A Partition Theorem of $\omega^{\omega{ }^{\alpha}}$

Claribet Piña

Abstract

We consider finite partitions of the closure $\overline{\mathcal{F}}$ of an ω^{α}-uniform barrier \mathcal{F}. For each partition, we get a homogeneous set having both the same combinatorial and topological structure as $\overline{\mathcal{F}}$, seen as a subspace of the Cantor space $2^{\mathbb{N}}$.

1 Introduction

Given two topological spaces X and Y and an integer $l>1$, we denote by $X \rightarrow(\text { top } Y)_{l}^{1}$ the fact that, given any map $f: X \longrightarrow l$, there is H a subspace of X which is homeomorphic to Y and f-monochromatic. A very well-known result on partitions of topological spaces, due to Baumgartner [2] and Weiss [5], establishes that a countable ordinal space γ-that is, γ endowed with its order topologysatisfies that $\forall l>1, \gamma \rightarrow(\operatorname{top} \gamma)_{l}^{1}$ if and only if $\gamma=\omega^{\omega^{\alpha}}$ for some $\alpha<\omega_{1}$. Translating this statement to the realm of partitions of families in FIN, we get that given $l>1$ and $0<\alpha<\omega_{1}$, if $\mathcal{F} \subseteq$ FIN is a family having the same topological type as $\omega^{\omega^{\alpha}}$, and $\mathscr{F}=\mathcal{F}_{0} \cup \mathcal{F}_{1} \cup \cdots \cup \mathcal{F}_{l-1}$ is a partition of \mathscr{F}, then there exists a subfamily $\mathscr{H} \subseteq \mathscr{F}$ with the same topological type as \mathcal{F} such that $\mathscr{H} \subseteq \mathcal{F}_{i}$ for some $i<l$. We wondered if it is possible to find a homogeneous set \mathscr{H} which also preserves the combinatorial structure of \mathcal{F}.

It is known that if \mathscr{F} is an ω^{α}-uniform family endowed with the lexicographic order topology $\tau_{<\text {lex }}$, then ($\mathcal{F}, \tau_{<\operatorname{lex}}$) and ($\mathcal{F} \upharpoonright M, \tau_{<\text {lex }}$) are both homeomorphic to $\omega^{\omega^{\alpha}}$, for every $M \in \mathbb{N}^{[\infty]}$, where $\mathscr{F} \upharpoonright M=\{s \in \mathscr{F}: s \subseteq M\}$. Then, at first glance, the Ramsey property for uniform families (see Theorem 2.1) seems to provide a homogeneous set $\mathscr{H}=\mathscr{F} \upharpoonright M$ having the same combinatorial behavior as \mathcal{F} (i.e., $\mathcal{F} \upharpoonright M$ is as well an ω^{α}-uniform family, on M). However, this is not the case, since for our partition problem the homogeneous set \mathscr{H} must be considered with the subspace topology inherited from ($\left.\mathcal{F}, \tau_{<\text {lex }}\right)$. Piña and Uzcátegui [3] showed

Received April 2, 2015; accepted March 4, 2016
First published online June 26, 2018
2010 Mathematics Subject Classification: Primary 03E02; Secondary 05D10
Keywords: partition of topological spaces, uniform barriers, U-trees
© 2018 by University of Notre Dame 10.1215/00294527-2018-0001
that the topological type of a restriction $\mathcal{F} \upharpoonright M$ may change so radically, according to M, that it could be a discrete subspace of $\left(\mathscr{F}, \tau_{<\text {lex }}\right)$. Furthermore, they showed that given any uniform family \mathscr{F}, there is a partition of \mathscr{F} such that $\mathcal{F} \upharpoonright M$ is a discrete subspace of ($\mathcal{F}, \tau_{<_{\text {lex }}}$) for every $M \in \mathbb{N}^{[<\infty]}$ given by the Ramsey property of \mathcal{F} applied to such a partition. Therefore, in this sense $\mathcal{F} \upharpoonright M$ fails to be a homogeneous set.

A more subtle way of dealing with this problem is considering a different representation of the ordinal space $\omega^{\omega^{\alpha}}$ by using the closure $\overline{\mathcal{F}}$ of an ω^{α}-uniform family \mathscr{F} endowed with the subspace topology inherited from the Cantor space $2^{\mathbb{N}}$. In this article, we study the combinatorial characteristics of a homogeneous family for a partition relation $\forall l>1, \overline{\mathscr{F}} \rightarrow(\operatorname{top} \overline{\mathscr{F}})_{l}^{1}$, where \mathcal{F} is an ω^{α}-uniform barrier. In this sense, we cannot get a homogeneous set with exactly the same combinatorial behavior as $\overline{\mathcal{F}}$. Say, for example, we cannot get as a homogeneous set a family $\overline{\mathcal{F}} \upharpoonright M$, or the closure $\overline{\mathcal{B}}$ of another ω^{α}-uniform family \mathfrak{B}, since a coloring defined on $\overline{\mathcal{F}}$ using the sizes of the elements in $\overline{\mathcal{F}}$ clearly forbids any of these families to be monochromatic. However, in Theorem 3.4, we will obtain a homogeneous set which is nothing else than the image, under an \sqsubseteq-order-preserving embedding, of the closure of another ω^{α}-uniform barrier. As a consequence of Theorem 3.4, we clearly obtain an alternative proof for the Baumgartner-Weiss result (Corollary 3.5).

In most of our proofs, we will assume the existence of a nonprincipal selective ultrafilter. It is well known that the existence of selective ultrafilters requires additional set-theoretic assumptions. However, it has been proved that they exist under the assumption of hypothesis as the continuum hypothesis (CH) or as Martin's axiom (MA). Therefore, by absoluteness, all the results presented here are in fact ZFCresults.

The article is organized as follows. In Section 2 we present some basic facts, notation, and well-known notions from Ramsey theory. In that section, we also prove some technical lemmas that we will use in our induction proofs. In Section 3 we prove our main result (Theorem 3.4) making use of Theorem 3.1, and we give an alternative proof for the Baumgartner-Weiss theorem (Corollary 3.5). Finally, Section 4 is devoted to giving an inductive proof of our more technical result (Theorem 3.1).

2 Preliminaries

We will start this section by introducing some notation, definitions, and well-known facts that we will use throughout the article. We will only include in this section the proofs of results that, as far as we know, are new. (For all the facts stated without a proof, see Argyros and Todorcevic [1], Baumgartner [2], and Todorcevic [4].)
2.1 Basic notions We denote by FIN the set of all nonempty finite subsets of \mathbb{N}. If $M \subseteq \mathbb{N}$ and $k \in \mathbb{N}$, we denote by $M^{[k]}$ the set of subsets of M with size k, by $M^{[\leq k]}$ the set of subsets of M with size less than or equal to k, and by $M^{[<\infty]}$ the set of all finite subsets of M. If, moreover, $M \subseteq \mathbb{N}$ is infinite, then we denote by $M^{[\infty]}$ the set of all infinite subsets of M. Given $s \in$ FIN and $M \subseteq \mathbb{N}$, we denote by M / s the set $\{x \in M: \max (s)<x\}$. If $s=\{n\}$, we write instead M / n. We put $M>s$ if $\min (M)>\max (s)$. We write $s \sqsubset M$ if there is $m \in M$ such that $\{0,1, \ldots, m\} \cap M=s$, we write $s \sqsubseteq M$ if $s \sqsubset M$ or $s=M$, and we denote by
$s \nsubseteq M$ the negation of $s \sqsubseteq M$. We say that a mapping φ, with domain $\mathcal{F} \subseteq$ FIN and values in FIN, is \sqsubseteq-order-preserving if $s \sqsubseteq t$ implies $\varphi(s) \sqsubseteq \varphi(t)$ whenever $s, t \in \mathcal{F}$. We say that a family $\mathcal{F} \subseteq$ FIN is thin if for every different $s, t \in \mathcal{F}$ we have $s \nsubseteq t$.

Given a family $\mathscr{F} \subseteq \mathrm{FIN}$ and $M \in \mathbb{N}^{[\infty]}$, we say that \mathcal{F} is a front on M if it is thin, and for every $N \in M^{[\infty]}$ there is $t \in \mathcal{F}$ such that $t \sqsubset N$. If, moreover, we have that $s \nsubseteq t$ for every $s, t \in \mathcal{F}$, we say that \mathcal{F} is a barrier on M. Clearly, every barrier on M is a front on M. When $M=\mathbb{N}$, we simply say that \mathcal{F} is a front (resp., a barrier). The Schreier barrier, which we will often use, is defined by

$$
\mathscr{S}=\{s \in \mathrm{FIN}:|s|=\min (s)+1\} .
$$

If $\mathcal{F} \subseteq \operatorname{FIN}$ and $M \in \mathbb{N}^{[\infty]}$, the sets $\mathcal{F} \upharpoonright M$ and $\mathcal{F}[M]$ are defined as follows:

$$
\mathscr{F} \upharpoonright M=\{t \in \mathscr{F}: t \subseteq M\}, \quad \mathcal{F}[M]=\{t \cap M: t \in \mathcal{F}\} .
$$

If \mathcal{F} is a front (resp., a barrier) on M, and $N \in M^{[\infty]}$, then $\mathscr{F} \upharpoonright N$ is a front (resp., a barrier) on N. We say that a family $\mathcal{F} \subseteq$ FIN is Ramsey (or that it has the Ramsey property) if for every finite partition $\mathcal{F}=\mathcal{F}_{0} \cup \mathcal{F}_{1} \cup \cdots \cup \mathcal{F}_{k}$ and every $M \in \mathbb{N}^{[\infty]}$, there is $N \in M^{[\infty]}$ such that at most one of the restrictions $\mathscr{F}_{0} \upharpoonright N, \mathscr{F}_{1} \upharpoonright N, \ldots$, $\mathcal{F}_{k} \upharpoonright N$ is nonempty. The following classic result of Ramsey theory ensures the existence of Ramsey families.

Theorem 2.1 (Nash-Williams) Every thin family is Ramsey.

We consider $\mathcal{F} \subseteq \mathrm{FIN}$ as a topological subspace of $\wp(\mathbb{N})$ by endowing this last one with the topology of pointwise convergence from the Cantor space $2^{\mathbb{N}}$, that is, identifying sets with their characteristic functions. We say that a sequence $\left(s_{n}\right)_{n}$ in FIN is a block sequence if $s_{n}<s_{m}$ for every $n<m$. We denote by $\overline{\mathcal{F}}$ the topological closure of \mathcal{F}. Moreover, we say that \mathcal{F} is precompact if $\overline{\mathcal{F}} \subseteq$ FIN. We will also consider the downward closures of $\mathscr{F} \subseteq$ FIN defined by

$$
\overline{\mathscr{F}} \sqsubseteq=\{s: s \sqsubseteq t \text { for some } t \in \mathscr{F}\}, \quad \overline{\mathscr{F}} \subseteq=\{s: s \subseteq t \text { for some } t \in \mathcal{F}\} .
$$

It is a fact that if \mathcal{F} is a front on M, then $\overline{\mathcal{F}}=\overline{\mathcal{F}}$, and that if \mathcal{F} is a barrier on M, then $\overline{\mathscr{F}} \subseteq \overline{\mathscr{F}} \subseteq=\overline{\mathscr{F}}$. Moreover, a family $\mathscr{F} \subseteq$ FIN is precompact if and only if $\overline{\mathcal{F}}$ is compact.

Recall that if X is a topological space and $\alpha<\omega_{1}$, then the α th Cantor-Bendixson derivative of X is defined recursively as follows:

$$
\begin{aligned}
X^{\prime} & =\{x \in X: x \text { is not isolated in } X\} \\
X^{(\beta+1)} & =\left(X^{(\beta)}\right)^{\prime}, \\
X^{(\lambda)} & =\bigcap_{\beta<\lambda} X^{(\beta)}, \quad \text { if } \lambda>0 \text { is a limit ordinal. }
\end{aligned}
$$

It is known that if $\mathcal{A} \subseteq$ FIN is compact, then there is $\alpha<\omega_{1}$ such that $\mathcal{A}^{(\alpha)}=\mathcal{A}^{(\alpha+1)}=\emptyset$. The minimal ordinal $\alpha<\omega_{1}$ with this property is called the Cantor-Bendixson rank of \mathcal{A}, and we denote it by $\mathrm{rk}_{\mathrm{CB}}(\mathcal{A})$.

We recall that the lexicographic order $<_{\text {lex }}$ is defined on FIN by $s<_{\text {lex }} t$ if and only if $\min (s \Delta t) \in s$. An important fact about the lexicographic order is that every precompact family $\mathcal{F} \subseteq$ FIN is lexicographically well-ordered. With this in mind,
we adopt the concept of an order-homeomorphism. We say that $\mathcal{A} \subseteq$ FIN is orderhomeomorphic to a countable ordinal space γ-that is, γ endowed with its order topology-if there is an order isomorphism between $\left(\mathcal{A},<_{\text {lex }}\right)$ and γ which is also a topological homeomorphism.

