of Peano
Arithmetic (PA) such that whenever M and N are nonisomorphic count-
able, arithmetically saturated models of PA and Th.M/, Th.N / 2 T , then
Aut.M/ © Aut.N /.

Investigating the extent to which (the isomorphism type of) a countable, recur-
sively saturated model M of Peano Arithmetic (PA) is determined by (the isomor-
phism type of) its automorphism group Aut.M/ has been of interest since the appear-
ance of [2]. Recent progress was made in [8], where it was proved that if M, N

are countable, arithmetically saturated models of PA and Aut.M/ Š Aut.N /, then
Th.M/0 �T Th.N /0. (As usual, X 0 is the Turing-jump of X and �T is Turing-
equivalence.) The following theorem affirmatively answers Question 5.8 in [8].

Theorem There are infinitely many completions T0; T1; T2; : : : of PA such that
whenever i < j < !, then

(1) Ti �T Tj ,
(2) Aut.Mi / © Aut.Mj / for all countable, arithmetically saturated Mi ˆ Ti

and Mj ˆ Tj .

From Nurkhaidarov [5], one can get 4 completions T0, T1, T2, T3 of PA such that (2)
of the theorem holds whenever i < j < 4 and (1) holds whenever 1 � i < j < 4,
with T0 D TA. With some more effort, one can get (1) to hold whenever i < j < 4.
This result was improved in [8, Theorem 6], where the number 4 was increased to
any finite n. It was then asked in [8, Question 5.8] if there are infinitely many such
completions. The theorem confirms that there are.
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It should be remarked that for any countably many completions T0; T1; T2; : : : of
PA, there are (many) countable, arithmetically saturated models Mi ˆ Ti for which
SSy.Mi / D SSy.Mj / whenever i < j < !.

The proof of the Theorem is much more in the style of [5] than [8, Theorem 6].
In the next two lemmas, we give a quick overview of Nurkhaidarov’s proof.

Let N D .!;C;�; 0; 1;�/ be the standard model of PA and let TA D Th.N/.
For n; k < !, we let RTn

k be infinite Ramsey’s Theorem for n-sets and k colors as
formalized in second-order arithmetic. Nurkhaidarov [5, Theorem 3.8] proved the
following lemma.

Lemma 1 If 2 � n < ! and M;N are countable, arithmetically saturated models
of PA such that Aut.M/ Š Aut.N /, then�

N;Rep
�
Th.M/

��
ˆ RTn

2 iff
�
N;Rep

�
Th.N /

��
ˆ RTn

2 :

To get the four theories, Nurkhaidarov [5] made use of the existence of countable
Scott sets X1, X2, and X3 such that .N;X1/ ˆ :RT2

2, .N;X2/ ˆ RT2
2 C :RT3

2, and
.N;X3/ ˆ RT3

2, obtaining distinct completions T0, T1, T2, T3 such that T0 D TA
and Rep.Ti / D Xi for i 2 ¹1; 2; 3º. To get that T1 �T T2 �T T3, we use the
following lemma, which is an immediate consequence of Marker [4, Theorem 1.27]
and also of a theorem (see [8, Theorem 1.2]) due to Knight and Marker.

Lemma 2 If X0;X1;X2; : : : are countably many countable Scott sets, then there
are distinct completions T0; T1; T2; : : : of PA such that whenever i < j < !, then
Ti �T Tj and Rep.Ti / D Xi .

The proof of the Theorem makes essential use of a result of Patey [7, Theorem 4.14]
as a replacement for Ramsey’s Theorem in Lemma 1. If n < ! and X is a sub-
set of an ordered set (such as ! or some M where M is a model of PA), then
ŒX�n is the set of all strictly increasing n-tuples from X . Let TSn

k be the Thin
Set Theorem for n-sets and k colors, which asserts the following: for any function
f W Œ!�n �! k, there is an infinite set X � ! such that j¹f .x/ W x 2 ŒX�nºj < k.
In particular, TSn

2 D RTn
2 . Also, notice that RCA0 ` TSn

k ! TSn
kC1. Patey

[7] proved that whenever 2 � k < !, there is a countable Scott set Xk such that
.N;Xk/ ˆ TS2

kC1 C :TS2
k . Thus, with Lemma 2 available, it suffices to prove the

following generalization of Lemma 1.

