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Abstract We give two new characterizations of K-triviality. We show that if
for all Y such that � is Y -random, � is .Y ˚ A/-random, then A is K-trivial.
The other direction was proved by Stephan and Yu, giving us the first titular
characterization of K-triviality and answering a question of Yu. We also prove
that if A is K-trivial, then for all Y such that � is Y -random, .Y ˚ A/ �LR Y .
This answers a question of Merkle and Yu. The other direction is immediate, so
we have the second characterization of K-triviality.

The proof of the first characterization uses a new cupping result. We prove
that if A —LR B , then for every set X there is a B-random set Y such that X is
computable from Y ˚ A.

1 Preliminaries

We assume that the reader is familiar with basic notions from computability theory
and effective randomness. For more information on these topics, we recommend
either Nies [12] or Downey and Hirschfeldt [3].

The K-trivial sets have played an important role in the development of effective
randomness. A set A 2 2! is K-trivial if K.A � n/ �C K.n/, where K denotes
prefix-free Kolmogorov complexity. Chaitin [1] proved that such sets are always
�0

2, while Solovay [16] constructed a noncomputable K-trivial set. Although these
results date back to the 1970s, the importance of K-triviality did not become appar-
ent until the 2000s, when several nontrivial characterizations were discovered. In
particular, we have the following result.

Theorem 1.1 (Nies [11]; Hirschfeldt, Nies, and Stephan [6]) The following are
equivalent for a set A 2 2!:
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(a) A is K-trivial,
(b) A is low for K: KA.n/ �C K.n/,
(c) A is low for randomness: every random set is A-random,1
(d) A is a base for randomness: there is an A-random set X �T A.

Nies [11] generalized (c) to LR-reducibility: we write A �LR B to mean that every
B-random set is A-random. In particular, A �LR ; means that A is low for random-
ness (hence K-trivial).

Much more has been proved about the K-trivial sets, including many other char-
acterizations. We give two more. Our results relate to a weakening of lowness for
randomness. If X is random, then we say that Y is low for X if X is Y -random.
This notion was introduced in [6], where it was shown that a set is K-trivial if and
only if it is �0

2 and low for Chaitin’s �. However, many other sets are low for �, for
example, every 2-random set.

The following recent result regarding K-triviality and lowness for � was used by
Stephan and Yu to prove one direction of our first characterization (see the discussion
before Proposition 3.2). We will need it in the proof of Lemma 3.4.

Theorem 1.2 (Simpson and Stephan [15, Theorem 3.11]) If S has PA degree and
is low for �, then S computes every K-trivial.

In addition to these facts about the K-trivial sets, we will use several fairly well-
known theorems from effective randomness. Van Lambalgen’s theorem [17, Theo-
rem 5.1] says that X ˚ Y is random if and only if X is random and Y is X -random.
Two applications allow us to show that if X is random and Y is X -random, then X is
Y -random. Every set is computable from some random set. Relativizing this to X ,
we have the following.

Theorem 1.3 (Kučera [9]; Gács [5]) For any sets X and C , there is an X -random
set Y such that C �T Y ˚ X .

Any random set Turing below a Z-random set is also Z-random. Relativizing this to
Y gives the following result.

Theorem 1.4 (Miller and Yu [10, Theorem 4.3]) Assume that X �T W ˚ Y , X is
Y -random, and W is Z ˚ Y -random. Then X is Z ˚ Y -random.

Finally, we will use the relativized form of the “randomness preservation” basis the-
orem.

Theorem 1.5 (Downey, Hirschfeldt, Miller, and Nies [4]; Reimann and Slaman [14])
If W is Y -random and P is a nonempty …0

1ŒY � class, then there is a set S 2 P that
is low for W .

2 Cupping with B-Random Sets

As promised in the abstract, we prove the following cupping result.

Theorem 2.1 Assume that A —LR B . Then for any set X , there is a B-random set
Y such that X �T Y ˚ A. In fact, we make Y weakly 2-random relative to B .

This theorem should be compared with the work of Day and Miller [2]. They proved
that a set A is not K-trivial if and only if there is a random set Y �T ;0 such that
;0 �T Y ˚ A. Note that one direction of this follows from Theorem 2.1 by taking
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B D ; and X D ;0. This is because A is not K-trivial if and only if A —LR ;, and if
Y is weakly 2-random, then Y �T ;0. Day and Miller generalized this basic cupping
result by adding requirements to control the degrees of Y 0 and Y ˚ A. Theorem 2.1
offers a different generalization.

Our proof uses a result of Kjos-Hanssen. We state it here in a slightly stronger
form than he stated it, though without adding any essential content.

Theorem 2.2 (Kjos-Hanssen [8]) We have that A —LR B if and only if there is a
†0

1ŒA� class U of measure less than 1 that intersects every positive measure …0
1ŒB�

class. Furthermore, for any " > 0, we can ensure that �.U / < ".

