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The Complexity of Primes in Computable Unique
Factorization Domains

Damir D. Dzhafarov and Joseph R. Mileti

Abstract In many simple integral domains, such as Z or ZŒi �, there is a
straightforward procedure to determine if an element is prime by simply reduc-
ing to a direct check of finitely many potential divisors. Despite the fact that
such a naive approach does not immediately translate to integral domains like
ZŒx� or the ring of integers in an algebraic number field, there still exist compu-
tational procedures that work to determine the prime elements in these cases. In
contrast, we will show how to computably extend Z in such a way that we can
control the ordinary integer primes in any …0

2 way, all while maintaining unique
factorization. As a corollary, we establish the existence of a computable unique
factorization domain (UFD) such that the set of primes is …0

2-complete in every
computable presentation.

1 Introduction

The power and versatility of modern algebra arise from the abstract and axiomatic
approach it takes. However, with the rise of computer algebra systems, it is important
to find algorithms in order to perform computations within these algebraic structures.
Of course, in these settings, one also cares about the efficiency of these procedures.
For example, although the primes in Z are trivially computable, there is a great deal
of interest in how quickly we can determine whether an element is prime (see Cran-
dall and Pomerance [6] for a general overview of techniques). In contrast, it is known
that there are computable integral domains where it is impossible even in principle
to determine the primes computationally. In this article, we extend these examples to
build a computable unique factorization domain (UFD) where the primes are max-
imally complicated in a very strong sense. We begin with the following definition
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(see Soare [18] for background on the formal definitions of computable sets and
functions).
Definition 1.1 A computable ring is a ring whose underlying set is a computable
set A � N, with the property that C and � are computable functions from A�A to A.
For example, it is easy to view Z as a computable ring by using the even natural
numbers to code the positive elements in ascending order and the odd natural num-
bers to code the negative elements in descending order. Of course, we can view Z
as a computable ring in a different way by switching the roles of the evens and odds.
Thus, a given ring can have multiple distinct computable presentations. Many other
natural rings can also be viewed as computable rings. Since we can code relatively
prime pairs of natural numbers by using a single natural number, we can view Q
as a computable ring. Similarly, since we can code finite sequences of integers as
natural numbers, we can view ZŒx� as a computable ring as well. Generalizing this,
given an arbitrary computable ring A, we can realize the polynomial ring AŒx� as a
computable ring in a natural way. In contrast, uncountable rings can never be viewed
as computable rings, and there are some countable rings that cannot be as well.

For a general overview of results about computable rings and fields, see
Stoltenberg-Hansen and Tucker [19]. Computable fields have received a great
deal of attention (see Frölich and Shepherdson [11], Metakides and Nerode [14],
and Rabin [17]), and Miller [15] provides an excellent overview of work in this area.
For computable rings, several papers (see Conidis [4], Downey, Lempp, and Mileti
[8], and Friedman, Simpson, and Smith [10]) have studied the complexity of ideals
and radicals from the perspective of computability theory and reverse mathematics.
For information about practical algorithms to perform important computations in
algebraic number theory (such as in number fields and function fields), see Cohen
[2], [3], Klüners [12], and Müller-Quade and Steinwandt [16]. For some recent
work on the complexity of finding a Euclidean function for a computable Euclidean
domain, see Downey and Kach [7].

The following algebraic definitions are standard.
Definition 1.2 Let A be an integral domain, that is, a commutative ring with
1 ¤ 0 and with no zero divisors (so ab D 0 implies either a D 0 or b D 0). Recall
the following definitions.

(1) An element u 2 A is a unit if there exists w 2 A with uw D 1. We denote
the set of units by U.A/. Note that U.A/ is a multiplicative group.

(2) Given a; b 2 A, we say that a and b are associates if there exists u 2 U.A/

with au D b. We denote the set of associates of a by AssociatesA.a/.
(3) An element p 2 A is irreducible if it is nonzero, not a unit, and has the

property that whenever p D ab, either a is a unit or b is a unit. An equiva-
lent definition is that p 2 A is irreducible if it is nonzero, not a unit, and its
divisors are precisely the units and the associates of p.

(4) An element p 2 A is prime if it is nonzero, not a unit, and has the property
that whenever p j ab, either p j a or p j b. We denote the set of primes of
A by Primes.A/.

(5) We call A a unique factorization domain, or UFD, if it has the following two
properties.

� For each a 2 A such that a is nonzero and not a unit, there exist irre-
ducible elements r1; r2; : : : ; rn 2 A with a D r1r2 � � � rn.
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� If r1; r2; : : : ; rn; q1; q2; : : : ; qm 2 A are all irreducible and

r1r2 � � � rn D q1q2 � � � qm;

then n D m and there exists a permutation � of ¹1; 2; : : : ; nº such that
ri and q�.i/ are associates for all i .

It is a simple fact that if A is an integral domain, then every prime element of A is
irreducible. The converse fails in general, but is true in every UFD. In fact, we have
the following standard result.

Theorem 1.3 Let A be an integral domain. The following are equivalent:
(1) A is a UFD, and
(2) every element of A that is nonzero and not a unit is a product of irreducibles,

and every irreducible element of A is prime.