Proposition 2.2 If \mathcal{F} is an (infinite) precompact family on $M \in \mathbb{N}^{[\infty]}$ with $\mathrm{rk}_{\mathrm{CB}}\left(\overline{\mathcal{F}}^{\sqsubseteq}\right)>0$, then $(\overline{\mathcal{F}} \sqsubseteq$, $\sqsubseteq)$ is order-homeomorphic to $\left.\omega^{\mathrm{rk}(\overline{\mathcal{F}}}{ }^{\sqsubseteq}\right)+1$. Therefore, $\overline{\mathcal{F}} \bigvee\{\emptyset\}$ is homeomorphic to $\omega^{\mathrm{rkcB}}(\overline{\mathcal{F}} \sqsubseteq)$.
2.2α-uniform families We now introduce the notion of uniform families, which will give us a way of representing countable ordinal spaces as families on FIN.

Given $\mathscr{F} \subseteq \operatorname{FIN}, M \in \mathbb{N}^{[\infty]}$, and $\alpha<\omega_{1}$, the concept of an α-uniform family on M is defined recursively as follows. \mathcal{F} is α-uniform on M if one of the following conditions holds:

1. $\alpha=0$ and $\mathcal{F}=\{\emptyset\}$,
2. $\alpha=\beta+1$ and $\mathscr{F}_{\{n\}}:=\{s \in \operatorname{FIN}: n<s$ and $\{n\} \cup s \in \mathscr{F}\}$ is β-uniform on M / n for every $n \in M$,
3. α is a limit ordinal and there is a strictly increasing sequence of ordinals $\left(\alpha_{n}\right)_{n}$ converging to α such that $\mathcal{F}_{\{n\}}$ is α_{n}-uniform on M / n for every $n \in M$.
We say that a family is uniform on some $M \in \mathbb{N}^{[\infty]}$ if it is α-uniform on M for some $\alpha<\omega_{1}$. If a family \mathcal{F} is uniform on \mathbb{N}, we simply say that \mathcal{F} is uniform. It follows by induction on k that given $k>0$, a family $\mathcal{F} \subseteq \mathrm{FIN}$ is k-uniform on $M \in \mathbb{N}^{[\infty]}$ if and only if $\mathscr{F}=M^{[k]}$. Therefore, \mathscr{F} is ω-uniform on M if and only if there exists a strictly increasing sequence of positive integers $\left(m_{n}\right)_{n \in M}$ such that $\mathcal{F}_{\{n\}}=M^{\left[m_{n}\right]}$ for every $n \in M$. Particularly, the Schreier barrier δ is an ω-uniform family. On the other hand, it follows from the definition that for every $\alpha<\omega_{1}$, there exists an α-uniform family.

Proposition 2.3 Given $\alpha<\omega_{1}$ and \mathcal{F} an α-uniform family on $M \in \mathbb{N}^{[\infty]}$, we have the following.

1. \mathcal{F} is a front on M. Therefore, \mathcal{F} is Ramsey.
2. $\mathcal{F} \upharpoonright N$ is an α-uniform family on N for every $N \in M^{[\infty]}$.
3. The order type of $\left(\mathcal{F},<_{\operatorname{lex}}\right)$ is ω^{α}. Moreover, $\mathrm{rk}_{\mathrm{CB}}(\overline{\mathcal{F}})=\alpha$.

Theorem 2.4 Given $\mathcal{F} \subseteq$ FIN a nonempty precompact family on $M \subseteq \mathbb{N}$ with Cantor-Bendixson rank $\alpha<\omega_{1}$, there is $N \in M^{[\infty]}$ such that $\mathscr{F}[N]$ is the closure of an α-uniform barrier on N.

Theorem 2.5 Given $\mathcal{F} \subseteq$ FIN a barrier on $M \in \mathbb{N}^{[\infty]}$ with $\mathrm{rk}_{\mathrm{CB}}(\overline{\mathcal{F}})=\alpha$, there is an infinite set $N \subseteq M$ such that $\mathcal{F} \upharpoonright N$ is an α-uniform barrier on N.

Lemma 2.6 Given $\alpha<\beta<\omega_{1}, M \in \mathbb{N}^{[\infty]}$, AA an α-uniform family on M, and \mathscr{B} a β-uniform family on M, there is an infinite set $N \subseteq M$ such that $\mathcal{A} \upharpoonright N \subseteq \overline{\mathscr{B}}$.

We recall that an ultrafilter on \mathbb{N} is a collection \mathcal{U} of subsets of \mathbb{N} with the following properties:

1. $\emptyset \notin U$ and $\mathbb{N} \in \mathcal{U}$,
2. $M \subseteq N$ and $M \in U$ imply $N \in \mathcal{U}$,
3. $N=N_{0} \cup N_{1}$ and $N \in \mathcal{U}$ imply $N_{0} \in \mathcal{U}$ or $N_{1} \in \mathcal{U}$, and
4. $M \in \mathcal{U}$ and $N \in \mathcal{U}$ imply $M \cap N \in \mathcal{U}$.

We say that an ultrafilter \mathcal{U} is nonprincipal if $\{n\} \notin \mathcal{U}$ for all $n \in \mathbb{N}$. We call an ultrafilter \mathcal{U} selective if given a barrier \mathcal{F} and any finite coloring of it, there is $M \in U$ such that $\mathscr{F} \upharpoonright M$ is monochromatic; or, equivalently, \mathcal{U} is selective if for every sequence $\left(A_{t}\right)_{t \in \mathrm{FIN}}$ of elements of \mathcal{U}, there is $A \in \mathcal{U}$ such that $A / t \subseteq A_{t}$ for every $t \in A^{[<\infty]}$. Given a tree $T \subseteq \mathbb{N}^{[<\infty]}$ and $\vec{U}=\left\{U_{s}: s \in \mathbb{N}^{[<\infty]}\right\}$ a family of nonprincipal ultrafilters on \mathbb{N}, we call T a $\overrightarrow{\mathcal{U}}$-tree if $\{n \in \mathbb{N}: t \cup\{n\} \in T\} \in \mathcal{U}_{t}$ for every $t \in T$. If the sequence \vec{U} is constant, that is, if $\mathcal{U}_{s}=U$ for every $s \in \mathbb{N}^{[<\infty]}$, then we will suppress the arrow. For our proofs, we will always consider \mathcal{U}-trees with stem $\operatorname{st}(T)=\emptyset$; that is, $\operatorname{st}(T)$ is the maximal node comparable with every other node of T. Also, we adopt the convention that, from now on, whenever we consider a selective ultrafilter we mean a nonprincipal selective ultrafilter.

If T is a \mathcal{U}-tree and \mathcal{B} is a family on FIN, then we will denote by $T \upharpoonright \mathcal{B}$ the set of elements of T up to \mathscr{B}. That is, the terminal nodes of $T \upharpoonright \mathscr{B}$ are in \mathscr{B}.

Lemma 2.7 Let \mathcal{U} be a selective ultrafilter, and let $0<\alpha<\omega_{1}$. If T is a \mathcal{U}-tree and \mathscr{B} is an α-uniform barrier on $M \in \mathcal{U}$, then there is a set $N \subseteq M$ in \mathcal{U} such that $T \cap(\mathscr{B} \upharpoonright N)$ is an α-uniform barrier on N.

Proof (By induction on $\boldsymbol{\alpha}$) Fix \mathcal{U} a selective ultrafilter, T a \mathcal{U}-tree, and \mathscr{B} an α-uniform family on $M \in \mathcal{U}$. If $\alpha=1$, then take $M_{1}=\{n:\{n\} \in T\} \in \mathcal{U}$. Since $M \in \mathcal{U}$, the set $N=M \cap M_{1} \subseteq M$ belongs to \mathcal{U}. Moreover, $T \cap(\mathcal{B} \upharpoonright N)=N^{[1]}$ is a 1-uniform barrier on N.

Suppose that the lemma is true for every $0<\beta<\alpha$. Let $\left(\alpha_{i}\right)_{i}$ be an increasing sequence of ordinals converging to α if α is limit, and let $\alpha_{i}=\beta$ for all $i \in M$ if $\alpha=\beta+1$ such that $\mathcal{B}_{\{n\}}$ is an α_{n}-uniform barrier on M / n for every $n \in M$. Note that $T_{\{n\}}$ is a \mathcal{U}-tree for every $n \in M_{1}$ (for M_{1} as in the base case). Then, by the inductive hypothesis, for every $n \in M \cap M_{1}$ there is $M_{n} \subseteq M / n$ in \mathcal{U} such that $T_{\{n\}} \cap\left(\mathscr{B}_{\{n\}} \upharpoonright M_{n}\right)$ is an α_{n}-uniform barrier on M_{n}. Finally, consider $N \subseteq M \cap M_{1}$ in U such that $N / n \subseteq M_{n}$ for every $n \in N$, and note that $T \cap(\mathscr{B} \upharpoonright N)_{\{n\}}=T_{\{n\}} \cap\left(\mathscr{B}_{\{n\}} \upharpoonright N / n\right)$ is an α_{n}-uniform barrier on N / n for every $n \in N$.
2.3 Schreier families We now present some combinatorial properties of the ω^{α}-uniform families. Mainly, we will introduce the families $\left(\delta_{\alpha}\right)_{\alpha<\omega_{1}}$, which are obtained in a very canonical way from the Schreier barrier, and which are contained in the closure of any ω^{α}-uniform family (see Lemma 2.11). In view of this, later on, these families will be an important tool in our proofs considering partitions of the closure of ω^{α}-uniform barriers.

Given \mathcal{A} and \mathscr{B} two families on FIN, we define $\mathcal{A} \oplus \mathscr{B}$ and $\mathcal{A} \otimes \mathscr{B}$ by

$$
\begin{aligned}
\mathcal{A} \oplus \mathscr{B}= & \{s \cup t: s<t, s \in \mathscr{B} \text { and } t \in \mathcal{A}\}, \\
\mathcal{A} \otimes \mathscr{B}= & \left\{s_{1} \cup s_{2} \cup \cdots \cup s_{n}: s_{1}<s_{2}<\cdots<s_{n} \text { are in } \mathcal{A}\right. \text { and } \\
& \left.\left\{\min \left(s_{i}\right): 1 \leq i \leq n\right\} \in \mathscr{B}\right\} .
\end{aligned}
$$

Lemma 2.8 If $\mathcal{A}, \mathcal{B} \subseteq \mathrm{FIN}$ are barriers on $M \in \mathbb{N}^{[\infty]}$, then the following hold: 1. $\mathcal{A} \oplus \mathscr{B}$ and $\mathscr{A} \otimes \mathscr{B}$ are barriers on M,
2. $\overline{\mathcal{A} \oplus \mathscr{B}}=\overline{\mathcal{A}} \oplus \overline{\mathcal{B}}$,
3. $\overline{\mathcal{A} \otimes \mathscr{B}}=\overline{\mathfrak{A}} \otimes \overline{\mathcal{B}}$.

Lemma 2.9 Let $\alpha, \beta<\omega_{1}$, let $M \in \mathbb{N}^{[\infty]}$, let \mathcal{A} be an α-uniform family on M, and let \mathfrak{B} be a β-uniform family on M. Then, $\mathcal{A} \oplus \mathscr{B}$ is $(\alpha+\beta)$-uniform on M, and $\mathcal{A} \otimes \mathscr{B}$ is $(\alpha \cdot \beta)$-uniform on M.

Given $0<\alpha<\omega_{1}$, we define ρ_{α} as follows:

$$
\begin{aligned}
& 8_{\alpha}=8, \quad \text { if } \alpha=1 \\
& 8_{\alpha}=8_{\beta} \otimes 8, \quad \text { if } \alpha=\beta+1 \\
& s_{\alpha}=\bigcup_{n<\omega} \wp_{\alpha_{n}} \oplus\{\{n\}\}, \quad \text { if } \alpha=\sup _{n} \alpha_{n}
\end{aligned}
$$

Remark $2.10 \quad$ Note that for every $0<\alpha<\omega_{1}$, the barrier \mathcal{S}_{α} is ω^{α}-uniform.
Lemma 2.11 shows how the families $\boldsymbol{\rho}_{\alpha}$ are in some sense minimal ω^{α}-uniform barriers. In the following, we will implicitly make use of Lemmas 2.6, 2.8, and 2.9.
Lemma 2.11 Given \mathcal{U} a selective ultrafilter and \mathcal{F} an ω^{α}-uniform family on $M \in \mathcal{U}$, there is $N \subseteq M$ in \mathcal{U} such that

1. $\left(s_{\beta} \otimes \mathbb{N}^{[i]}\right) \upharpoonright N / i \subseteq \overline{\mathcal{F}_{\{i\}}}$ for every $i \in N$, if $\alpha=\beta+1$; and
2. $\delta_{\alpha_{i}} \upharpoonright N / i \subseteq \overline{\mathcal{F}_{\{i\}}}$ for every $i \in N$, if $\alpha=\sup _{i} \alpha_{i}$.

Proof Consider \mathcal{F} an ω^{α}-uniform family on $M \in \mathcal{U}$ and $\left(\gamma_{i}\right)_{i}$ an increasing sequence of ordinals converging to ω^{α} such that $\mathcal{F}_{\{i\}}$ is γ_{i}-uniform on M / i for every $i \in M$.