Lemma 3 If 2 � k; n < ! and M, N are countable, arithmetically saturated
models of PA such that Aut.M/ Š Aut.N /, then�

N;Rep
�
Th.M/

��
ˆ TSn

k iff
�
N;Rep

�
Th.N /

��
ˆ TSn

k :

Proof We will freely use terminology from [8]. For example, if G � Aut.K/ and
a 2 K, then G.a/ is the stabilizer of a in G. A basic open subgroup of Aut.K/ is
one having the form Aut.K/.a/. Let M, N be countable, arithmetically saturated
models of PA, and let ˛ W Aut.M/ �! Aut.N / be an isomorphism. Recall (from [8,
Section 4] or [6, Corollary 3.14]) that basic open subgroups are recognizable. This
means, in particular, that if a 2 M and H D Aut.M/.a/, then there is b 2 N such
that ˛ŒH� D Aut.N /.b/.
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Suppose that K is any countable, arithmetically saturated model of PA, and let
G D Aut.K/. We will say that a basic open subgroup H < G is maximal if
whenever a 2 K is such that H � G.a/ < G, then H D G.a/. We let �!.K/

(or simply �! when no confusion is likely) be the smallest interstice of K; that is,
�! is the set of nonstandard elements that are less than all the definable nonstandard
elements of K . The arithmetic saturation of K implies that �! ¤ ¿. We now
define a subgroup H < G to be .n; k/-Ramsey, where 2 � k; n < !, if each of the
following holds.

(1) H is a maximal basic open subgroup.
(2) H D G.a/ for some a 2 �! .
(3) Suppose that Hi;j are conjugates of H , for i < n and j < k, such

that H0;j ;H1;j ; : : : ;Hn�1;j are pairwise distinct for each j < k. Then
there are r < s < k, a permutation � W n �! n, and h 2 G such that
hHi;rh

�1 D H�.i/;s for each i < n.
As already noted, those subgroupsH satisfying (1) are recognizable. It is obvious

that those subgroupsH � G satisfying (3) are recognizable. We next will prove that
.n; k/-Ramsey subgroups are recognizable by showing that those subgroupsH � G

satisfying (2) are recognizable. A cut I of K is an icut if I < �! [ ! and it is
closed under all ¿-definable functions f W K �! K such that f .x/ < ! whenever
x < !. A set  � K is an igap if there is a 2 �! such that if I � K is the
largest icut for which a … I and J � K is the smallest icut for which a 2 J , then
 D J n I . It follows from [8, Lemma 4.4(d)] that setwise stabilizers of igaps are
recognizable. But a consequence of Bamber and Kotlarski [1, Theorem 3.8] is that a
subgroup H � G satisfies (2) iff it is the setwise stabilizer of an igap.

Hence, .n; k/-Ramsey subgroups are recognizable, so, to complete the proof, we
need only prove the following:
.�/ For a countable, arithmetically saturated K ˆ PA, Aut.K/ has an .n; k/-

Ramsey subgroup iff .N;Rep.Th.K/// ˆ TSn
k .

Let T D Th.K/ and G D Aut.K/.

.H)/: Let f W Œ!�n �! k be a function in Rep.T /. We want an infinite
X 2 Rep.T / such that j¹f .x/ W x 2 ŒX�nºj < k.

Let H < G be .n; k/-Ramsey, and let a 2 �! be such that H D G.a/.
Whenever B � K is ¿-definable and a 2 B , then B \ ! is an infinite set in
Rep.T /. We now claim that there is a ¿-definable D � K such that a 2 D

and j¹f .x/ W x 2 Œ! \ D�nºj < k. For, if not, then by recursive satu-
ration, for each j < k, there are b0;j < b1;j < � � � < bn�1;j such that
tp.b0;j / D tp.b1;j / D � � � D tp.bn�1;j / D tp.a/ and Of .b0;j ; b1;j ; : : : ; bn�1;j / D j ,
where Of is the definitional extension of f to all of ŒK�n. Then Hi;j D G.bi;j / is a
counterexample to (3).

.(H/: Suppose that .N;Rep.T // ˆ TSn
k . We next construct a complete type. Let

h'm.x; y/ W m < !i be a computable sequence of LPA-formulas that define all the
¿-definable functions from Kn into K and nothing else. Let h m.x; y/ W m < !i

be a computable sequence of LPA-formulas that define all the ¿-definable functions
from K into K and nothing else. (These two sequences can be obtained indepen-
dently of T .) Let fm be the function defined by 'm.x; y/, and let gm be the function
defined by  m.x; y/. We obtain a T -arithmetic sequence h�m.x/ W m < !i of
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LPA-formulas such that the following hold for all m < !, where we let Xm be the
set defined by

V
`<m �`.x/ (so that K D X0 � X1 � X2 � � � � ).

(4) The set Xm \ ! is infinite.
(5) j¹fm.x/ W x 2 ŒXmC1�

nºj < k.
(6) gm�XmC1 is either constant or injective.

We can obtain such a sequence h�m.x/ W m < !i by recursion as follows.
Let X0 D K. Now suppose that we have Xm and that Xm \ ! is infinite and
Xm \ ! 2 Rep.T /. The function fm �ŒXm�

n is also in Rep.T /; therefore, since
.N;Rep.T // ˆ TSn

k , there is an infinite Y 2 Rep.T / such that Y � Xm and
j¹fm.x/ W x 2 ŒY �nºj < k. Then there is an infinite Z 2 Rep.T / such that
Z � Y and gm �Z is either constant or injective. Let �.x/ be an LPA-formula
that defines a set X � Xm such that Z D X \ !. Let a 2 K [ ¹1º be
the greatest such that gm � ¹x 2 X W x < aº is constant or injective and that
j¹fm.x/ W x 2 Œ¹x 2 X W x < aº�nºj < k, and then let �mC1.x/ D �.x/ ^ x < a.
Note that a is nonstandard and definable in K . Thus, XmC1 \ ! is infinite and
XmC1 \ ! 2 Rep.T /.