Of course, for most computable integral domains that arise in practice, the set of
primes forms a computable set in any natural computable presentation. For the ring
Z, the set of primes trivially forms a computable set. Kronecker showed that the set of
primes in (any reasonable computable presentation of ) the UFD ZŒx� is computable.
Using Gauss’s lemma and the fact that every element of QŒx� is an associate of an
element of ZŒx�, it follows that the set of primes in QŒx� is computable as well.
Consider a number field K with ŒK W Q� D n, and let OK be the set of algebraic
integers in K. (For an overview of results about OK and algorithms to perform
computations in them, see [2, Chapter 4].) In general, OK is always a Dedekind
domain, but it may not be a UFD. We may fix an integral basis of K over Q, that is,
fix b1; b2; : : : ; bn 2 OK that form a basis for K over Q such that

OK D ¹m1b1 C m2b2 C � � � C mnbn W mi 2 Zº:

Now given the finitely many values bi � bj , we can compute the multiplication func-
tion on K and hence on OK as well. Since we can simply hard-code in these values,
it follows that any integral basis provides a computable presentation of the field K

(by working with underlying set Qn) and the ring OK (by working with underlying
set Zn). We have the following fact.

Proposition 1.4 Let K be a number field with ŒK W Q� D n. If we fix an integral
basis of K over Q, and represent elements of OK by using elements of Zn, then the
set of prime elements of OK is computable.

Proof Given ˛ 2 K, the map '˛W K ! K defined by '˛.x/ D ˛ � x is a Q-linear
map, and moreover we can uniformly compute a matrix M˛ with rational entries
representing this map because we need only express ˛ � bi in terms of our basis.
Furthermore, note that if ˛ 2 OK , then '˛ maps OK into OK , and hence M˛ has
integer entries. From this, we can conclude that the norm map N W OK ! Z defined
by N.˛/ D det.'˛/ D det.M˛/ is a computable function. Since an element ˛ 2 OK

is a unit if and only if N.˛/ D ˙1, it follows that U.OK/ is a computable set.
Moreover, given ˛; ˇ 2 K with ˛ ¤ 0 represented as elements of Qn, we can uni-

formly compute ˇ
˛

as represented by an element of Qn by simply searching through
the effectively countable set Qn until we find  2 K with  � ˛ D ˇ. Now if
˛; ˇ 2 OK , we can effectively determine if ˛ j ˇ in OK by checking if this represen-
tation of ˇ

˛
is in Zn. Therefore, the divisibility relation on OK is computable.
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Since we can compute the norm of an element, and since jOK=h˛ij D jN.˛/j, we
can compute the function f W OKn¹0º ! N defined by f .˛/ D jOK=h˛ij. Now to
determine if ˛ is prime, we compute f .˛/ and then search until we find f .˛/ many
distinct representatives of the quotient (this is possible because the divisibility rela-
tion is computable). With these representatives, we can form the finite multiplicative
table of the quotient (again using the fact that the divisibility relation is computable).
To determine if ˛ is prime, we then check if the quotient has any zero divisors, which
is now just a finite check.

Despite all of this, there are computable integral domains such that the set of primes
is not computable. In fact, there is a computable field F such that the set of primes in
F Œx� is not computable (see, e.g., [15, Lemma 3.4] or [19, Section 3.2]). There exist
methods to measure the complexity of sets that are not computable, and we investi-
gate the placement of such sets in the arithmetical hierarchy arising from quantifying
over computable relations.

Definition 1.5 Let Z � N.
� We say that Z is a †0

1 set if there exists a computable R � N2 such that

i 2 Z ” .9x/R.x; i/:

� We say that Z is a …0
1 set if there exists a computable R � N2 such that

i 2 Z ” .8x/R.x; i/:

� We say that Z is a …0
2 set if there exists a computable R � N3 such that

i 2 Z ” .8x/.9y/R.x; y; i/:

Since it is possible to computably code finite sequences of natural numbers with a
single natural number, the above definitions do not change if we allow finite con-
secutive blocks of the same (existential or universal) quantifiers. Although every
computable set is †0

1, there exists a †0
1 set that is not computable, such as the set

of natural numbers coding programs that halt. Similarly, the collection of †0
1 sets

is a proper subset of the collection of all …0
2 sets, and the collection of …0

1 sets is a
proper subset of the collection of all …0

2 sets. (See [18, Chapter 4] for more informa-
tion about the arithmetical hierarchy.)

Suppose that A is a computable integral domain. We then have that U.A/ is a †0
1

set because
u 2 U.A/ ” .9w/Œuw D 1�;

and the relation uw D 1 is computable. The set of irreducibles of A is a …0
2 set

because p is irreducible in A if and only if

p ¤ 0 ^ .8c/Œpc ¤ 1� ^ .8a/.8b/
�
p D ab ! a 2 U.A/ _ b 2 U.A/

�
;

and we already know that U.A/ is a †0
1 set. A similar analysis shows that the set of

primes of A is a …0
2 set. Our main result is the following, which says that this result

is best possible in a very strong sense.

Theorem 1.6 Let Q be a …0
2 set, and let p0; p1; p2; : : : list the usual primes from

N in increasing order. There exists a computable UFD A such that
� Z is a subring of A,
� pi is prime in A if and only if i 2 Q.
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This theorem differs from the result that there is a computable field F such that
the set of prime elements in F Œx� is not computable. One reason is that we are
working directly with the usual primes rather than coding into polynomials (such as
x2 � pi ), or creating our own primes to do the coding. As a result, our approach
has a more number-theoretic flavor. Furthermore, if F is a computable field, then
U.F Œx�/ is a computable set in any reasonable computable presentation of F Œx�,
so the set of irreducibles (and hence primes) of F Œx� will always be a …0

1 set by
our above analysis, and hence could not be …0

2-complete. Moreover, we obtain the
following strong corollary that may not hold if we code complexity into other primes.