If $\alpha=\beta+1$, then for every $i \in M$ consider $n_{i} \in M$ such that $\omega^{\alpha} \cdot n_{i}<\gamma_{i} \leq$ $\omega^{\alpha} \cdot\left(n_{i}+1\right)$. Since $i \leq n_{i}$, for every $i \in M$ there is $M_{i} \subseteq M / i$ in U such that $\left(\mathcal{S}_{\alpha} \otimes \mathbb{N}^{[i]}\right) \upharpoonright M_{i} \subseteq \overline{\mathscr{F}_{\{i\}}}$. We consider now $N \subseteq M$ in \mathcal{U} such that $N / i \subseteq M_{i}$ for every $i \in N$. Then, we get that $\left(s_{\beta} \otimes \mathbb{N}^{[i]}\right) \upharpoonright N / i \subseteq \overline{\mathscr{F}}_{\{i\}}$ for every $i \in N$.

If α is a limit ordinal, then consider $\left(\alpha_{i}\right)_{i}$ a strictly increasing sequence of ordinals converging to α. For every $i \in M$, consider $n_{i} \in M$ such that $\omega^{\alpha_{i}} \leq \omega^{\alpha_{n_{i}}}<\gamma_{i} \leq \omega^{\alpha_{n_{i}+1}}$. Then, for every $i \in M$, we obtain $M_{i} \subseteq M / i$ such that $\wp_{\alpha_{i}} \upharpoonright M_{i} \subseteq \overline{\mathscr{F}_{\{i\}}}$. Finally, consider $N \subseteq M$ in \mathcal{U} such that $N / i \subseteq M_{i}$ for all $i \in N$, to get that $\delta_{\alpha_{i}} \upharpoonright N / i \subseteq \overline{\mathscr{F}_{\{i\}}}$ for every $i \in N$.

3 Main Results

In this section we will use Theorem 3.1 to prove our main theorem (Theorem 3.4), which, besides giving an alternative proof for the Baumgartner-Weiss theorem (Corollary 3.5), also provides a combinatorial description of a homogeneous set for the partition relation $\forall l>1, \overline{\mathscr{F}} \rightarrow(\operatorname{top} \overline{\mathscr{F}})_{l}^{1}$, where \mathscr{F} is an ω^{α}-uniform barrier.

In order to simplify the reading, the proof of Theorem 3.1 will be left to the next section.

Theorem 3.1 Given $l>1,0<\alpha<\omega_{1}, \mathcal{U}$ a selective ultrafilter, \mathcal{F} an ω^{α}-uniform barrier on some set $M \in \mathcal{U}$, and a coloring $f: \overline{\mathcal{F}} \longrightarrow l$, there exist a \mathcal{U}-tree T, an ω^{α}-uniform barrier \mathfrak{B}, on some set $N \subseteq M$ of \mathcal{U}, and a mapping $\varphi:(T \upharpoonright \mathscr{B}) \backslash\{\emptyset\} \longrightarrow \overline{\mathscr{F}} \backslash\{\emptyset\}$ such that

1. f is constant on $\operatorname{rg}(\varphi)$;
2. $s \subseteq \varphi(s)$ for every $\emptyset \neq s \in T \upharpoonright \mathscr{B}$;
3. $\min (\varphi(s))=\min (s)$ for every $\emptyset \neq s \in T \upharpoonright \mathcal{B} ;$
4. if $u \cup\{n\} \in T \upharpoonright \mathcal{B}$, then $\varphi(u \cup\{n\})=\varphi(u) \cup u_{n}$ for some finite set $u_{n}>\varphi(u)$;
5. if $u \cup\{n\}, u \cup\{m\} \in T \upharpoonright \mathscr{B}, u \neq \emptyset$ and $m>n$, then there is a finite set v such that $\varphi(u) \sqsubseteq v \sqsubset \varphi(u \cup\{m\}), \varphi(u \cup\{n\})$ and $\varphi(u \cup\{m\}) \backslash v>\varphi(u \cup\{n\}) \backslash v$; moreover, if $\{n\},\{m\} \in T \mid \mathcal{B}$ and $m>n$, then $\varphi(\{m\})>\varphi(\{n\})$.

Remark 3.2 As we will see in Section 4, the fact that Theorem 3.1 is stated in terms of selective ultrafilters and \mathcal{U}-trees will allow us to develop a shorter proof for it, since we will be able to restrict ourselves to infinite sets inside our original set M without having to carry out diagonalization procedures. However, notice that, given \mathscr{F} an ω^{α}-uniform barrier, and a coloring $f: \overline{\mathcal{F}} \longrightarrow l$, for any selective ultrafilter \mathcal{U} and any $M \in \mathcal{U}$, the barrier $\mathcal{F} \upharpoonright M$ is ω^{α}-uniform on M. Hence, if T, \mathscr{B}, and φ are as in Theorem 3.1, then, by Lemma 2.7, there will be $N \in M^{[\infty]}$ such that $T \cap(\mathscr{B} \upharpoonright N) \subseteq T \upharpoonright \mathscr{B}$ is an ω^{α}-uniform barrier on N. In this way, we obtain the following simplified version of Theorem 3.1 which is the one that we will essentially use.

Corollary 3.3 Given $l>1,0<\alpha<\omega_{1}, \mathcal{F}$ an ω^{α}-uniform barrier, and a coloring $f: \overline{\mathcal{F}} \longrightarrow l$, there exist an ω^{α}-uniform barrier \mathfrak{B}, on some set $M \in \mathbb{N}^{[\infty]}$, and a map $\varphi: \overline{\mathcal{B}} \backslash\{\varnothing\} \longrightarrow \overline{\mathscr{F}} \backslash\{\emptyset\}$ such that

1. f is constant on $r g(\varphi)$;
2. $s \subseteq \varphi(s)$ for every $\emptyset \neq s \in \overline{\mathcal{B}}$;
3. $\min (\varphi(s))=\min (s)$ for every $\emptyset \neq s \in \overline{\mathcal{B}}$;
4. if $u \cup\{n\} \in \overline{\mathcal{B}}$, then $\varphi(u \cup\{n\})=\varphi(u) \cup u_{n}$ for some finite set $u_{n}>\varphi(u)$;
5. if $u \cup\{n\}, u \cup\{m\} \in \overline{\mathcal{B}}, u \neq \emptyset$ and $m>n$, then there is a finite set v such that $\varphi(u) \sqsubseteq v \sqsubset \varphi(u \cup\{m\}), \varphi(u \cup\{n\})$ and $\varphi(u \cup\{m\}) \backslash v>\varphi(u \cup\{n\}) \backslash v$; moreover, if $\{n\},\{m\} \in \overline{\mathscr{B}}$ and $m>n$, then $\varphi(\{m\})>\varphi(\{n\})$.
Theorem 3.4 (Main theorem) Given $l>1,0<\alpha<\omega_{1}, \mathcal{F}$ an ω^{α}-uniform barrier, and a coloring $f: \overline{\mathcal{F}} \longrightarrow l$, there exist an ω^{α}-uniform barrier \mathfrak{B}, on some set $M \in \mathbb{N}^{[\infty]}$, and an \sqsubseteq-order-preserving embedding $\varphi: \overline{\mathcal{B}} \backslash\{\emptyset\} \longrightarrow \overline{\mathscr{F}} \backslash\{\emptyset\}$ such that f is constant on $r g(\varphi)$.

Proof We just need to prove that the map φ given by Corollary 3.3 is indeed an \sqsubseteq-order-preserving embedding. Notice that from property (4), φ is \sqsubseteq-orderpreserving and, moreover, that $\varphi^{\prime \prime}[s] \subseteq[\varphi(s)] \cap \operatorname{rg}(\varphi)$ for every $s \in \overline{\mathcal{B}} \backslash\{\emptyset\}$, where for a given $a \in \mathrm{FIN},[a]$ denotes the basic open $[a]=\{t \in \mathrm{FIN}: a \sqsubseteq t\}$. Thus, it follows that φ is continuous. For the injectivity, consider $a, b \in \overline{\mathcal{B}} \backslash\{\emptyset\}$ with $a \neq b$, and suppose $a \not \subset b$. Let $u \sqsubset a, b$ be such that $\min (a \backslash u) \neq \min (b \backslash u)$, say, $\min (b \backslash u)=m>n=\min (a \backslash u)$. Then, by properties (4) and (5), there is a finite set v such that $v \sqsubset \varphi(u \cup\{m\}), \varphi(u \cup\{n\})$ and $\varphi(u \cup\{n\}) \backslash v<\varphi(u \cup\{m\}) \backslash v \sqsubseteq \varphi(b) \backslash v$. Then, $\min (\varphi(u \cup\{n\}) \backslash v) \in \varphi(a) \backslash \varphi(b)$.
Corollary 3.5 (Baumgartner-Weiss) $\quad \omega^{\omega^{\alpha}} \rightarrow\left(\operatorname{top} \omega^{\omega^{\alpha}}\right)_{l}^{1}$, for every $l>1$ and every $0<\alpha<\omega_{1}$.

Proof Given $l>1$ and $0<\alpha<\omega_{1}$, we can always consider \mathscr{F} an ω^{α}-uniform barrier, whose closure (by Propositions 2.2 and 2.3(3)) is order-homeomorphic to $\omega^{\omega^{\alpha}}+1$. Then, given an l-coloring of $\omega^{\omega^{\alpha}}$, we naturally get an l-coloring of $\overline{\mathcal{F}}$. Then by Theorem 3.4, we get the conclusion.

4 Proof of Theorem 3.1

The aim of this section is to prove Theorem 3.1, which will be proved by induction on α. In Section 4.1 we deal with the base case $\alpha=1$, and then in Section 4.2 we carry out the inductive step.
4.1 The case $\alpha=1$ Let us fix $l>1, \mathcal{U}$ a selective ultrafilter, $M \in \mathcal{U}, \mathcal{F}$ an ω-uniform barrier on M, and a coloring $f: \overline{\mathscr{F}} \longrightarrow l$. Then we have the following.

Claim 4.1.1 There are $B \in \mathcal{U}$ and $l^{*}<l$ such that for every $s \in \mathcal{F} \upharpoonright B$, there is $\psi(s) \subseteq s$ such that if $n=\min (s)$, then
(i) $\forall x \in \psi(s)\left(f(\{0,1, \ldots, x\} \cap s)=l^{*}\right)$, and
(ii) $x \in \psi(s)$ iff $|\{0,1, \ldots, x\} \cap s|=m_{i}^{n}$ for some $0<i \leq k_{n}$,
where $k_{n}=|\psi(s)|$ and $0<m_{1}^{n}<m_{2}^{n}<\cdots<m_{k_{n}}^{n} \leq|s|$ depend only on $n \in B$.
Proof We start by choosing $\psi(s) \subseteq s$ for each $s \in \mathcal{F}$ as the biggest of the sets $\{x \in s: f(\{0,1, \ldots, x\} \cap s)=0\},\{x \in s: f(\{0,1, \ldots, x\} \cap s)=1\}$, $\ldots,\{x \in s:(\{0,1, \ldots, x\} \cap s)=l-1\}$ (if there are several of these sets with maximal size, pick and fix any of them). Define $\varphi_{0}: \mathcal{F} \longrightarrow l$ by

$$
\varphi_{0}(s)=i \quad \text { iff } \quad \forall x \in \psi(s) \quad(f(\{0,1, \ldots, x\} \cap s)=i)
$$

Since \mathcal{U} is selective and \mathscr{F} is a barrier, we can pick $A \subseteq M$ in U and $l^{*}<l$ such that $\varphi_{0}(s)=l^{*}$ for all $s \in \mathscr{F} \upharpoonright A$. That is,

$$
\begin{equation*}
\forall s \in \mathscr{F} \upharpoonright A \forall x \in \psi(s) \quad\left(f(\{0,1, \ldots, x\} \cap s)=l^{*}\right) . \tag{4.1}
\end{equation*}
$$

Since \mathcal{F} is an ω-uniform family on M, there exits $\left(m_{n}\right)_{n}$ a strictly increasing sequence of integers such that $\mathcal{F}_{\{n\}}=M^{\left[m_{n}\right]}$ for all $n \in M$. Therefore, if $t \in \mathcal{F}$ and $\min (t)=n$, then $|\psi(t)| \leq|t|=m_{n}+1$. Define $\varphi_{n}: \mathcal{F}_{\{n\}} \upharpoonright A \longrightarrow\left\{1,2, \ldots, m_{n}+1\right\}$, for every $n \in A$, by

$$
\varphi_{n}(s)=i \quad \text { iff } \quad|\psi(\{n\} \cup s)|=i
$$

Pick $L_{n} \subseteq A / n$ in \mathcal{U} such that φ_{n} is constant on $\mathcal{F}_{\{n\}} \upharpoonright L_{n}$. That is,
$\exists k_{n} \in\left\{1,2, \ldots, m_{n}+1\right\} \quad$ such that $|\psi(\{n\} \cup s)|=k_{n} \quad \forall s \in \mathcal{F}_{\{n\}} \upharpoonright L_{n}$. (4.2)
We now define $\psi_{n}: \mathcal{F}_{\{n\}} \upharpoonright L_{n} \longrightarrow \wp\left(m_{n}+2\right)$ by

$$
\psi_{n}(s)=\{|\{0,1, \ldots, x\} \cap(\{n\} \cup s)|: x \in \psi(\{n\} \cup s)\} .
$$