Kjos-Hanssen showed that A �LR B if and only if each …0
1ŒA� class of positive mea-

sure has a …0
1ŒB� subclass of positive measure.2 Taking the contrapositive: A —LR B

if and only if there is a …0
1ŒA� class T of positive measure that does not have a pos-

itive measure …0
1ŒB� subclass. So U D 2! n T would be a †0

1ŒA� class of measure
less than 1 that intersects every positive measure …0

1ŒB� class.
The fact that U can be taken to have arbitrarily small measure also follows from

the work in [8]. We use this fact below, so for completeness, we sketch the argument.
Assume that A —LR B . So there is a B-random set X that is not A-random. Let U be
a †0

1ŒA� class containing every non-A-random set. We may assume, of course, that
the measure of U is as small as we like. Let P be a positive measure …0

1ŒB� class.
Relativizing a result of Kučera [9, proof of Lemma 3], every B-random set has a tail
in P , so there is a tail Y of X in P . But Y is not A-random, so Y 2 U .3

We need some basic notation for the proof of Theorem 2.1. If P � 2! is mea-
surable and � 2 2<! , let �.P j �/ denote the relative measure of P in Œ��, that is,
�.P \ Œ��/=�.Œ��/. If � 2 2<! and W � 2<! , let �W D ¹�� W � 2 W º.

Proof of Theorem 2.1 Suppose that A —LR B . By Theorem 2.2, there is a †0
1ŒA�

class U such that �.U / < 0:1 and U intersects every positive measure …0
1ŒB�

class. Let W be an A-computably enumerable prefix-free set of strings such that
U D ŒW ��.

Let X be any set. We will construct Y D X.0/�0X.1/�1X.2/�2 � � � such that
each �i 2 W . In this way, it is clear that X �T Y ˚ A. To ensure that Y is weakly
2-random relative to B , we build it inside a nested sequence of …0

1ŒB� classes Pn of
positive measure such that

T
n2! Pn is a subset of every †0

1ŒB� class of measure 1.
The following claim will let us hit W and code the next bit of X while staying inside
the current …0

1ŒB� class.

Claim For any string � 2 2<! and any …0
1ŒB� class P such that �.P j �/ > 0:1,

there is a � � � such that � 2 �W and �.P j �/ � 0:8.

Proof We first extend � to a string � that has no prefix in �W and such that
�.P j �/ > 0:9. Let Q D 2! n Œ�W ��. As �.Q j �/ > 0:9 and �.P j �/ > 0:1,
we have �.Q \ P j �/ > 0. By the Lebesgue density theorem, there is a � � � such
that �.Q \ P j �/ > 0:9. In particular, �.P j �/ > 0:9 and �.Q j �/ > 0:9; the
latter implies that � cannot have a prefix in �W .

We now extend � to a string � satisfying the claim: � 2 �W and �.P j �/ � 0:8.
Consider the …0

1.B/ class eP D ¹X 2 P \ Œ��W .8n � j�j/�.P j X � n/ � 0:8º. In
words, eP is the subclass of P \ Œ�� in which we remove every basic neighborhood
inside Œ�� where the relative measure of P drops below 0:8. It is not hard to show that
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we remove at most 0:8 from the relative measure of P \ Œ�� inside Œ��. Consider the
antichain of maximal basic neighborhoods that are removed. But �.P j �/ > 0:9,
so �.eP j �/ > 0:1. In particular, eP is a positive measure subclass of Œ��, so by the
choice of U D ŒW ��, it must be the case that Œ�W �� intersects eP . Take � 2 �W

such that eP \ Œ� � ¤ ;. By the definition of eP , we have �.P j �/ � 0:8.

We are ready to construct Y . We will construct it as the limit of a sequence
�0 � �1 � �2 � � � � of strings, while staying inside a decreasing sequence
P0 � P1 � P2 � � � � of …0

1ŒB� classes. Let P0 D 2! , and let �0 be the empty
string. We start stage n of the construction with a …0

1ŒB� class Pn and a string
�n D X.0/�0X.1/ � � � X.n � 1/�n�1 such that

�
�
Pn j �nX.n/

�
> 0:1: (?)

(Note that this is true at stage 0.) First, we want to make progress toward Y being
weakly 2-random relative to B . Let

S
m2! Rm be the nth †0

2ŒB� class of measure 1,
where R0 � R1 � R2 � � � � is a nested sequence of …0

1ŒB� classes. Pick m large
enough that �.Pn \Rm j �nX.n// > 0:1, and let PnC1 D Pn \Rm. So as long as we
ensure that Y 2 PnC1, we have ensured that Y is in the nth †0

2ŒB� class of measure 1.
Now apply the claim to get �nC1 � �nX.n/ such that �.PnC1 j �nC1/ � 0:8 and
�nC1 2 �nX.n/W . Let �n be the string for which �nC1 D �nX.n/�n; in particular,
�n 2 W . Note that �.PnC1 j �nC1X.n C 1// � 0:6 > 0:1, so (?) holds at stage
n C 1.

Let Y D
S

n2! �n D X.0/�0X.1/�1X.2/�2 � � � . As promised, each �i is in W ,
so X �T Y ˚ A. By construction, P0 � P1 � P2 � � � � , and each �n can be
extended to an element of Pn. Therefore, Y 2

T
n2! Pn. This ensures that Y is in

every †0
2ŒB� class of measure 1, so Y is weakly 2-random relative to B .