Corollary 1.7 There exists a computable UFD A such that the set of primes of A

is …0
2-complete in every computable presentation of A, uniformly in an index for the

presentation.

Proof Fix a …0
2-complete set Q (see [18, Theorem IV.3.2]), and construct A by

using this Q as in Theorem 1.6. Now given any computable presentation of A, we
can find the multiplicative identity element of A by searching until we find a 2 A

such that a2 D a and a C a ¤ a (note that the multiplicative identity is the only
such element because A is an integral domain). With this element in hand, we can
find the representation of each pi in A by adding the multiplicative identity to itself
the required number of times. Therefore, the set of primes of A is …0

2-complete in
every computable presentation of A.

Since we are working with the normal integer primes rather than creating some new
ones, we need to be much more careful because of the algebraic dependence rela-
tionships that exist between them. By adjusting the status of one prime, that is, by
introducing a new factorization of it, it is certainly conceivable that we could interfere
with others. For example, suppose that A is a integral domain, that q 2 Primes.A/,
and that we want to break the primeness/irreducibility of q, that is, we want to intro-
duce a nontrivial factorization of q. One idea is to introduce a square root of q, that is,
to introduce a new element x with x2 D q. The natural way to do this is to consider
AŒx�=hx2�qi, but this is problematic for a few reasons. With this approach, we might
destroy the primeness/irreducibility of other elements in A, as it is well known that
if p; q 2 N are distinct odd primes, then p is not prime in ZŒ

p
q� Š ZŒx�=hx2 � qi

if and only if q is a square modulo p. For example, in ZŒ
p

7�, we have that 3 is not
prime because 3 j .1 �

p
7/.1 C

p
7/ but 3 − 1 �

p
7 and 3 − 1 C

p
7. Moreover, in

ZŒ
p

q�, irreducibles might fail to be prime, and hence we may have lost the property
of being a UFD. Finally, with this approach it is also impossible to later destroy this
factorization as we cannot make x a unit without making q a unit.

Another potential issue arises if we do want to destroy a given factorization by
making an element a unit, but we are either not in a UFD or we are working with
irreducibles. For instance, Conrad [5] gives the following example. In ZŒ

p
�14� one

has

3 � 3 � 3 � 3 D .5 C 2
p

�14/.5 � 2
p

�14/;

where all of the above factors are irreducible. It follows that

5 C 2
p

�14 j 34
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even though 5 C 2
p

�14 and 3 are not associates in ZŒ
p

�14� (as the units are ˙1).
Thus, in this ring, if we later make 3 a unit, then we must make 5 C 2

p
�14 a unit as

well.
With all of these potential issues in mind, we now outline the idea behind the

construction. Start with A0 D Z. We want to turn the normal primes pi on and off
based on a …0

2 set Q. Fix a computable R � N3 such that

i 2 Q ” .8w/.9z/R.w; z; i/:

So, intuitively, if i acts infinitely often (i.e., if for each w in turn, we find a witnessing
z), then we want pi to be prime in the end. If i acts finitely often, we want pi not
to be prime. To work for i , we assume finite action, and introduce a factorization
pi D xi yi for new elements xi and yi . If i acts at a later stage, we want to destroy
this factorization. To do this, we make yi a unit. We will show that this keeps xi

prime, and since pi will now be an associate of xi , we will reinstate the fact that pi

is prime. We then introduce another factorization pi D x0
i y

0
i for new x0

i and y0
i , and

continue, destroying it if i acts again. We do this forever, building a chain of integral
domains Z D A0 � A1 � A2 � � � � . Let A1 D

S1

nD0 An.
We build this ring in a computable fashion as follows. We think of the natural

numbers as being split into infinitely many infinite columns through a computable
pairing function. We start by putting the integers in the first column and call that A0.
Now each extension will add infinitely many elements to the ring, and to do this at a
given stage we will simply add these elements into the next column and computably
define addition and multiplication at this point both within this column and between
this column and previous ones. Eventually, we will fill up all of the columns in turn,
and define all of the operations, resulting in a computable ring.

With this construction, we will need to keep track of several things. For example,
when we make an element a unit, we will localize our ring, and since we have already
constructed part of the ring so far, we will need to ensure that we can computably
determine the new elements to add to form this localization. As a result, we will
need to ensure that we can computably keep track of the multiples of the xi and yi

that we introduce. Algebraically, we need to ensure that the rings along the way are
all Noetherian UFDs and that unrelated primes are unaffected by these operations.
Finally, we need to check that this limiting ring has the required properties since a
union of UFDs need not be a UFD in general.

2 Turning a Prime into a Unit

Let A be an integral domain, and let q 2 A be prime. Suppose that we want to embed
A in another integral domain B such that q is a unit in B . Naturally, one considers the
corresponding localization, that is, we take the multiplicative set S D ¹1; q; q2; : : : º

and let B D S�1A (see Eisenbud [9, Chapter 2] or Matsumura [13, Section 4] for
general algebraic properties of localization). Thinking of A as sitting inside its field
of fractions F by identifying a with a

1
, we have

B D

° a

qk
W a 2 A and k � 0

±
D A [

° a

qk
W a 2 A and k � 1

±
:
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Now if A is a computable integral domain and we want to think about extending to
B in a computable fashion, then we need to know which of the elements in the set
on the right are really new, along with when they are distinct from each other. For
example, we have that q2

q
D

q
1

is already an element of A, so we do not want to
introduce it.