Then, pick $a_{n} \in \wp\left(m_{n}+2\right)$ and $M_{n} \subseteq L_{n}$ in U such that $\psi_{n}(s)=a_{n}$ for all $s \in \mathcal{F}_{\{n\}} \upharpoonright M_{n}$. That is, there are $0<m_{1}^{n}<m_{2}^{n}<\cdots<m_{k_{n}}^{n} \leq m_{n}+1$ such that for all $s \in \mathcal{F}_{\{n\}} \upharpoonright M_{n}$,

```
\(x \in \psi(\{n\} \cup s)\)
iff \(|\{0,1, \ldots, x\} \cap(\{n\} \cup s)|=m_{i}^{n} \quad\) for some \(0<i \leq k_{n}\).
```

With this procedure we obtain $\left(M_{n}\right)_{n \in A}$ as a sequence of sets in U and $\left(k_{n}\right)_{n \in A}$ and $\left\{\left(m_{i}^{n}\right)_{0<i \leq k_{n}}: n \in A\right\}$ as sequences of integers such that if $s \in \mathcal{F} \upharpoonright A$, $\min (s)=n$ and $s / n \in M_{n}$, then (by (4.1), (4.2), and (4.3)) we have the following:

1. $\forall x \in \psi(s)(f(\{0,1, \ldots, x\} \cap s))=l^{*}$;
2. $|\psi(s)|=k_{n}$;
3. $x \in \psi(s)$ if and only if $|\{0,1, \ldots, x\} \cap s|=m_{i}^{n}$ for some $0<i \leq k_{n}$.

Note that $m>k_{n} \cdot l$ implies $k_{m}>k_{n}$. Then we can assume, by shrinking A if necessary, that $\left(k_{n}\right)_{n \in A}$ is strictly increasing. On the other hand, by U being selective, we can pick $B \subseteq A$ in \mathcal{U} such that $B / n \subseteq M_{n}$ for all $n \in B$. This implies that for every $s \in \mathcal{F} \upharpoonright B$, if $\min (s)=n$, then

$$
\begin{align*}
& \text { (i) } \forall x \in \psi(s) \quad\left(f(\{0,1, \ldots, x\} \cap s)=l^{*}\right), \quad \text { and } \\
& \text { (ii) } x \in \psi(s) \quad \text { iff } \quad|\{0,1, \ldots, x\} \cap s|=m_{i}^{n} \quad \text { for some } 0<i \leq k_{n} . \tag{4.4}
\end{align*}
$$

Notice that by $B \in \mathcal{U}$ and \mathcal{U} being nonprincipal, $B^{[<\infty]}$ is a U-tree. Thus, if for $n \in B$ we put $r_{n}=\max \left\{m_{k_{i}}^{i}: i \leq n\right\}$ and we take $v_{n} \in B^{\left[r_{n}\right]}$ with $\min \left(v_{n}\right)>n$, then

$$
A_{n}:=\left\{m \in \mathbb{N}: \exists v \in B^{\left[r_{n}\right]}(m>v>n)\right\} \supseteq\left\{m \in \mathbb{N}: v_{n} \cup\{m\} \in B^{[<\infty]}\right\} \in \mathcal{U}
$$

Therefore, $A_{n} \in \mathcal{U}$ for every $n \in B$, and we can choose $M_{*} \subseteq B$ in U such that $M_{*} / n \subseteq A_{n}$ for every $n \in M_{*}$. Consider

$$
\mathcal{E}=\{\psi(s): s \in \mathscr{F} \upharpoonright B\} \subseteq \overline{\mathscr{F}} .
$$

Claim 4.1.2 There exist $N \subseteq M_{*}$ in \mathcal{U} and \mathfrak{B} an ω-uniform barrier on N such that $\mathcal{E}[N]=\overline{\mathscr{B}}$.

Proof Since $\mathcal{E}\left[M_{*}\right]$ is a precompact family on M_{*} and $\mathcal{E}\left[M_{*}\right][N]=\mathcal{E}[N]$ for every $N \in M_{*}^{[<\infty]}$, by Theorem 2.4, it is enough to show that $\mathscr{E}\left[M_{*}\right]$ has CantorBendixson rank ω.

To see this, we fix $p>1$ and $q \in M_{*}$ such that $k_{q}>p$. Then, it will be enough to show that $\left(M_{*} / k_{q}\right)^{[\leq p]} \subseteq \mathcal{E}\left[M_{*}\right]$. In the following, we will repeatedly use the fact that $B \backslash M_{*}$ is infinite, which follows from the choice of M_{*}. Let $x_{1}<x_{2}<\cdots<x_{p}$ be in M_{*} / k_{q}, and choose $u_{1}, u_{2}, \ldots, u_{p} \subseteq B$ with

$$
\begin{aligned}
\left|u_{1}\right| & =m_{1}^{q}-2 \quad \text { and } \quad q<u_{1}<x_{1} \\
\left|u_{2}\right| & =m_{2}^{q}-m_{1}^{q}-1 \quad \text { and } \quad x_{1}<u_{2}<x_{2}, \\
\left|u_{3}\right| & =m_{3}^{q}-m_{2}^{q}-1 \quad \text { and } \quad x_{2}<u_{3}<x_{3}, \\
\vdots & \\
\left|u_{p}\right| & =m_{p}^{q}-m_{p-1}^{q}-1 \quad \text { and } \quad x_{p-1}<u_{p}<x_{p} .
\end{aligned}
$$

By (4.4) we can choose $s_{1}, s_{2}, \ldots, s_{p} \in \mathscr{F} \upharpoonright B$ such that $\{q\} \cup u_{1} \cup\left\{x_{1}\right\} \sqsubset s_{1}$, $\{q\} \cup u_{1} \cup\left\{x_{1}\right\} \cup u_{2} \cup\left\{x_{2}\right\} \sqsubset s_{2},\{q\} \cup u_{1} \cup\left\{x_{1}\right\} \cup u_{2} \cup\left\{x_{2}\right\} \cup u_{3} \cup\left\{x_{3}\right\} \sqsubset s_{3}, \ldots$, $\{q\} \cup u_{1} \cup\left\{x_{1}\right\} \cup u_{2} \cup\left\{x_{2}\right\} \cup \cdots \cup u_{p} \cup\left\{x_{p}\right\} \sqsubset s_{p}$ and $s_{1} / x_{1}, s_{2} / x_{2}, s_{3} / x_{3}, \ldots$, $s_{p} / x_{p} \subseteq B \backslash M_{*}$. Then, $\left\{x_{1}\right\}=\psi\left(s_{1}\right) \cap M_{*},\left\{x_{1}, x_{2}\right\}=\psi\left(s_{2}\right) \cap M_{*}$, $\left\{x_{1}, x_{2}, x_{3}\right\}=\psi\left(s_{3}\right) \cap M_{*}, \ldots,\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{p}\right\}=\psi\left(s_{p}\right) \cap M_{*}$. Then, it follows that $\left(M_{*} / k_{q}\right)^{[\leq p]} \subseteq \mathcal{E}\left[M_{*}\right]$.

Let T be the \mathcal{U}-tree $M_{*}^{[<\infty]}$. Then we define $\varphi:(T \vee \mathcal{B}) \backslash\{\emptyset\} \longrightarrow \overline{\mathcal{F}} \backslash\{\varnothing\}$, satisfying the conclusions of the theorem as follows. If $\emptyset \neq t \in T \upharpoonright \mathcal{B}$, then there is $s \in \mathcal{F} \upharpoonright B$ such that $t=\psi(s) \cap N$. Let us put $\min (s)=p$ and $t=\left\{n_{1}, n_{2}, \ldots, n_{k}\right\}_{<}$; then we should have $k \leq k_{p} \leq k_{n_{1}}$ and $n_{2} \in A_{n_{1}}$,

$$
\begin{aligned}
n_{3} \in A_{n_{2}}, \ldots, & n_{k} \in \\
u_{n_{k-1}} . & \text { From this, we can define the following sets: } \\
u_{1}= & \left\{n_{1}\right\}, \\
u_{2}= & v_{2} \cup\left\{n_{2}\right\}, \quad \text { for } v_{2} \text { the }<_{\text {lex }}-\max v \subseteq B \text { with } \\
& |v|=m_{1}^{n_{1}}-2 \text { and } n_{2}>v>n_{1}, \\
u_{3}= & v_{3} \cup\left\{n_{3}\right\}, \quad \text { for } v_{3} \text { the }<_{\operatorname{lex}}-\max v \subseteq B \text { with } \\
& |v|=m_{2}^{n_{1}}-m_{1}^{n_{1}}-1 \text { and } n_{3}>v>n_{2}, \\
& \vdots \\
u_{k}= & v_{k} \cup\left\{n_{k}\right\}, \quad \text { for } v_{k} \text { the }<_{\operatorname{lex}}-\max v \subseteq B \text { with } \\
& |v|=m_{k-1}^{n_{1}}-m_{k-2}^{n_{1}}-1 \text { and } n_{k}>v>n_{k-1} .
\end{aligned}
$$

It is clear that the choice of such sets is uniquely determined by t. Take $\varphi(t)=\bigcup_{0<j \leq k} u_{j}$. Then as $u_{1}<u_{2}<\cdots<u_{k}$, we have $\min (\varphi(t))=n_{1}$ and $|\varphi(t)|=m_{k-1}^{n_{1}}$. Moreover, by (4.4) we can choose $v \in \mathcal{F} \upharpoonright B$ such that $\varphi(t) \sqsubset v$ and $\max (\varphi(t)) \in \psi(v)$, thus $f(\varphi(t))=l^{*}$. Then it is clear that φ defined in this way satisfies conditions (1)-(4) in the statement of Theorem 3.1. To see that φ also satisfies condition (5), note that if $t \cup\{m\}, t \cup\{n\} \in T \upharpoonright \mathcal{B}$ and $m>n$, then $\varphi(t \cup\{m\})=\bigcup_{0<j \leq k} u_{j} \cup u_{m}$ and $\varphi(t \cup\{n\})=\bigcup_{0<j \leq k} u_{j} \cup u_{n}$ with $u_{m}=v_{m} \cup\{m\}$ and $u_{n}=v_{n} \cup\{n\}$, for some $v_{m}, v_{n} \subseteq B$, such that $n_{k}<v_{m}<m$, $n_{k}<v_{n}<n$ and $\left|v_{m}\right|=\left|v_{n}\right|=m_{k}^{n_{1}}-m_{k-1}^{n_{1}}-1$. Moreover, $m \in A_{n}$. Therefore, there is $v \subseteq B$ such that $n<v<m$ and $|v| \geq m_{k_{n_{1}}}^{n_{1}} \geq m_{k}^{n_{1}}$. This, together with the fact that v_{m} should be taken as the $<_{\text {lex }}$-maximal with such properties, implies $u_{m}>u_{n}$.
4.2 The case $\boldsymbol{\alpha}>1$ Consider $1<\alpha<\omega_{1}, \boldsymbol{U}$ a selective ultrafilter, \mathcal{F} an ω^{α}-uniform barrier on $M \in \mathcal{U}$, and $f: \overline{\mathcal{F}} \longrightarrow l$ a finite coloring. Let us assume that Theorem 3.1 holds for every $0<\beta<\alpha$, and let us prove it for α.

Case α limit. By Lemma 2.11, we can consider $N \subseteq M$ in U such that $\delta_{\alpha_{i}} \upharpoonright N / i \subseteq \overline{\mathcal{F}_{\{i\}}}$ for every $i \in N$, where $\alpha=\sup _{i}\left(\alpha_{i}\right)$. Define the map $f_{k}: \overline{>_{\alpha_{k}}} \upharpoonright N / k \longrightarrow l$ by $f_{k}(t)=f(\{k\} \cup t)$, for every $k \in N$. Then, apply the inductive hypothesis to find a \mathcal{U}-tree T_{k}, an $\omega^{\alpha_{k}}$-uniform barrier \mathscr{B}_{k} on some set $M_{k} \subseteq N / k$ of \mathcal{U}, and a map $\varphi_{k}:\left(T_{k} \upharpoonright \mathscr{B}_{k}\right) \backslash\{\emptyset\} \longrightarrow\left(\overline{\mathcal{S}_{\alpha_{k}}} \upharpoonright N / k\right) \backslash\{\emptyset\}$ satisfying conditions (1)-(5). Let us put $f(\{k\} \cup t)=l_{k}$ for every $t \in \operatorname{rg}\left(\varphi_{k}\right)$.