3 Low for X Preserving

Definition 3.1 Let X be random. A set A is low for X preserving if for all Y ,

Y is low for X H) Y ˚ A is low for X:

This notion was recently introduced by Yu [18], who called it absolutely low for X .
Stephan and Yu proved that every K-trivial is low for � preserving (see Hölzl and
Nies [7, Fact 1.8]). Yu asked if the converse is true: If a set is low for � preserving,
is it K-trivial? We show that this holds.

Proposition 3.2 If X is random, then low for X preserving implies K-triviality.

Proof Assume that A is low for X preserving.
First, we claim that A �LR X . If not, then Theorem 2.1 gives us an X -random

set Y such that X �T Y ˚ A. By van Lambalgen’s theorem, X is Y -random. But
X �T Y ˚A implies that X is not .Y ˚A/-random. This contradicts the assumption
that A is low for X preserving. Therefore, A �LR X .

By Theorem 1.3, there is an X -random set Y such that A �T Y ˚ X . By van
Lambalgen’s theorem, X is Y -random and because A is low for X preserving, we
have that X is .Y ˚A/-random. Furthermore, because Y is X -random and A �LR X ,
we know that Y is A-random. Therefore, by van Lambalgen’s theorem relative to A,
Y ˚ X is A-random. But Y ˚ X computes A, so A is a base for randomness.
Therefore, it is K-trivial (see Theorem 1.1).
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Together with the result of Stephan and Yu, we get a new characterization of
K-triviality.

Theorem 3.3 A set A is K-trivial if and only if it is low for � preserving.

Our next lemma can be viewed as a slight generalization of Stephan and Yu’s result.
Assume that A is K-trivial and Y is low for �. Stephan and Yu showed that Y ˚ A

is also low for �. Merkle and Yu (see [7, Question 1.11]) asked if, in fact, Y ˚ A

has exactly the same derandomizing power as Y . This is the case as follows.

Lemma 3.4 If A is K-trivial and Y is low for �, then Y �LR .Y ˚ A/.

Proof Let A be K-trivial, and let Y be low for �. Let X be any Y -random set.
By Theorem 1.3, there is a Y -random set W such that both � and X are computable
from W ˚ Y . There is a nonempty …0

1ŒY � class containing only members with PA
degree relative to Y . So by Theorem 1.5, there is a low for W set S with PA degree
relative to Y . Thus W is S -random and Y �T S . By Theorem 1.4, both X and �

are also S -random. Since S has PA degree and is low for �, by Theorem 1.2, S

computes every K-trivial. In particular, A �T S . Because Y ˚ A �T S and X is
S -random, X is Y ˚A-random. But X was any Y -random set, so Y �LR Y ˚A.

The converse to Lemma 3.4 is easy, giving us our second characterization of
K-triviality.

Theorem 3.5 A set A is K-trivial if and only if for all Y

Y is low for � H) Y �LR .Y ˚ A/:

Proof One direction is Lemma 3.4. For the other direction, assume that A has the
given property. Note that � is ;-random, so ; �LR ; ˚ A �LR A. In other words,
A is low for randomness, hence K-trivial (see Theorem 1.1).

It is natural to ask if low for X preserving is equivalent to K-triviality for all ran-
dom X . As we shall see, this is not the case, though it is true for some X .

Proposition 3.6 If � �T X and X is random, then low for X preserving is equiv-
alent to K-triviality.

Proof One direction is given by Proposition 3.2. For the other direction, let A be
K-trivial, and take any Y such that X is Y -random. By (the unrelativized form of)
Theorem 1.4, � is also Y -random. By Lemma 3.4, Y �LR .Y ˚ A/. Therefore, X

is .Y ˚ A/-random.

For certain other X , low for X preserving is equivalent to being computable.

Proposition 3.7 If X is SchnorrŒ;0� random but not 2-random, then only the com-
putable sets are low for X preserving.

Proof We prove the contrapositive. Assume that A is not computable. If A is not
�0

2, then it is not K-trivial; hence by Proposition 3.2, it is not low for X preserving.
So assume that A is �0

2. By Posner and Robinson [13], there is a low set Y such
that Y ˚ A �T ;0. Because X is SchnorrŒ;0� random, it is random relative to any
low set,4 so it is Y -random. But X is not 2-random, so it is not .Y ˚ A/-random.
Therefore, A is not low for X preserving.
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Notes

1. Throughout this article, we consistently use random to mean Martin-Löf random.

2. This partial relativization of [8, Theorem 2.10] is stated in the proof of [8, Theorem 3.2].

3. In fact, U \ P has positive measure. Choose � 2 2<! such that Y 2 Œ�� � U . TheneP D P \ Œ�� � P \ U is a …0
1ŒB� class. Since it contains Y , which is B-random, it

cannot have measure zero.

4. In fact, this property characterizes SchnorrŒ;0� randomness: Yu [18] showed that X is
SchnorrŒ;0� random if and only if X is Z-random for every low set Z.
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