Observe that every element of BnA can be written in the form a

qk , where k � 1

and q − a. To see this, suppose that we are given a general a
qm 2 B with a 2 A and

m � 1. If q j a, we can factor out a q from a and cancel terms to obtain a different
representation of the same element with a smaller power of q in the denominator.
We can now induct (or take a minimal power in the denominator) to argue that this
element is represented in the above set. Thus, we have

B D A [

° a

qk
W a 2 A; q − a; and k � 1

±
:

Moreover, it is straightforward to show that the above representations are unique (i.e.,
that a

qk … A when q − a and k � 1, and also that two elements of the right set are
equal exactly when the numerator and power of q are equal). As a result, if A is
computable, and the set ¹a 2 A W q j aº is computable, then from A, q, and an index
for this set we can uniformly computably build B as an extension of A. Since we are
going to repeatedly apply this construction along with a factorization construction,
we will need to ensure that the set of multiples of other primes remain computable
as well.

Using a straightforward algebraic argument, we have the following.

Proposition 2.1 We have

U.B/ D U.A/ [
®
uqk

W k � 1 and u 2 U.A/
¯

[

° u

qk
W k � 1 and u 2 U.A/

±
:

Theorem 2.2 Let A be a computable Noetherian UFD, and let q 2 A be prime.
Suppose that ¹a 2 A W q j a in Aº is a computable set. Let S D ¹1; q; q2; : : : º, and
let B D S�1A as above.

(1) We can build B as a computable extension of A uniformly from A and an
index for the set ¹a 2 A W q j a in Aº of multiples of q.

(2) Let p 2 Primes.A/n AssociatesA.q/. The multiples of p in B are precisely
the elements of the following set:

¹a 2 A W p j a in Aº [

° a

qk
W a 2 A; k � 1; q − a in A; and p j a in A

±
:

In particular, there are no new elements of A that are multiples of p in B .
Furthermore, if we have a computable index for the set ¹a 2 A W p j a in
Aº, then we can uniformly computably obtain a computable index for the set
¹� 2 B W p j � in Bº.

(3) If p1; p2 2 Primes.A/ are not associates in A, then they are not associates
in B .

(4) We have Primes.A/n AssociatesA.q/ � Primes.B/.
(5) We have that B is a Noetherian UFD.
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Proof (1) This is immediate from above.
(2) It is easy to see that the elements in the given sets are indeed multiples of p

in B . Suppose then that � 2 B is arbitrary with p j � in B . Suppose first
that � D a 2 A. We need to show that p j a in B . We have two cases.

� Suppose that there exists b 2 A with pb D � D a. We then trivially
have that p j a in A.

� Suppose instead that there exists b 2 A with q − b and ` � 1 such that
p �

b

q` D a. We then have pb D aq`. Thus p j aq` in A, and since p

is prime and p − q (as p … AssociatesA.q/), it follows that p j a in A.
Suppose instead that � D

a

qk , where a 2 A with q − a and k � 1. We need
to show that p j a in A.

� Suppose that there exists b 2 A with pb D � D
a

qk . We then have
pbqk D a, so p j a in A.

� Suppose instead that there exists b 2 A with q − b and ` � 1 such that
p �

b

q` D � D
a

qk . We then have pbqk D aq`. Thus p j aq` in A,
and since p is prime and p − q (as p … AssociatesA.q/), it follows that
p j a in A.

This completes the proof.
(3) We prove the contrapositive. Suppose that p1 and p2 are associates in B .

Fix � 2 U.B/ such that p1 D �p2. We know the units of B from Proposi-
tion 2.1, so we handle the cases.

� If � 2 U.A/, then clearly p1 and p2 are associates in A.
� Suppose that � D uqk with u 2 U.A/. We then have p1 D uqkp2, so

p2 j p1 in A. Since p1 is prime in A, it is irreducible in A, so as p2 is
not a unit we can conclude that p1 and p2 are associates in A.

� Suppose that � D
u

qk , where k � 1 and u 2 U.A/. We then have
p1 D

u

qk � p2, so p1u�1qk D p2. This implies that p1 j p2 in A. As in
the previous case, this implies that p1 and p2 are associates in A.

(4) Let p 2 Primes.A/n AssociatesA.q/. First note that p … U.B/ from Propo-
sition 2.1 because p … U.A/ and that p is not an associate of any qk

(because if p j qk , then p j q as p is prime, and hence p is an associate of
q). Suppose that

p

1
j

a

qk
�

b

q`
;

where we allow the possibility that k D 0 and/or ` D 0. Fix c 2 A and
m � 0 with

p

1
�

c

qm
D

a

qk
�

b

q`
:

We then have pcqkC` D qmab, so p j qmab in A. Now p is prime and
p − q (as p … AssociatesA.q/), so either p j a in A or p j b in A. If p j a

in A, then p
1

j
a

qk in B , and a similar statement holds if p j b. Therefore,
p 2 Primes.B/.