Next, consider $A \subseteq N$ in U and $l^{*}<l$ such that $l_{k}=l^{*}$ and $A / k \subseteq M_{k}$ for all $k \in A$. Define a coloring $\theta: A^{[2]} \longrightarrow\{0,1\}$ by $\theta(\{k, m\})=1$ if there is $\{n\} \in T_{k} \upharpoonright \mathscr{B}_{k}$ such that $k<\varphi_{k}(\{n\})<m$, and $\theta(\{k, m\})=0$ if not. Then there is $M_{*} \subseteq A$ in \mathcal{U} such that θ is constant on $M_{*}^{[2]}$. Notice that θ should be constant 1 on $M_{*}^{[2]}$. If $k \in M_{*}$, then by property (5) of φ_{k}, there is $\{n\} \in T_{k} \upharpoonright \mathscr{B}_{k}$ such that $k<\varphi_{k}(\{n\})$. Therefore, for any $m \in M_{*}$ bigger than $\varphi_{k}(\{n\})$, we have $\theta(\{k, m\})=1$.

For each $k \in M_{*}$ let m_{k} be the minimal integer n such that $\{n\} \in T_{k} \upharpoonright \mathscr{B}_{k}$ and $k<\varphi_{k}(\{n\})<k^{+}$, where k^{+}denotes the successor of k in M_{*}. Since \mathscr{B}_{k} is an $\omega^{\alpha_{k}}$-uniform barrier on M_{k}, we can choose $\left(\gamma_{i}\left(\omega^{\alpha_{k}}\right)\right)_{i}$ a sequence of ordinals converging to $\omega^{\alpha_{k}}$ such that $\left(\mathscr{B}_{k}\right)_{\{i\}}$ is a $\gamma_{i}\left(\omega^{\alpha_{k}}\right)$-uniform barrier on M_{k} / i for each $i \in M_{k}$. Moreover, we can assume that $\omega^{\alpha_{k-1}}<\gamma_{i}\left(\omega^{\alpha_{k}}\right)<\omega^{\alpha_{k}}$ for all $i<\omega$. Then, it is clear that $\sup _{k}\left\{\gamma_{m_{k}}\left(\omega^{\alpha_{k}}\right)\right\}=\omega^{\alpha}$. On the other hand,
since $m_{k} \in \varphi_{k}\left(\left\{m_{k}\right\}\right)$, we get $x \geq k^{+}>m_{k}$ for every $x \in M_{*} / k$. Therefore, $M_{*} / k \subseteq A / m_{k} \subseteq M_{k} / m_{k}$. From this, $\left(\mathscr{B}_{k}\right)_{\left\{m_{k}\right\}}$ is a $\gamma_{m_{k}}\left(\omega^{\alpha_{k}}\right)$-uniform barrier on M_{*} / k for every $k \in M_{*}$. Thus, \mathfrak{B} defined by $\mathcal{B}=\bigcup_{k \in M_{*}}\left(\mathscr{B}_{k}\right)_{\left\{m_{k}\right\}} \oplus\{\{k\}\}$ is an ω^{α}-uniform barrier on M_{*}.

Let T be the \mathcal{U}-tree $T=\left(\bigcup_{k \in M_{*}}\left(T_{k}\right)_{\left\{m_{k}\right\}} \oplus\{\{k\}\}\right) \cup\{\emptyset\}$, and define the mapping $\varphi:(T \upharpoonright \mathcal{B}) \backslash\{\emptyset\} \longrightarrow \overline{\mathscr{F}} \backslash\{\emptyset\}$ by

$$
\varphi(s)=\{k\} \cup \varphi_{k}\left(\left\{m_{k}\right\} \cup s / k\right), \quad \text { if } \min (s)=k .
$$

Then it is clear that f is constant l^{*} on $\operatorname{rg}(\varphi)$ and that it satisfies conditions (2) and (3) of the statement. On the other hand, if $u \cup\{n\} \in T \upharpoonright \mathscr{B}$ and $\min (u)=k$, then $\varphi(u \cup\{n\})=\{k\} \cup \varphi_{k}\left(\left\{m_{k}\right\} \cup u / k \cup\{n\}\right)$, and since φ_{k} satisfies condition (4), there is a finite set $u_{n}>\varphi_{k}\left(\left\{m_{k}\right\} \cup u / k\right)$ such that $\varphi_{k}\left(\left\{m_{k}\right\} \cup u / k \cup\{n\}\right)=\varphi_{k}\left(\left\{m_{k}\right\} \cup u / k\right) \cup u_{n}$, and then $\varphi(u \cup\{n\})=\{k\} \cup$ $\varphi_{k}\left(\left\{m_{k}\right\} \cup u / k\right) \cup u_{n}=\varphi(u) \cup u_{n}$ with $u_{n}>\varphi(u)$. Moreover, if also $u \cup\{m\} \in T \upharpoonright \mathscr{B}$ and $m>n$, then $\left\{m_{k}\right\} \cup u / k \cup\{n\},\left\{m_{k}\right\} \cup u / k \cup\{m\}$ are in $T_{k} \upharpoonright \mathcal{B}_{k}$, and by the inductive hypothesis, there is a finite set v such that $\varphi_{k}\left(\left\{m_{k}\right\} \cup u / k\right) \sqsubseteq v \sqsubset \varphi_{k}\left(\left\{m_{k}\right\} \cup u / k \cup\{m\}\right), \varphi_{k}\left(\left\{m_{k}\right\} \cup u / k \cup\{n\}\right)$ and $\varphi_{k}\left(\left\{m_{k}\right\} \cup u / k \cup\{m\}\right) \backslash v>\varphi_{k}\left(\left\{m_{k}\right\} \cup u / k \cup\{n\}\right) \backslash v$, and then $\varphi(u)=\{k\} \cup$ $\varphi_{k}\left(\left\{m_{k}\right\} \cup u / k\right) \sqsubseteq\{k\} \cup v \sqsubset \varphi(u \cup\{m\}), \varphi(u \cup\{n\})$ and $\varphi(u \cup\{m\}) \backslash(\{k\} \cup v)=$ $\varphi_{k}\left(\left\{m_{k}\right\} \cup u / k \cup\{m\}\right) \backslash v>\varphi_{k}\left(\left\{m_{k}\right\} \cup u / k \cup\{n\}\right) \backslash v=\varphi(u \cup\{n\}) \backslash(\{k\} \cup v)$. Finally, note that if $\{k\},\left\{k^{\prime}\right\} \in T \upharpoonright \mathcal{B}$ and $k^{\prime}>k$, then $k^{\prime} \geq k^{+}>\varphi_{k}\left(\left\{m_{k}\right\}\right)>k$, which implies $\varphi\left(\left\{k^{\prime}\right\}\right)>\varphi(\{k\})$.

Case $\alpha=\beta+1$. By Lemma 2.11, we can consider $N \subseteq M$ in \mathcal{U} such that $\left(s_{\beta} \otimes \mathbb{N}^{[i]}\right) \upharpoonright N / i \subseteq \overline{\mathcal{F}_{\{i\}}}$ for every $i \in N$. Let us fix $k \in N$, and, in order to simplify notation, let us put $\mathscr{C}=\wp_{\beta} \upharpoonright N / k$. Notice that if $a_{1}<a_{2}<\cdots<a_{i}$ are in $\overline{\mathcal{C}}$ and $i \leq k$, then $\{k\} \cup a_{1} \cup a_{2} \cup \cdots \cup a_{i} \in \overline{\mathcal{F}}$.

Define $f_{0}: \overline{\mathcal{C}} \longrightarrow l$ by $f_{0}(u)=f(\{k\} \cup u)$, and apply the inductive hypothesis to find a \mathcal{U}-tree T_{0}, an ω^{β}-uniform barrier \mathscr{B}_{0}, on some set $M_{0} \subseteq N / k$ of \mathcal{U}, and a mapping $\varphi_{0}:\left(T_{0} \upharpoonright \mathcal{B}_{0}\right) \backslash\{\emptyset\} \longrightarrow \overline{\mathcal{C}} \backslash\{\emptyset\}$ satisfying conditions (1)-(5). Let us put

$$
f\left(\{k\} \cup \varphi_{0}(v)\right)=l_{0} \quad \forall v \in T_{0} \upharpoonright \mathscr{B}_{0}, v \neq \emptyset .
$$

For each $v \in T_{0} \cap \mathcal{B}_{0}$, define $f_{1}^{v}: \overline{\mathcal{C}} / \varphi_{0}(v) \longrightarrow l$ by $f_{1}^{v}(u)=f\left(\{k\} \cup \varphi_{0}(v) \cup u\right)$, and consider T_{1}^{v} a \mathcal{U}-tree, \mathscr{B}_{1}^{v} an ω^{β}-uniform barrier on some set of \mathcal{U}, and a mapping $\varphi_{1}^{v}:\left(T_{1}^{v} \upharpoonright \mathscr{B}_{1}^{v}\right) \backslash\{\emptyset\} \longrightarrow\left(\overline{\mathcal{C}} / \varphi_{0}(v)\right) \backslash\{\emptyset\}$ satisfying conditions (1)-(5). Let us put

$$
f\left(\{k\} \cup \varphi_{0}(v) \cup u\right)=l_{v} \quad \forall u \in \operatorname{rg}\left(\varphi_{1}^{v}\right) .
$$

By Lemma 2.7, there is $M_{1} \subseteq M_{0}$ in U such that $T_{0} \cap\left(\mathcal{B}_{0} \upharpoonright M_{1}\right)$ is an ω^{β}-uniform barrier on M_{1}. Moreover, by the selectivity of \mathcal{U}, we can assume that M_{1} is such that $l_{v}=l_{v^{\prime}}$ for every $v, v^{\prime} \in T_{0} \cap\left(\mathcal{B}_{0} \upharpoonright M_{1}\right)$. That is, there exits $l_{1}<l$ such that

$$
f\left(\{k\} \cup \varphi_{0}(v) \cup \varphi_{1}^{v}(w)\right)=l_{1} \quad \forall v \in T_{0} \cap\left(\mathscr{B}_{0} \upharpoonright M_{1}\right) \forall w \in T_{1}^{v} \upharpoonright \mathscr{B}_{1}^{v}, w \neq \emptyset .
$$

In general, by repeatedly applying the inductive hypothesis, we obtain for each $i<k$ a collection of U-trees $T_{0}, T_{1}^{v_{0}}, \ldots, T_{i}^{v_{0}, v_{1}, \ldots, v_{i-1}}$; a collection of ω^{β}-uniform barriers $\mathfrak{B}_{0}, \mathscr{B}_{1}^{v_{0}}, \ldots, \mathscr{B}_{i}^{v_{0}, v_{1}, \ldots, v_{i-1}}$ on some set of \mathcal{U}; a collection of mappings

$$
\begin{aligned}
& \varphi_{0}:\left(T_{0} \upharpoonright \mathscr{B}_{0}\right) \backslash\{\emptyset\} \longrightarrow \bar{e} \backslash\{\emptyset\}, \\
& \varphi_{1}^{v_{0}}:\left(T_{1}^{v_{0}} \upharpoonright \mathscr{B}_{1}^{v_{0}}\right) \backslash\{\emptyset\} \longrightarrow\left(\bar{e} / \varphi_{0}\left(v_{0}\right)\right) \backslash\{\emptyset\}
\end{aligned}
$$

$$
\begin{aligned}
& \vdots \\
& \varphi_{i}^{v_{0}, v_{1}, \ldots, v_{i-1}}: \\
& \quad\left(T_{i}^{v_{0}, v_{1}, \ldots, v_{i-1}} \upharpoonright \mathscr{B}_{i}^{v_{0}, v_{1}, \ldots, v_{i-1}}\right) \backslash\{\emptyset\} \longrightarrow\left(\overline{\mathcal{C}} / \varphi_{i-1}^{v_{0}, v_{1}, \ldots, v_{i-2}}\left(v_{i-1}\right)\right) \backslash\{\emptyset\},
\end{aligned}
$$

satisfying conditions (2)-(5) of the statement; a color $l_{i}<l$ and a set $M_{i} \in \mathcal{U}$ with $M_{i} \subseteq M_{i-1}$, such that if $v_{0} \in T_{0} \cap\left(\mathcal{B}_{0} \upharpoonright M_{i}\right), v_{1} \in T_{1}^{v_{0}} \cap\left(\mathscr{B}_{1}^{v_{0}} \upharpoonright M_{i}\right), \ldots$, $v_{i-1} \in T_{i-1}^{v_{0}, v_{1}, \ldots, v_{i-2}} \cap\left(\mathscr{B}_{i-1}^{v_{0}, v_{1}, \ldots, v_{i-2}} \upharpoonright M_{i}\right), \emptyset \neq v_{i} \in T_{i}^{v_{0}, v_{1}, \ldots, v_{i-1}} \upharpoonright$ $\mathscr{B}_{i}^{v_{0}, v_{1}, \ldots, v_{i-1}}$, then

$$
\begin{equation*}
f\left(\{k\} \cup \varphi_{0}\left(v_{0}\right) \cup \varphi_{1}^{v_{0}}\left(v_{1}\right) \cup \varphi_{2}^{v_{0}, v_{1}}\left(v_{2}\right) \cup \cdots \cup \varphi_{i}^{v_{0}, v_{1}, \ldots, v_{i-1}}\left(v_{i}\right)\right)=l_{i}, \tag{4.5}
\end{equation*}
$$

where the superscripts in $T_{j}^{v_{0}, v_{1}, \ldots, v_{j-1}}, \mathscr{B}_{j}^{v_{0}, v_{1}, \ldots, v_{j-1}}$, and $\varphi_{j}^{v_{0}, v_{1}, \ldots, v_{j-1}}$ indicate that the choice of the trees, the uniform barriers, and the mappings depends on the sets $v_{0}, v_{1}, \ldots, v_{j-1}$ previously fixed, for every $0<j \leq i$.