One easily checks that the �m.x/’s satisfy (4)–(6). The set ¹�m.x/ W m < !º

determines a complete type of T . To see why it does, consider a ¿-definableD � K.
Let m < ! be such that gm is the characteristic function of D. Then, since XmC1

is infinite, (6) implies that gm is either constantly 0 or constantly 1 on XmC1. Thus,
either D � XmC1 or K nD � XmC1.

We have yet to say anything about the effectiveness of the construction of this
sequence, but it should be clear that it can be obtained by a construction that is
arithmetic in T , so we assume that that is the case. Now, by the arithmetic saturation
of K , there is a 2

T
¹Xm W m < !º. (In fact, a is unique up to automorphic images.)

Clearly, a 2 �! . Let p.x/ D tp.a/.
We claim that there are at most k � 1 n-types q.x0; x1; : : : ; xn�1/ such

that the formula x0 < x1 < � � � < xn�1 is in q.x/ and p.xi / � q.x/ for
all i < n. For, suppose that q0.x/; q1.x/; : : : ; qk�1.x/ form a counterexam-
ple. Let ˛0.x/; ˛1.x/; : : : ; ˛k�1.x/ be pairwise contradictory formulas such that
˛j .x/ 2 qj .x/ for j < k. Let m < ! be such that fm.b/ D j whenever
K ˆ ˛j .b/. Let j < k be such fm.x/ ¤ j whenever x 2 ŒXmC1�

n. But then it
cannot be that p.xi / � qj .x/ for all i < n. This contradiction proves the claim.

Now let H D G.a/. We show that H is .n; k/-Ramsey.

(1) By definition, H is a basic open subgroup. Since a is not definable, H ¤ G.
Although the argument that H is maximal basic open is well known, we include it.
Suppose that H � G.b/ < G. Then there is an m < ! such that gm.a/ D b. Then
gm�XmC1 is either constant or injective. If gm�XmC1 were constant, then b would
be definable so that G.b/ D G. Hence, gm�XmC1 is injective, so there is ` < !

such that such that g`gm.x/ D x for all x 2 XmC1. Therefore, g`.b/ D a. Hence,
G.b/ � G.a/ D H .

(2) This is obvious as a 2 �! .

(3) Suppose that the Hi;j ’s are as given in (3). Let hi;j 2 G be such that
Hi;j D hi;jHh

�1
i;j . Let ai;j D hi;j .a/, so that Hi;j D G.ai;j /. Since, for each

j < k, the subgroups H0;j ;H1;j ; : : : ;Hn�1;j are pairwise distinct, it must be that
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a0;j ; a1;j ; : : : ; an�1;j are pairwise distinct. Without loss of generality, assume that
a0;j < a1;j < � � � < an�1;j , and let aj D ha0;j ; a1;j ; : : : ; an�1;j i.

By the claim proved earlier, there are r < s < k such that tp.ar / D tp.as/. By
the homogeneity of K , there is h 2 G such that h.ai;r / D ai;s for all i < n. Then,
hHi;rh

�1 D Hi;s for each i < n.

We end with two corollaries of the Theorem. The first is from the abstract.

Corollary 4 There is an infinite set T of Turing-equivalent completions of PA
such that whenever M and N are nonisomorphic countable, arithmetically saturated
models and Th.M/, Th.N / 2 T , then Aut.M/ © Aut.N /.

Proof Let T D ¹T0; T1; T2; : : :º, where the Ti ’s are as in the Theorem. Let
M ˆ Ti and N ˆ Tj be nonisomorphic countable, arithmetically saturated models.
If i ¤ j , then the Theorem implies that Aut.M/ © Aut.N /. However, if i D j ,
then necessarily SSy.M/ ¤ SSy.N /, so Aut.M/ © Aut.N / by [3].

The next corollary improves [8, Theorem 6.3].

Corollary 5 There are infinitely many completions T0; T1; T2; : : : of PA such that
whenever i < j < !, then

(1) Ti �T Tj ,
(2) Aut.Mi / © Aut.Mj / for all saturated Mi ˆ Ti and Mj ˆ Tj .

Proof Let T0; T1; T2; : : : be as in the Theorem, so that (1) holds. For (2), suppose
that Mi ˆ Ti and Mj ˆ Tj are saturated. Let Ni � Mi and Nj � Mj be
minimal arithmetically saturated. Then, Aut.Ni / © Aut.Nj / by the Theorem. Then
[8, Lemma 6.4] implies that Aut.Mi / © Aut.Mj /.
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