(5) This is immediate from the fact that the localization of a Noetherian ring is
a Noetherian ring, and the localization of a UFD is a UFD.
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Note that we can use this machinery to prove the result (essentially appearing in
Baur [1] and [19, Example 4.3.9]) that there exists a computable principal ideal
domain (PID) A such that U.A/ is †0

1-complete in all computable presentations.
Fix a †0

1-complete set Q. Start with A0 D Z, and let p0; p1; p2; : : : be a listing of
the usual primes. As we go along, if we have An and we ever see that e 2 Q, then
we perform our unit construction to build AnC1 extending An so that pe 2 U.AnC1/

while maintaining the primeness of the pi not equal to pe or to any elements we
already made units. Let A D A1 D

S1

nD0 An, and note that i 2 Q if and only if
pi 2 U.A1/. Since the final ring A1 is a localization of the PID A0 D Z, it follows
that A1 is a PID.

3 Introducing a Factorization

In this section, we suppose that we have a computable Noetherian UFD A and an
element q 2 Primes.A/. We introduce a new factorization of q by going to the ring
B D AŒx; y�=hxy �qi. The hope is that we only destroy the primeness/irreducibility
of q (and its associates), and we leave enough flexibility so that we can later make y

a unit without making x a unit (so that then q and x will be associates).

Proposition 3.1 The ring B is an integral domain.

Proof It is straightforward to check that xy � q is irreducible in AŒx; y�. Since
AŒx; y� is a UFD (because A is a UFD), we conclude that xy � q is prime in AŒx; y�,
so the quotient B D AŒx; y�=hxy � qi is an integral domain.

Proposition 3.2 Every element of B can be represented uniquely in the form

amxm
C � � � C a1x C c C b1y C � � � C bnyn;

where each ai 2 A, bi 2 A, and c 2 A.

Proof Given an arbitrary polynomial h.x; y/ 2 AŒx; y�, we can divide by xy � q

(using the fact that the leading term is a unit) to obtain a remainder where no mono-
mial is divisible by xy. In other words, in the quotient, reduce any monomial with xy

in it to q, and repeat until there are no xy’s. This proves existence. For uniqueness,
the difference of any polynomials of this form is another polynomial of this form,
and hence has no monomial containing both an x and a y. Any nonzero multiple of
xy � q must have a monomial divisible by xy by looking at a leading term under
some monomial ordering (and again using the fact that A is an integral domain).

Note that in B we have xy D q. Thinking of y D
q
x

, we can alternatively think
about B in the following way.

Proposition 3.3 Consider the following subring of the field of fractions of AŒx�:

A
h
x;

q

x

i
D

°
amxm

C � � � C a1x C a0 C a�1 �
q

x
C � � � C a�n �

qn

xn
W ai 2 A

±
:

We have B Š AŒx; q
x

�.

Proof The proof is straightforward.

We will use the different ways of representing elements of the extension B Š AŒx; q
x

�

interchangeably depending on which is most convenient. With this isomorphism in
mind, we define the following two functions.
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Definition 3.4 Define degx W Bn¹0º ! Z as follows. Let � 2 B , and consider the
unique representation of � given in Proposition 3.2.

� If there is a term containing a power of x with a nonzero coefficient, then
degx.�/ is the largest such power of x.

� If there is no such power of x, but there is a nonzero constant term, then
degx.�/ D 0.

� If there is no such power of x and no constant term, let m be the least power
of y with a nonzero coefficient, and define degx.�/ D �m.

We define degy W Bn¹0º ! Z similarly.

For example, we have degx.y2 C y5/ D �2 and degy.y2 C y5/ D 5.

Proposition 3.5 Let �; � 2 Bn¹0º. We then have
degx.��/ D degx.�/ C degx.�/;

degy.��/ D degy.�/ C degy.�/:

Proof It is straightforward to prove this in the case when � and � are monomials,
that is, of the form axk , by`, or c ¤ 0. Notice that here we use the fact that A is an
integral domain to conclude that the product is a nonzero monomial. For general �

and � , we need only examine the leading x-terms or y-terms.

Proposition 3.6 We have
degx.�/ C degy.�/ � 0

for all � 2 Bn¹0º, with equality if and only if � is a constant times a monomial.

Proof Let � 2 Bn¹0º. If the leading x-term is xm, then degx.�/ D m and
degy.�/ � �m, with equality if and only if xm is the leading y-term as well. A sim-
ilar argument works if the leading y-term is yn. Otherwise, we only have a constant,
in which case both degx.�/ D 0 and degy.�/ D 0.

Proposition 3.7 Let �; � 2 B . We then have that �� 2 A in exactly the following
cases:

� � D 0 or � D 0;
� � 2 A and � 2 A;
� there exist a; b 2 A and n 2 NC with � D axn and � D byn, or there exist

a; b 2 A and n 2 NC with � D byn and � D axn.

Proof In each of these cases it is easy to see that �� 2 A. Suppose conversely that
�� 2 A. We may assume that � ¤ 0 and � ¤ 0 or else we are done. We then have

degx.�/ C degx.�/ D degx.��/ D 0

so degx.�/ D � degx.�/. Similarly, we have degy.�/ D � degy.�/. Adding these
gives

degx.�/ C degy.�/ D � degx.�/ � degy.�/ D �
�
degx.�/ C degy.�/

�
:

Using Proposition 3.6, the only possibility is that
degx.�/ C degy.�/ D 0 D degx.�/ C degy.�/;

and hence that both � and � are constants times monomials. The result now follows.
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Corollary 3.8 Let a 2 A with q − a in A. If � 2 B and � j a in B , then � 2 A

and � j a in A. In other words, the set of divisors of a in B equals the set of divisors
of a in A.