Later on, we find it convenient to regroup the superscripts if we have many of them. For example, if we put $\bar{v}=\left\{v_{0}, v_{1}, \ldots, v_{j-1}\right\}$, then $\varphi_{j}^{\bar{v}}=\varphi_{j}^{v_{0}, v_{1}, \ldots, v_{j-1}}$ indicates the dependence of the mapping on all the sets in \bar{v}, and we will do the same for the trees and the uniform barriers. Moreover, we will have a collection of such trees, barriers, and mappings as above for every different choice of $v_{0}, v_{1}, \ldots, v_{i-1}$. On the other hand, notice that by the choice of $\varphi_{j}^{v_{0}, v_{1}, \ldots, v_{j-1}}$, for every $j \leq i$, each of these maps satisfies conditions (2)-(5) of the statement of Theorem 3.1.

Until now, we have chosen a color $l_{i}<l$ for each $i<k$. Then, for k big enough, some of these colors must repeat, and then should exist $a_{k} \subseteq k$ and $l^{k}<l$ such that $l_{i}=l^{k}$ for every $i \in a_{k}$. Suppose $a_{k}=\left\{i_{1}, i_{2}, \ldots, i_{p}\right\}$; then $l_{i_{1}}=l_{i_{2}}=\cdots=l_{i_{p}}=l^{k}$. For future reference, we will put $p_{k}:=\left|a_{k}\right|=p$.

The following claim will allow us to define (below) a sequence of barriers (by varying $k \in N$) with uniformities converging to $\omega^{\beta+1}$, so that we may then proceed as in the α-limit case.

Claim 4.2.1 There exist an $\left(\omega^{\beta} \cdot p_{k}\right)$-uniform barrier \mathfrak{B}_{k} on some set of \mathcal{U}, a U-tree T_{k}, and a mapping $\varphi_{k}:\left(T_{k} \upharpoonright \mathscr{B}_{k}\right) \backslash\{\varnothing\} \longrightarrow \overline{\mathcal{F}_{\{k\}}} \backslash\{\varnothing\}$ satisfying conditions (2) and (4) and the following:

1'. $f\left(\{k\} \cup \varphi_{k}(u)\right)=l^{k}$ for every $\emptyset \neq u \in T_{k} \upharpoonright \mathscr{B}_{k}$,
5^{\prime}. if $u \cup\{n\}, u \cup\{m\} \in T_{k} \upharpoonright \mathscr{B}_{k}$ and $m>n$, then there is a finite set v such that $\varphi_{k}(u) \sqsubseteq v \sqsubset \varphi_{k}(u \cup\{m\}), \varphi_{k}(u \cup\{n\})$ and $\varphi_{k}(u \cup\{m\}) \backslash v>\varphi_{k}(u \cup\{n\}) \backslash v ;$ moreover, there is a finite set $a>k$ such that $a \sqsubset \varphi_{k}(\{n\})$ for every $\{n\} \in T_{k} \upharpoonright \mathfrak{B}_{k}$, and $\left(\varphi_{k}(\{n\}) \backslash a\right)_{n}$ is a block sequence.

Proof In the following, we will recursively define a U-tree $T_{i_{j}}$, an $\left(\omega^{\beta} \cdot j\right)$-uniform barrier $\mathscr{B}_{i_{j}}$ on some set of \mathcal{U}, and a map $\varphi_{i_{j}}:\left(T_{i_{j}} \upharpoonright \mathscr{B}_{i_{j}}\right) \backslash\{\emptyset\} \longrightarrow \overline{\mathcal{F}_{\{k\}}} \backslash\{\emptyset\}$ satisfying conditions (2), (4), (1'), and (5') (for $\varphi_{i_{j}}$ instead of φ_{k}) for each $0<j \leq p$, where $i_{i}, i_{2}, \ldots, i_{p}$ are the elements of a_{k}.

We start by fixing $v_{0} \in T_{0} \cap\left(\mathcal{B}_{0} \upharpoonright M_{i_{1}}\right), v_{1} \in T_{1}^{v_{0}} \cap\left(\mathscr{B}_{1}^{v_{0}} \upharpoonright M_{i_{1}}\right), \ldots, v_{i_{1}-1} \in$ $T_{i_{1}-1}^{v_{0}, \ldots, v_{i_{1}-2}} \cap\left(\mathcal{B}_{i_{1}-1}^{v_{0}, \ldots, v_{i_{1}-2}} \upharpoonright M_{i_{1}}\right)$, where all these structures are as in the argument above. Put $\bar{v}=\left\{v_{0}, v_{1}, \ldots, v_{i_{1}-1}\right\}, \mathscr{B}_{i_{1}}=\mathscr{B}_{i_{1}}^{\bar{v}}$, and $T_{i_{1}}=T_{i_{1}}^{\bar{v}}$, and define $\varphi_{i_{1}}:\left(T_{i_{1}} \upharpoonright \mathscr{B}_{i_{1}}\right) \backslash\{\emptyset\} \longrightarrow \overline{\mathcal{F}_{\{k\}}} \backslash\{\emptyset\}$ by

$$
\varphi_{i_{1}}(u)=\varphi_{0}\left(v_{0}\right) \cup \varphi_{1}^{v_{0}}\left(v_{1}\right) \cup \cdots \cup \varphi_{i_{1}-1}^{v_{0}, v_{1}, \ldots, v_{i_{1}-2}}\left(v_{i_{1}-1}\right) \cup \varphi_{i_{1}}^{\bar{v}}(u) .
$$

Then, by (4.5) we have

$$
f\left(\{k\} \cup \varphi_{i_{1}}(u)\right)=l_{i_{1}}=l^{k}
$$

Notice that $\varphi_{i_{1}}$ satisfies conditions (2) and (4) because $\varphi_{i_{1}}^{\bar{v}}$ does. Moreover, $\varphi_{i_{1}}$ satisfies (5^{\prime}) since $\varphi_{i_{1}}^{\bar{v}}$ satisfies (5), where we put $a=\varphi_{0}\left(v_{0}\right) \cup \varphi_{1}^{v_{0}}\left(v_{1}\right) \cup \cdots \cup$ $\varphi_{i_{1}-1}^{v_{0}, v_{1}, \ldots, v_{i_{1}-2}}\left(v_{i_{1}-1}\right)$ for the second part of statement (5'). Let $N_{i_{1}} \in U$ be the set on which $\mathscr{B}_{i_{1}}$ is defined.

In order to define $\varphi_{i_{2}}$, we will consider for each $u \in T_{i_{1}} \cap\left(\mathscr{B}_{i_{1}} \wedge M_{i_{2}}\right)$, sets $u_{i_{1}+1} \in T_{i_{1}+1}^{\bar{v}, u} \cap\left(\mathcal{B}_{i_{1}+1}^{\bar{v}, u} \upharpoonright M_{i_{2}}\right), u_{i_{1}+2} \in T_{i_{1}+2}^{\bar{v}, u, u_{i_{1}+1}} \cap\left(\mathcal{B}_{i_{1}+2}^{\bar{v}, u, u_{i_{1}+1}} \upharpoonright M_{i_{2}}\right)$, $\ldots, u_{i_{2}-1} \in T_{i_{2}-1}^{\bar{v}, u, u_{i_{1}+1}, \ldots, u_{i_{2}-2}} \cap\left(\mathscr{B}_{i_{2}-1}^{\bar{v}, u, u_{i_{1}+1}, \ldots, u_{i_{2}-2}} \upharpoonright M_{i_{2}}\right)$. Then we will put $\bar{u}=\left\{u, u_{i_{1}+1}, \ldots, u_{i_{2}-1}\right\}$, and we will fix the uniform barrier $\mathscr{B}_{i_{2}}^{\bar{v}, \bar{u}}$. Let $M_{i_{2}}^{\bar{v}, \bar{u}} \in U$ be the set where $\mathscr{B}_{i_{2}}^{\bar{v}, \bar{u}}$ is defined. We choose, by selectivity, a set $N_{i_{2}} \subseteq M_{i_{2}} \cap N_{i_{1}}$ in U such that $N_{i_{2}} / u \subseteq M_{i_{2}}^{\bar{v}, \bar{u}}$ for every $u \in N_{i_{2}}^{[<\infty]}$. Let us now define $\mathscr{B}_{i_{2}}$ and $T_{i_{2}}$ by

$$
\begin{aligned}
\mathcal{B}_{i_{2}} & =\bigcup_{u \in T_{i_{1}} \cap\left(\mathcal{B}_{i_{1}} \uparrow N_{i_{2}}\right)} \mathcal{B}_{i_{2}}^{\bar{v}, \bar{u}} \oplus\{u\}, \\
T_{i_{2}} & =\left(\bigcup_{u \in T_{i_{1}} \cap\left(\mathcal{B}_{i_{1}} \uparrow N_{i_{2}}\right)} T_{i_{2}}^{\bar{v}, \bar{u}} \oplus\{u\}\right) \cup\left(T_{i_{1}} \cap \overline{\left(\mathcal{B}_{i_{1}} \upharpoonright N_{i_{2}}\right)}\right) .
\end{aligned}
$$

Clearly, $T_{i_{2}}$ is a U-tree. Moreover, by Lemma 2.7, we may assume that $N_{i_{2}}$ is such that $T_{i_{1}} \cap\left(\mathcal{B}_{i_{1}} \upharpoonright N_{i_{2}}\right)$ is an ω^{β}-uniform barrier on $N_{i_{2}}$. Therefore, $\mathscr{B}_{i_{2}}$ is a barrier on $N_{i_{2}}$ with $\mathrm{rk}_{\mathrm{CB}}\left(\overline{\mathcal{B}_{i_{2}}}\right)=\omega^{\beta} \cdot 2$. Thus, by Theorem 2.5, we may assume, moreover, that $N_{i_{2}}$ was taken such that $\mathscr{B}_{i_{2}}$ is in fact an $\left(\omega^{\beta} \cdot 2\right)$-uniform barrier on $N_{i_{2}}$.

Define $\varphi_{i_{2}}:\left(T_{i_{2}} \upharpoonright \mathcal{B}_{i_{2}}\right) \backslash\{\emptyset\} \longrightarrow \overline{\mathcal{F}_{\{k\}}} \backslash\{\emptyset\}$ by $\varphi_{i_{2}}(s)=\varphi_{i_{1}}(s)$, if $s \in T_{i_{1}} \cap \overline{\left(\mathcal{B}_{i_{1}} \upharpoonright N_{i_{2}}\right)}$; and $\varphi_{i_{2}}(s)=\varphi_{i_{1}}(u) \cup \varphi_{i_{1}+1}^{\bar{v}, u}\left(u_{i_{1}+1}\right) \cup \varphi_{i_{1}+2}^{\bar{v}, u, u_{i_{1}+1}}\left(u_{i_{1}+2}\right) \cup \cdots$ $\cup \varphi_{i_{2}-1}^{\bar{v}, u, \ldots, u_{i_{2}-2}}\left(u_{i_{2}-1}\right) \cup \varphi_{i_{2}}^{\bar{v}, \bar{u}}(w)$, if $s=u \cup w$ with $u<w, u \in T_{i_{1}} \cap\left(\mathcal{B}_{i_{1}} \upharpoonright N_{i_{2}}\right)$ and $w \neq \emptyset$.