Proof By Proposition 3.7, the only possible new divisors of a are when a D bxn �

cyn with n � 1. However, this implies that a D bc � qn, so q j a in A.

Corollary 3.9 The units of B are precisely the units of A, that is, U.B/ D U.A/.

Proof This is immediate because the set of units is the set of divisors of 1 2 A.

Theorem 3.10 Let A be a computable Noetherian UFD, and let q 2 A be prime.
Let B D AŒx; y�=hxy � qi as above.

(1) We can build B as a computable extension of A uniformly.
(2) If p1; p2 2 Primes.A/ are not associates in A, then they are not associates

in B .
(3) Let p 2 Primes.A/n AssociatesA.q/, and let � 2 B . We have that p j �

in B if and only every coefficient of � is divisible by p in A. In particular,
there are no new elements of A that are multiples of p in B . Furthermore,
if we have a computable index for the set ¹a 2 A W p j a in Aº, then we can
uniformly computably obtain a computable index for the set ¹� 2 B W p j �

in Bº.
(4) We have Primes.A/n AssociatesA.q/ � Primes.B/.
(5) We have that x j � in B if and only if the constant term and the coefficients of

each yj in � are all divisible by q in A. Therefore, if we have a computable
index for the set ¹a 2 A W q j a in Aº, then we can uniformly computably
obtain a computable index for the set ¹� 2 B W x j � in Bº.

(6) We have that y j � in B if and only if the constant term and the coefficients of
each xi in � are all divisible by q in A. Therefore, if we have a computable
index for the set ¹a 2 A W q j a in Aº, then we can uniformly computably
obtain a computable index for the set ¹� 2 B W y j � in Bº.

(7) We have that x and y are primes in B that are not associates of each other
in B .

(8) We have that x and y are not associates in B with any element of A, and
hence not with any element of Primes.A/.

(9) We have that B is a Noetherian UFD.

Proof (1) This follows immediately from Proposition 3.2.
(2) This follows immediately from Corollary 3.9.
(3) This follows from the fact that

p � .amxm
C � � � C a1x C c C b1y C � � � C bnyn/

D pamxm
C � � � C pa1x C pc C pb1y C � � � C pbnyn:

(4) Let p 2 Primes.A/n AssociatesA.q/. Note that p is nonzero and is not a
unit of B by Corollary 3.9. Let �; � 2 B , and suppose that p j �� . Assume
that p − � and p − � . We clearly have that both � and � are nonzero. Using
Theorem 3.10(3), we know that p divides every coefficient of �� in A, but
there are coefficients of � and � that are not divisible by p in A. Write

� D amxm
C � � � C a1x C a0 C a�1 �

q

x
C � � � C a�n �

qn

xn
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and

� D bmxm
C � � � C b1x C b0 C b�1 �

q

x
C � � � C b�n �

qn

xn
:

Let k and ` be the largest possible such that p − ak in A and p − b` in A.
Look at the coefficient of xkC` in �� . This coefficient will be a sum of terms,
one of which is akb`qj for some j , while other terms will be divisible by
p in A. Since p divides the resulting coefficient, it follows that p j akb`qj

in A. However, this is a contradiction because p is prime in A but divides
none of ak , b`, or q (the last because p is not an associate of q in A).

(5) Let � 2 B , and write

� D amxm
C � � � C a1x C c C b1y C � � � C bnyn:

Suppose first that q j c and q j bj in A for each j . Fix e 2 A with c D qe,
and fix dj 2 A such that bj D qdj for all j . We then have

x � .amxm�1
C � � � C a1 C ey C d1y2

C � � � C dnynC1/ D �:

Conversely, suppose that x j � , so that

� D x � .amxm
C � � � C a1x C c C b1y C � � � C bnyn/

for some ai ; c; bj 2 A. Then we have

� D amxmC1
C � � � C a1x C cx C qb1 C qb2y C � � � C qbnyn�1:

(6) This is similar to Theorem 3.10(5).
(7) Note that x is nonzero and is not a unit of B by Corollary 3.9. Let �; � 2 B ,

and suppose that x j �� . Assume that x − � and x − � . We clearly have that
both � and � are nonzero. Using Theorem 3.10(5), we know that q divides
the constant term and the coefficients of each yj in �� in A. Write

� D amxm
C � � � C a1x C a0 C b1y C � � � C bnyn

and

� D cmxm
C � � � C c1x C c0 C d1y C � � � C dnyn:

By Theorem 3.10(5), we may let k and ` be largest possible such that q − ak

in A and q − c` in A. Look at the coefficient of xkC` in �� . This coefficient
will be a sum of terms, one of which is akc`, while other terms will be
divisible by q in A. Since q divides the resulting coefficient, it follows that
q j akc` in A. However, this is a contradiction because q is prime in A but
divides neither of ak or c` in A.

The proof that y is prime in B is similar. The fact that x and y are not
associates in B follows from Corollary 3.9.

(8) This is immediate from Corollary 3.9.
(9) We are assuming that A is a Noetherian UFD. Since A is Noetherian, we

know that AŒx; y� is Noetherian by Hilbert’s basis theorem. Since B is a
quotient of AŒx; y�, it follows that B is also Noetherian. We also know from
Theorem 3.10(7) that x is prime in B Š AŒx; q

x
�. To argue that B is a UFD,

we use Nagata’s criterion (see [13, Theorem 20.2] or [9, Lemma 19.20])
which says the following.
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Theorem 3.11 (Nagata’s criterion) Let B be a Noetherian integral
domain. Let � be a set of prime elements of B , and let S be the multiplica-
tive set generated by � . If S�1B is a UFD, then B is a UFD.

Now x is prime in B Š AŒx; q
x

� by Theorem 3.10(7). The localization of
AŒx; q

x
� at x equals AŒx; q

x
; 1

x
� D AŒx; 1

x
�, which is the localization of AŒx�

at x. Since A is a UFD, we know that AŒx� is a UFD . Since any localization
of a UFD is a UFD, it follows that AŒx; 1

x
� is a UFD. Since B is a Noetherian

integral domain, x is prime in B , and B localized at x is a UFD, we may
use Nagata’s criterion to conclude that B is a UFD.

4 Construction and Verification

We now prove Theorem 1.6. Let Q be an arbitrary …0
2 set. Fix a computable R � N3

such that
i 2 Q ” .8w/.9z/R.w; z; i/:

Fix a bijective computable pairing function h�; �iWN � N ! N with the property that
hi; si < hi; ti whenever s < t .

We work in stages, and begin by initializing with A0 D Z. We now start at stage 0.
At a given stage, we will have introduced finitely many x

.k/
i and y

.k/
i for each i , and

we will have marked a finite initial segment of N corresponding to those w 2 N for
which we have found a witnessing z and done an action. Furthermore, if i has been
initialized and the first unmarked w is k, then we will have introduced x

.`/
i and y

.`/
i

for each ` � k, but we will not yet have introduced x
.kC1/
i and y

.kC1/
i .

Suppose that we are now at a stage hi; si and we have constructed through ring
An at this stage.

� If s D 0, we do an initialization for pi by introducing a first factorization.
In other words, we introduce x

.0/
i and y

.0/
i and perform the factorization

construction on pi to create the ring AnC1 (so we fill in one more column),
and then move on to the next stage.

� Suppose that s � 1, and let k be the first unmarked w corresponding to i .
Check to see if there exists z � s such that R.w; z; i/. If not, we do nothing
and move to the next stage. If so, we mark k for i , and we act for i at
this stage, meaning that we do the following. As mentioned above, we will
have introduced through x

.k/
i and y

.k/
i . First, we perform the localization

construction to make y
.k/
i a unit in order to create the ring AnC1. Next, we

introduce x
.kC1/
i and y

.kC1/
i and perform the factorization construction with

these on pi to create the ring AnC2. Thus, we fill in two more columns in
succession, and then move on to the next stage.

Finally, let A1 D
S1

nD0 An.

Theorem 4.1 Suppose that we are at the beginning of a given stage and we have
constructed through An. For each i that has been initialized, let x

.ki /
i and y

.ki /
i be

the last elements introduced for i (so ki is the first unmarked w for i ).
� Suppose that i has not yet been initialized. We have the following.

– We have that pi is prime in An.
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– The set ¹a 2 An W pi j a in Anº is computable and we can uniformly
find a computable index for it.

– For any uninitialized j ¤ i , we have that pi is not an associate of pj

in An.
– For any initialized j ¤ i , we have that pi is not an associate of either

x
.kj /

j or y
.kj /

j in An.
� Suppose that i has been initialized. We have the following.

– We have that x
.ki /
i and y

.ki /
i are prime in An, and are not associates in

An.
– The sets ¹a 2 An W x

.ki /
i j a in Anº and ¹a 2 An W y

.ki /
i j a in Anº are

computable and we can uniformly find computable indices for them.
– For any uninitialized j ¤ i , we have that x

.ki /
i and y

.ki /
i are not asso-

ciates of pj in An.
– For any initialized j ¤ i , we have that x

.ki /
i is not an associate of

either x
.kj /

j or y
.kj /

j in An, and y
.ki /
i is not an associate of either x

.kj /

j

or y
.kj /

j in An.
� Suppose that we act for i at this stage. We then have y

.ki /
i 2 U.AnC1/, that

x
.ki /
i is prime in AnC1, and that pi is prime in AnC1.

Proof The proof is immediate by using induction on the stages along with Theo-
rems 2.2 and 3.10.

Definition 4.2 Let i; k 2 N, and suppose that we introduce x
.k/
i and y

.k/
i in our

construction. We call x
.k/
i and y

.k/
i terminal for i if we never introduce x

.kC1/
i and

y
.kC1/
i for i .

Proposition 4.3 We have the following.

(1) Suppose that we introduce x
.k/
i and y

.k/
i in Am. If x

.k/
i and y

.k/
i are terminal

for i , then they are nonassociate primes in An for each n � m.
(2) If r 2 Am is prime in Am and is not an associate of any pi , x

.k/
i , or y

.k/
i

(whether terminal or nonterminal) in Am, then r remains prime in An for
each n � m.

Proof Again, this follows by induction using Theorems 2.2 and 3.10.

Proposition 4.4 Let a 2 A1, so a 2 Am for some m 2 N. The following are
equivalent:

(1) a 2 U.A1/,
(2) a 2 U.An/ for all sufficiently large n � m, and
(3) a 2 U.An/ for some n � m.

Proof If a 2 U.A1/, then fixing b 2 A1 with ab D 1, we have that a 2 U.An/

for any n large enough such that a; b 2 An. If a 2 U.An/ for some n � m, then
fixing b 2 An with ab D 1, we have a; b 2 A1, so a 2 U.A1/.