Clearly, $\varphi_{i_{2}}$ satisfies condition (2) since $\varphi_{i_{1}}$ and $\varphi_{i_{2}}^{\bar{v}, \bar{u}}$ do. Notice that by (4.5), we have $f\left(\{k\} \cup \varphi_{i_{2}}(s)\right) \in\left\{l_{i_{1}}, l_{i_{2}}\right\}$ for all $s \in T_{i_{2}} \upharpoonright \mathcal{B}_{i_{2}} \backslash\{\emptyset\}$, but $l_{i_{1}}=l_{i_{2}}=l^{k}$. Therefore,

$$
f\left(\{k\} \cup \varphi_{i_{2}}(s)\right)=l^{k} \quad \text { for all } \emptyset \neq s \in T_{i_{2}} \upharpoonright \mathcal{B}_{i_{2}}
$$

Moreover, $\varphi_{i_{2}}$ satisfies conditions (4) and (5'). Indeed, if $u \cup\{n\} \in T_{i_{2}} \upharpoonright \mathscr{B}_{i_{2}}$ and $u \cup\{n\} \in T_{i_{1}} \cap \overline{\left(\mathcal{B}_{i_{1}} \upharpoonright N_{i_{2}}\right)}$, then condition (4) holds since $\varphi_{i_{1}}$ satisfies it. If $u \in T_{i_{1}} \cap\left(\mathscr{B}_{i_{1}} \upharpoonright N_{i_{2}}\right)$, then by definition of $\varphi_{i_{2}}$, we have $\varphi_{i_{2}}(u)=\varphi_{i_{1}}(u)$ and $\varphi_{i_{2}}(u \cup\{n\})=\varphi_{i_{2}}(u) \cup \varphi_{i_{1}+1}^{\bar{v}, u}\left(u_{i_{1}+1}\right) \cup \varphi_{i_{1}+2}^{\bar{v}, u, u_{i_{1}+1}}\left(u_{i_{1}+2}\right) \cup \cdots \cup$ $\varphi_{i_{2}-1}^{\bar{v}, u, \ldots, u_{i_{2}-2}}\left(u_{i_{2}-1}\right) \cup \varphi_{i_{2}}^{\bar{v}, \bar{u}}(\{n\})$. Then take $u_{n}=\varphi_{i_{1}+1}^{\bar{v}, u}\left(u_{i_{1}+1}\right) \cup \varphi_{i_{1}+2}^{\bar{v}, u, u_{i_{1}+1}}\left(u_{i_{1}+2}\right) \cup$ $\cdots \cup \varphi_{i_{2}-1}^{\bar{v}, u, \ldots, u_{i_{2}-2}}\left(u_{i_{2}-1}\right) \cup \varphi_{i_{2}}^{\bar{v}, \bar{u}}(\{n\})$ to get (4). Finally, if $u \notin T_{i_{1}} \cap \overline{\left(\mathcal{B}_{i_{1}} \upharpoonright N_{i_{2}}\right)}$, then (4) holds for $\varphi_{i_{2}}$ since $\varphi_{i_{2}}^{\bar{v}, \bar{u}}$ satisfies it.

To see that $\varphi_{i_{2}}$ satisfies condition (5'), consider $u \cup\{m\} \in T_{i_{2}} \upharpoonright \mathscr{B}_{i_{2}}$ with $m>n$. Then, if $u \in T_{i_{1}} \cap\left(\mathscr{B}_{i_{1}} \upharpoonright N_{i_{2}}\right)$, we have

$$
\begin{aligned}
\varphi_{i_{2}}(u \cup\{m\})= & \varphi_{i_{2}}(u) \cup \varphi_{i_{1}+1}^{\bar{v}, u}\left(u_{i_{1}+1}\right) \cup \varphi_{i_{1}+2}^{\bar{v}, u, u_{i_{1}+1}}\left(u_{i_{1}+2}\right) \cup \cdots \\
& \cup \varphi_{i_{2}-1}^{\bar{v}, u, \ldots, u_{i_{2}-2}}\left(u_{i_{2}-1}\right) \cup \varphi_{i_{2}}^{\bar{v}, \bar{u}}(\{m\}), \\
\varphi_{i_{2}}(u \cup\{n\})= & \varphi_{i_{2}}(u) \cup \varphi_{i_{1}+1}^{\bar{v}, u}\left(u_{i_{1}+1}\right) \cup \varphi_{i_{1}+2}^{\bar{v}, u, u_{i_{1}+1}}\left(u_{i_{1}+2}\right) \cup \cdots \\
& \cup \varphi_{i_{2}-1}^{\bar{v}, u, \ldots, u_{i_{2}-2}}\left(u_{i_{2}-1}\right) \cup \varphi_{i_{2}}^{\bar{v}, \bar{u}}(\{n\}) .
\end{aligned}
$$

Thus, since $\varphi_{i_{2}}^{\bar{v}, \bar{u}}$ satisfies condition (5), we have $\varphi_{i_{2}}^{\bar{v}, \bar{u}}(\{m\})>\varphi_{i_{2}}^{\bar{v}, \bar{u}}(\{n\})$. Therefore, if we put

$$
w=\varphi_{i_{2}}(u) \cup \varphi_{i_{1}+1}^{\bar{v}, u}\left(u_{i_{1}+1}\right) \cup \varphi_{i_{1}+2}^{\bar{v}, u, u_{i_{1}+1}}\left(u_{i_{1}+2}\right) \cup \cdots \cup \varphi_{i_{2}-1}^{\bar{v}, u, \ldots, u_{i_{2}-2}}\left(u_{i_{2}-1}\right),
$$

then $\varphi_{i_{2}}(u) \sqsubset w \sqsubset \varphi_{i_{2}}(u \cup\{m\}), \varphi_{i_{2}}(u \cup\{n\})$ and $\varphi_{i_{2}}(u \cup\{m\}) \backslash w>\varphi_{i_{2}}(u \cup\{n\}) \backslash w$.
If $u=u^{\prime} \cup x$ with $u^{\prime} \in T_{i_{1}} \cap\left(\mathcal{B}_{i_{1}} \upharpoonright N_{i_{2}}\right)$ and $x \neq \emptyset$, then

$$
\begin{aligned}
\varphi_{i_{2}}(u)= & \varphi_{i_{1}}\left(u^{\prime}\right) \cup \varphi_{i_{1}+1}^{\bar{v}, u^{\prime}}\left(u_{i_{1}+1}^{\prime}\right) \cup \varphi_{i_{1}+2}^{\bar{v}, u^{\prime}, u_{i_{1}+1}^{\prime}}\left(u_{i_{1}+2}^{\prime}\right) \cup \cdots \\
& \cup \varphi_{i_{2}-1}^{\bar{v}, u^{\prime}, \ldots, u_{i_{2}-2}^{\prime}}\left(u_{i_{2}-1}^{\prime}\right) \cup \varphi_{i_{2}}^{\bar{v}, u^{\prime}}(x), \\
\varphi_{i_{2}}(u \cup\{m\})= & \varphi_{i_{1}}\left(u^{\prime}\right) \cup \varphi_{i_{1}+1}^{\bar{v}, u^{\prime}}\left(u_{i_{1}+1}^{\prime}\right) \cup \varphi_{i_{1}+2}^{\bar{v}, u^{\prime}, u_{i_{1}+1}^{\prime}}\left(u_{i_{1}+2}^{\prime}\right) \cup \cdots \\
& \cup \varphi_{i_{2}-1}^{\bar{v}, u^{\prime}, \ldots, u_{i_{2}-2}^{\prime}}\left(u_{i_{2}-1}^{\prime}\right) \cup \varphi_{i_{2}}^{\bar{v}, \overline{u^{\prime}}}(x \cup\{m\}), \\
\varphi_{i_{2}}(u \cup\{n\})= & \varphi_{i_{1}}\left(u^{\prime}\right) \cup \varphi_{i_{1}+1}^{\bar{v}, u^{\prime}}\left(u_{i_{1}+1}^{\prime}\right) \cup \varphi_{i_{1}+2}^{\bar{v}, u^{\prime}, u_{i_{1}+1}^{\prime}}\left(u_{i_{1}+2}^{\prime}\right) \cup \cdots \\
& \cup \varphi_{i_{2}-1}^{\bar{v}, u^{\prime}, \ldots, u_{i_{2}-2}^{\prime}}\left(u_{i_{2}-1}^{\prime}\right) \cup \varphi_{i_{2}}^{\bar{v}, \overline{u^{\prime}}}(x \cup\{n\}) .
\end{aligned}
$$

Thus, using property (5) of $\varphi_{i_{2}}^{\bar{v}, \overline{u^{\prime}}}$, we get a finite set w such that $\varphi_{i_{2}}^{\bar{v}, \overline{u^{\prime}}}(x) \sqsubseteq w \sqsubset$ $\varphi_{i_{2}}^{\bar{v}, \overline{u^{\prime}}}(x \cup\{m\}), \varphi_{i_{2}}^{\bar{v}, \overline{u^{\prime}}}(x \cup\{n\})$ and $\varphi_{i_{2}}^{\bar{v}, \overline{u^{\prime}}}(x \cup\{m\}) \backslash w>\varphi_{i_{2}}^{\bar{v}, \overline{u^{\prime}}}(x \cup\{n\}) \backslash w$. Then, if we put $w^{\prime}=\varphi_{i_{1}}\left(u^{\prime}\right) \cup \varphi_{i_{1}+1}^{\bar{v}, u^{\prime}}\left(u_{i_{1}+1}^{\prime}\right) \cup \varphi_{i_{1}+2}^{\bar{v}, u^{\prime}, u_{i_{1}+1}^{\prime}}\left(u_{i_{1}+2}^{\prime}\right) \cup \cdots \cup \varphi_{i_{2}-1}^{\bar{v}, u^{\prime}, \ldots, u_{i_{2}-2}^{\prime}}\left(u_{i_{2}-1}^{\prime}\right)$, we get $\varphi_{i_{2}}(u) \sqsubseteq w^{\prime} \cup w \sqsubset \varphi_{i_{2}}(u \cup\{m\}), \varphi_{i_{2}}(u \cup\{n\})$ and $\varphi_{i_{2}}(u \cup\{m\}) \backslash\left(w^{\prime} \cup w\right)>$ $\varphi_{i_{2}}(u \cup\{n\}) \backslash\left(w^{\prime} \cup w\right)$.

Finally, notice that $\varphi_{i_{2}}$ satisfies the second part of (5^{\prime}) since $\varphi_{i_{2}}(\{n\})=\varphi_{i_{1}}(\{n\})$, for every $\{n\} \in T_{i_{2}} \upharpoonright \mathscr{\mathcal { B }}_{i_{2}}$. Then, we conclude that $\varphi_{i_{2}}$ satisfies conditions (2), (4), (1^{\prime}), and (5^{\prime}).

Take $1<r<p$, and suppose that for every $1<j \leq r$, we have already defined an infinite set $N_{i_{j}} \subseteq M_{i_{j}}$ in \mathcal{U}, an $\left(\omega^{\beta} \cdot j\right)$-uniform barrier $\mathscr{B}_{i_{j}}$ on $N_{i_{j}}$, a \mathcal{U}-tree $T_{i_{j}}$, and a mapping $\varphi_{i_{j}}:\left(T_{i_{j}} \upharpoonright \mathscr{B}_{i_{j}}\right) \backslash\{\emptyset\} \longrightarrow \overline{\mathcal{F}_{\{k\}}} \backslash\{\emptyset\}$ satisfying the following conditions:

$$
\mathscr{B}_{i_{j}}=\bigcup_{u \in T_{i_{j-1}} \cap\left(\mathcal{B}_{i_{j-1}} \upharpoonright N_{i_{j}}\right)} \mathcal{B}_{i_{j}}^{\bar{v}, \overline{u^{1}}, \overline{u^{2}}, \ldots, \overline{u^{j-1}}} \oplus\{u\},
$$

where

$$
\begin{aligned}
& \cdot u=u^{1} \cup u^{2} \cup \cdots \cup u^{j-1} \text { with } u^{1} \in T_{i_{1}} \cap\left(\mathscr{B}_{i_{1}} \upharpoonright N_{i_{2}}\right), u^{1} \cup u^{2} \in \\
& T_{i_{2}} \cap\left(\mathcal{B}_{i_{2}} \upharpoonright N_{i_{3}}\right), \ldots, u^{1} \cup u^{2} \cup \cdots \cup u^{j-2} \in T_{i_{j-2}} \cap\left(\mathcal{B}_{i_{j-2}} \upharpoonright N_{i_{j-1}}\right),
\end{aligned}
$$

$\cdot u^{j-1} \in T_{i_{j-1}}^{\bar{v}, \overline{u^{1}}, \ldots, \overline{u^{j-2}}} \cap\left(B_{i_{j-1}}^{\bar{v}, \overline{u^{1}}, \ldots, \overline{u^{j-2}}} \uparrow M_{i_{j}}\right)$,

$u_{i_{j-1}}^{j-1} \in T_{i_{j}-1}^{\bar{v}, \overline{u^{1}}, \ldots, \overline{u^{j-2}}, u^{j-1}, u_{j-1+1}^{j-1}, \ldots, u_{i_{j}-2}^{j-1}} \cap$
$\left.\begin{array}{l}\left(B_{i_{j}-1}^{\bar{v}, u^{1}}, \ldots, u^{j-2}, u^{j-1}, u_{j-1+1}^{j-1}, \ldots, u_{i_{j}-2}^{j-1}\right.\end{array} M_{i_{j}}\right)$,
$\cdot \overline{u^{j-1}}=\left\{u^{j-1}, u_{i_{j-1}+1}^{j-1}, \ldots, u_{i_{j}-1}^{j-1}\right\}$,