Proposition 4.5 Let r 2 A1, so r 2 Am for some m 2 N. If there are infinitely
many n � m such that r is prime in An, then r is prime in A1.
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Proof Suppose that there are infinitely many n � m such that r is prime in An.
Fix a; b 2 A1, and suppose that r j ab in A1. Fix c 2 A1 with rc D ab. Go to a
point where each of r , c, a, b exist, and then fix an n beyond that such that r is prime
in An. We then have r j ab in An, so as r is prime in An, either r j a in An or r j b

in An. Therefore, either r j a in A1 or r j b in A1. Finally, notice that r is nonzero
and not a unit in A1 because infinitely often it is not a unit in An (as infinitely often
it is prime in An).

Corollary 4.6 We have the following.
(1) If x

.k/
i and y

.k/
i are introduced and are terminal for i , then they are nonas-

sociate primes in A1.
(2) If x

.k/
i and y

.k/
i are introduced and are nonterminal for i , then y

.k/
i 2

U.A1/, and x
.k/
i is an associate of pi in A1.

(3) If r 2 Am is prime in Am and is not an associate of any pi , x
.k/
i , or y

.k/
i in

Am (whether terminal or nonterminal), then r remains prime in A1.

Proof This is immediate from Theorem 4.1 and Propositions 4.3, 4.4, and 4.5.

Corollary 4.7 We have that pi is prime in A1 if and only if i 2 Q.

Proof Suppose first that i 2 Q. We then act for i infinitely often, and hence
pi is prime in infinitely many An by Theorem 4.1. Thus, pi is prime in A1 by
Proposition 4.5.

Suppose now that i … Q. We then act for i finitely often, so we may fix k such
that x

.k/
i and y

.k/
i are terminal for i . By Corollary 4.6, each of x

.k/
i and y

.k/
i are

prime in A1. Since pi D x
.k/
i y

.k/
i , it follows that pi is not irreducible in A1, and

hence not prime in A1.

Lemma 4.8 Let m 2 N. Let r 2 A1, and suppose that r is prime in Am. We then
have that either r 2 U.A1/, r is prime is A1, or r is the product of two primes in
A1.

Proof We handle the various cases.
� If there exists i 2 Q such that r is an associate of pi in Am, then r is prime

in A1 by Corollary 4.7.
� Suppose that there exists i … Q such that r is an associate of pi in Am.

We then act for i finitely often, so we may fix k such that x
.k/
i and y

.k/
i are

terminal for i . By Corollary 4.6, each of x
.k/
i and y

.k/
i are prime in A1. We

then have that pi D x
.k/
i y

.k/
i , so r D ux

.k/
i y

.k/
i for some unit u 2 U.A1/.

Since ux
.k/
i and y

.k/
i are prime in A1, we see that r is the product of two

primes in A1.
� If there exists i; k 2 N such that r is an associate of a terminal x

.k/
i in Am,

then r is prime in A1 by Corollary 4.6.
� If there exists i; k 2 N such that r is an associate of a terminal y

.k/
i in Am,

then r is prime in A1 by Corollary 4.6.
� If there exists i 2 Q and k 2 N such that r is an associate of a nonterminal

x
.k/
i in Am, then r is an associate of pi in A1 by Corollary 4.6 and hence r

is prime in A1 by Corollary 4.7.
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� If there exists i … Q and k 2 N such that r is an associate of a nonterminal
x

.k/
i in Am, then r is an associate of pi in A1 by Corollary 4.6, and hence

r is a product of two primes in A1 from above.
� If there exists i; k 2 N such that r is an associate of a nonterminal y

.k/
i in

Am, then r 2 U.A1/ by Corollary 4.6.
� If r is not an associate of any pi , x

.k/
i , or y

.k/
i in Am, then r is prime in A1

by Corollary 4.6.

Theorem 4.9 We have that A1 is a UFD.

Proof We prove that every nonzero nonunit element of A1 is a product of irre-
ducibles and that every irreducible is prime, which suffices by Theorem 1.3.

Let a 2 A1 be nonzero and not a unit. Fix n with a 2 An, and note that a is
not a unit in An. Since An is a UFD, we may write a D r1r2 � � � r` where each ri is
irreducible and hence prime in An. By Lemma 4.8, each rj is either a unit in A1,
is prime in A1, or is the product of two primes in A1. It is not possible that all
rj ’s are units in A1, because this would imply that a is a unit in A1. Thus, a is a
product of primes in A1 (since we can absorb the units in one of the primes). Since
primes are irreducible, we conclude that a is a product of irreducibles in A1.

We now show that every irreducible element of A1 is prime. Let a 2 A1 be
irreducible. Fix n with a 2 An. Note that a is nonzero and not a unit in An because
otherwise it would be zero or a unit in A1. Since An is a UFD, we may write
a D r1r2 � � � r` where each rj is irreducible and hence prime in An. By Lemma 4.8,
each rj is either a unit in A1, is prime in A1, or is the product of two primes in A1.
It is not possible that all rj ’s are units in A1, because this would imply that a is a
unit in A1. If some rj is a product of two primes in A1, then a is not irreducible in
A1, which is a contradiction. Also, if two of the rj ’s are prime in A1, then A is not
irreducible in A1, which is a contradiction. Thus, exactly one of the ri ’s is prime in
A1 and the rest are units. It follows that A is a prime times some units in A1, so a

is prime in A1.
This completes the proof of Theorem 1.6.
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