- $f\left(\{k\} \cup \varphi_{i_{j}}(u)\right)=l^{k}$ for every $\emptyset \neq u \in T_{i_{j}} \upharpoonright \mathcal{B}_{i_{j}}$,
- $\varphi_{i j}$ satisfies conditions (2), (4), and (5'), and
- if $s=u \cup x$ with $x \in \mathscr{B}_{i_{j}}^{\bar{v}, \overline{u^{1}}, \overline{u^{2}}, \ldots, \overline{u^{j-1}}}$, then

$$
\begin{aligned}
\varphi_{i_{j}}(s)= & \varphi_{i_{j-1}}(u) \cup \varphi_{i_{j-1}+1}^{\bar{v}, \overline{u^{1}}, \ldots, \overline{u^{j-2}}, u^{j-1}}\left(u_{i_{j-1}+1}^{j-1}\right) \\
& \bar{v}, \overline{u^{1}}, \ldots, \overline{u^{j-2}}, u^{j-1}, u_{i_{j-1}^{j-1}+1} \\
& \left.\cup u_{i_{j-1}+2}^{j-1}\right) \\
& \cup \cdots \cup \varphi_{i_{j-1}+2}^{\bar{v}, \overline{u^{1}}, \ldots, \overline{u^{j-2}}, \overline{u^{j-1}}}(x) .
\end{aligned}
$$

Let us define $\mathcal{B}_{i_{r+1}}, T_{i_{r+1}}$, and $\varphi_{i_{r+1}}$ satisfying all those conditions. Notice that for each $w \in T_{i_{r}} \cap\left(\mathcal{B}_{i_{r}} \upharpoonright M_{i_{r+1}}\right)$, there is $u \in T_{i_{r-1}} \cap\left(\mathcal{B}_{i_{r-1}} \upharpoonright N_{i_{r}}\right)$ as in the list above (we fix $u^{1}, u^{2}, \ldots, u^{r-1}$ verifying those conditions) and
 fix

$$
\begin{aligned}
& x_{i_{r}+1} \in T_{i_{r+1}}^{\bar{v}, \overline{u^{1}}, \ldots, \overline{u^{r-1}}, x} \cap\left(\mathscr{B}_{i_{r}+1}^{\bar{v} \overline{u^{1}}, \ldots, \overline{u^{r-1}}, x} \uparrow M_{i_{r+1}}\right) \\
& x_{i_{r}+2} \in T_{i_{r+2}}^{\bar{v}, \overline{u^{1}}, \ldots, \overline{u^{r-1}}, x, x_{i_{r+1}} \cap\left(\mathscr{B}_{i_{r}+2}^{\bar{v}, \overline{u^{1}}, \ldots, \overline{u^{r-1}}, x, x_{i_{r}+1}} \uparrow M_{i_{r+1}}\right)} \begin{array}{l}
\vdots \\
x_{i_{r+1}-1} \in T_{i_{r+1}-1}^{\bar{v}, \overline{u^{1}}, \ldots, \overline{u^{r-1}}, x, x_{i_{r}+1}, \ldots, x_{i_{r+1}-2}} \\
\quad \cap\left(\mathscr{B}_{i_{r+1}-1}^{\bar{v}, \overline{u^{1}}, \ldots, \overline{u^{r-1}}, x, x_{i_{r}+1}, \ldots, x_{i_{r+1}-2}} \uparrow M_{i_{r+1}}\right)
\end{array} .
\end{aligned}
$$

and put $\bar{x}=\left\{x, x_{i_{r}+1}, \ldots, x_{i_{r+1}-1}\right\}$. Arguing as we did for $j=2$, we can take $N_{i_{r+1}} \subseteq M_{i_{r+1}}$ in \mathcal{U} such that $\mathcal{B}_{i_{r+1}}$ defined as below is a uniform barrier on $N_{i_{r+1}}$,

$$
\mathcal{B}_{i_{r+1}}=\bigcup_{w \in T_{i_{r}} \cap\left(\mathcal{B}_{i_{r}} \upharpoonright N_{i_{r+1}}\right)} \mathcal{B}_{i_{r}}^{\bar{v}, \overline{u^{1}}, \ldots, \overline{u^{r-1}}, \bar{x}} \oplus\{w\}
$$

where $w=u^{1} \cup u^{2} \cup \cdots \cup u^{r-1} \cup x$ and all the sets $u^{1}, u^{2}, \ldots, u^{r-1}, x$ are determined as before for every $w \in T_{i_{r}} \cap\left(\mathcal{B}_{i_{r}} \upharpoonright M_{i_{r+1}}\right)$. Define the \mathcal{U}-tree $T_{i_{r+1}}$ by

$$
T_{i_{r+1}}=\left(\bigcup_{w \in T_{i r} \cap\left(\mathcal{B}_{i r} \upharpoonright N_{i_{r+1}}\right)} T_{i_{r+1}}^{\bar{v} \overline{u^{1}}, \ldots, \overline{u^{r-1}}, \bar{x}} \oplus\{w\}\right) \cup\left(T_{i_{r}} \cap \overline{\left(\mathscr{B}_{i_{r}} \upharpoonright N_{i_{r+1}}\right)}\right)
$$

and the mapping $\varphi_{i_{r+1}}:\left(T_{i_{r+1}} \upharpoonright \mathscr{B}_{i_{r+1}}\right) \backslash\{\emptyset\} \longrightarrow \overline{\mathcal{F}_{\{k\}}} \backslash\{\emptyset\}$ by $\varphi_{i_{r+1}}(s)=\varphi_{i_{r}}(s)$, if $s \in T_{i_{r}} \cap \overline{\left(\mathcal{B}_{i_{r}} \upharpoonright N_{i_{r+1}}\right)}$; and $\varphi_{i_{r+1}}(s)=\varphi_{i_{r}}(w) \cup \varphi_{i_{r}+1}^{\bar{v}, \overline{u^{1}}, \ldots, u^{r-1}, x}\left(x_{i_{r}+1}\right) \cup \cdots \cup$ $\varphi_{i_{r+1}-1}^{\bar{v}, \overline{u^{1}}, \ldots, \overline{u^{r-1}}, x, \ldots, x_{i_{r+1}-2}}\left(x_{i_{r+1}-1}\right) \cup \varphi_{i_{r+1}}^{\bar{v}, \overline{u^{1}}, \ldots, \overline{u^{r-1}}, \bar{x}}(y)$, if $s=w \cup y, w=u^{1} \cup u^{2} \cup$ $\cdots \cup u^{r-1} \cup x$ with $x<y \neq \emptyset$ and $u^{1}, u^{2}, \ldots, u^{r-1}, x$ are defined as above for $w \in T_{i_{r}} \cap\left(\mathcal{B}_{i_{r}} \upharpoonright N_{i_{r+1}}\right)$.

Then, given $s \in\left(T_{i_{r+1}} \upharpoonright \mathscr{B}_{i_{r+1}}\right) \backslash\{\emptyset\}$, if $s \in T_{i_{r}} \cap \overline{\left(\mathcal{B}_{i_{r}} \backslash N_{i_{r+1}}\right)}$, we get by hypothesis that $f\left(\{k\} \cup \varphi_{i_{r+1}}(s)\right)=f\left(\{k\} \cup \varphi_{i_{r}}(s)\right)=l^{k}$. Moreover, by the last condition on the list and (4.5), we have that $f\left(\{k\} \cup \varphi_{i_{r+1}}(s)\right)=l_{i_{r+1}}=l^{k}$ if $s \notin T_{i_{r}} \cap \overline{\left(\mathscr{B}_{i_{r}} \upharpoonright N_{i_{r+1}}\right)}$. In order to verify that $\varphi_{i_{r+1}}$ satisfies conditions (4) and $\left(5^{\prime}\right)$, we just need to proceed as we did for $j=2$. Note, moreover, that $\mathscr{B}_{i_{r+1}}$ is $\left(\omega^{\beta} \cdot(r+1)\right.$)-uniform on $N_{i_{r+1}}$ because, by Lemma 2.7, we can choose $N_{i_{r+1}}$ such that $T_{i_{r}} \cap\left(\mathcal{B}_{i_{r}} \upharpoonright N_{i_{r+1}}\right)$ is ($\omega^{\beta} \cdot r$)-uniform on $N_{i_{r+1}}$ and $\mathscr{B}_{i_{r}}^{\bar{v}, \overline{u^{1}}, \ldots, \overline{u^{r-1}}, \bar{x}}$ is ω^{β}-uniform on $N_{i_{r+1}} / w$ for every $w=u^{1} \cup \cdots \cup u^{r-1} \cup x \in T_{i_{r}} \cap\left(\mathcal{B}_{i_{r}} \upharpoonright N_{i_{r+1}}\right)$. This finishes the recursion.

Then, we have proved Claim 4.2.1 once we take $\mathscr{B}_{k}=\mathscr{B}_{i_{p}}, T_{k}=T_{i_{p}}$, and $\varphi_{k}=\varphi_{i_{p}}$.

We are almost ready now to define φ satisfying the conditions in Theorem 3.1. First, we apply Claim 4.2.1 for every $k \in N$ in order to get an $\left(\omega^{\beta} \cdot p_{k}\right)$-uniform barrier \mathscr{B}_{k} on some set $N_{k} \in \mathcal{U}$, a \mathcal{U}-tree T_{k}, and a mapping $\varphi_{k}:\left(T_{k} \upharpoonright \mathscr{B}_{k}\right) \backslash\{\emptyset\} \longrightarrow$ $\overline{\mathcal{F}_{\{k\}}} \backslash\{\emptyset\}$ satisfying (1'), (2), (4), and (5'), where $p_{k}=\left|a_{k}\right|$. Moreover, we can choose $A \subseteq N$ in U and $l^{*}<l$ such that $A / k \subseteq N_{k}$ and $l^{k}=l^{*}$ for every $k \in A$. Arguing as in the α-limit case, we may also assume that for every $\{k, m\} \in A^{[2]}$ there is $\{n\} \in T_{k} \upharpoonright \mathcal{B}_{k}$ such that $k<\varphi_{k}(\{n\})<m$, and take m_{k} the smallest integer satisfying such a property when $m=k^{+}$is the successor of k in A. For every $k \in A$, consider $\left(\gamma_{i}^{k}\left(\omega^{\beta} \cdot p_{k}\right)\right)_{i}$ an increasing sequence of ordinals converging to $\omega^{\beta} \cdot p_{k}$ such that $\left(\mathscr{B}_{k}\right)_{\{i\}}$ is a $\gamma_{i}^{k}\left(\omega^{\beta} \cdot p_{k}\right)$-uniform barrier on N_{k} / i and $\omega^{\beta} \cdot p_{k-1}<\gamma_{i}^{k}\left(\omega^{\beta} \cdot p_{k}\right)<\omega^{\beta} \cdot p_{k}$ for every $i \in N_{k}$. Then, as $p_{k} \rightarrow \infty$ when $k \rightarrow \infty$, we get that $\sup _{k}\left\{\gamma_{m_{k}}^{k}\left(\omega^{\beta} \cdot p_{k}\right)\right\}=\omega^{\beta} \cdot \omega=\omega^{\alpha}$. Therefore,

$$
\mathcal{B}=\bigcup_{k \in A}\left(\mathscr{B}_{k}\right)_{\left\{m_{k}\right\}} \oplus\{\{k\}\}
$$

is an ω^{α}-uniform barrier on A. Finally, consider the \mathcal{U}-tree

$$
T=\left(\bigcup_{k \in A}\left(T_{k}\right)_{\left\{m_{k}\right\}} \oplus\{\{k\}\}\right) \cup\{\emptyset\},
$$

and define $\varphi:(T \upharpoonright \mathcal{B}) \backslash\{\emptyset\} \longrightarrow \overline{\mathcal{F}} \backslash\{\emptyset\}$ by

$$
\varphi(s)=\{k\} \cup \varphi_{k}\left(\left\{m_{k}\right\} \cup s / k\right), \quad \text { if } \min (s)=k
$$

References

[1] Argyros, S. A., and S. Todorcevic, Ramsey Methods in Analysis, Birkhäuser, Basel, 2005. Zbl 1092.46002. MR 2145246. 388
[2] Baumgartner, J. E., "Partition relations for countable topological spaces," Journal of Combinatorial Theory, Series A, vol. 43 (1986), pp. 178-95. Zbl 0647.05005. MR 0867644. DOI 10.1016/0097-3165(86)90059-2. 387, 388
[3] Piña, C., and C. Uzcátegui, "On topological properties of families of finite sets," Journal of Combinatorial Theory, Series A, vol. 119 (2012), pp. 1066-77. Zbl 1294.54004. MR 2891382. DOI 10.1016/j.jcta.2012.02.003. 387
[4] Todorcevic, S., Introduction to Ramsey Spaces, vol. 174 of Annals of Mathematics Studies, Princeton University Press, Princeton, 2010. Zbl 1205.05001. MR 2603812. 388
[5] Weiss, W., "Partitioning topological spaces," pp. 154-71 in Mathematics of Ramsey Theory, edited by J. Nešetřil and V. Rödl, vol. 5 of Algorithms and Combinatorics, Springer, Berlin, 1990. Zbl 0755.54002. MR 1083599. 387

Acknowledgment

The author would like to thank the anonymous referee for a careful review of this article and for contributing valuable comments and suggestions which have improved the quality of the work.

Department of Mathematics
University of Paris 7-Denis Diderot
Paris
France
and
Department of Mathematics
University of the Andes
La Hechicera Campus
Mérida
Venezuela
claribet@math.univ-paris-diderot.fr
claribet@ula.ve

