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On Superstable Expansions of Free Abelian Groups

Daniel Palacín and Rizos Sklinos

Abstract We prove that .Z;C; 0/ has no proper superstable expansions of finite
Lascar rank. Nevertheless, this structure equipped with a predicate defining pow-
ers of a given natural number is superstable of Lascar rank !. Additionally, our
methods yield other superstable expansions such as .Z;C; 0/ equipped with the
set of factorial elements.

1 Introduction

This article fits into the general framework of adding a new predicate to a well-
behaved structure and asking whether the obtained structure is still well behaved.
A similar line of thought is to impose the desired properties on the expanded struc-
ture and ask for which predicates these properties are fulfilled. Even more, one might
ask whether there exist proper expansions fulfilling the desired properties.

Many results that belong to the above-mentioned framework have been obtained
by various authors. For example, Pillay and Steinhorn [6] proved that there are no
(proper) o-minimal expansions of .N;�/. On the other hand, Marker [4] proved that
there are (proper) strongly minimal expansions of .N; s/, that is, the natural numbers
with the successor function. In a more abstract context, Baldwin and Benedikt [1]
proved that if M is a stable structure and I is a small set of indiscernibles, then
.M; I / is still stable. Finally, Chernikov and Simon [3] proved the analogous result
for not the independence property (NIP) theories, that is, that NIP is preserved after
naming a small indiscernible sequence.

In this short work, we are mainly interested in (finitely generated) free Abelian
groups. We are motivated by the recent addition of torsion-free hyperbolic groups
to the family of stable groups (see Sela [8]). In a torsion-free hyperbolic group
centralizers of (nontrivial) elements are infinite cyclic, and one is interested in the
induced structure on them. It seems that understanding the induced structure on
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these centralizers boils down to understanding whether they are superstable and, if
so, whether to calculate their Lascar rank.

Our main result generalizes a theorem in the second-named author’s dissertation
proving that every Lascar rank 1 expansion of .Z;C; 0/ is a pure group (see Sklinos
[9, Theorem 8.2.3]).

Theorem 1 There are no (proper) superstable finite Lascar rank expansions of
.Z;C; 0/.

We also show that one cannot strengthen the above result any further by proving the
following.

Theorem 2 The theory of .Z;C; 0;…q/ is superstable of Lascar rank !, where
…q denotes the set of powers of a natural number q.

In fact, our methods can be used to provide other superstable expansions by adding
other sets such as sets of the form ¹qpn

ºn<! for some natural numbers p; q or the
set of factorial elements (see Proposition 4.2). On the other hand, if one moves to
higher rank free Abelian groups, Theorem 1 is no longer true, and it is not hard
to find proper superstable Lascar rank 1 expansions of .Zn;C; 0/, for n � 2. The
main reason for this is that there exist finite index subgroups of Zn (for n � 2) that
are not definable in .Zn;C; 0/. Still, we record that a superstable finite Lascar rank
expansion of .Zn;C; 0/ is one-based and has Lascar rank at most n.

While checking our results, the second author figured out, based on a talk by
Poizat, that Theorem 2 was already proved in [7, Théorème 25]. Nevertheless, given
that both approaches are completely different, we felt it was worth recording our
result since, as we have already pointed out, it yields distinct examples. Moreover,
to our knowledge, Theorem 1 was unknown. The essential tools used to prove it
come from geometric stability theory. We combine results from Hrushovski’s thesis
together with Buechler’s dichotomy theorem (see [5, Corollary 2.33]), the charac-
terization of one-based groups by Hrushovski and Pillay, and a result on one-based
types due to Wagner (see [10, Section 3.1]).

2 Finite-Rank Expansions

The aim of this section is to study superstable expansions of finite Lascar rank of the
structure .Zn;C; 0/. We assume that the reader is familiar with the general theory
of geometric stability (see Pillay [5] and Wagner [10] as references). In addition, we
require the following result which characterizes subgroups of finitely generated free
Abelian groups.

Fact 2.1 Let G be a subgroup of Zn. Then there is a basis .z1; : : : ; zn/ of Zn and
a sequence of natural numbers d1; : : : ; dk (with di dividing diC1 for i < k) such
that .d1z1; : : : ; dkzk/ forms a basis of G.

One can use Fact 2.1 to prove the following lemma, which we consider as being part
of the folklore.

Lemma 2.2 Let G be a subgroup of Zn. Then G is definable in .Z;C; 0/.

Now, we prove Theorem 1.
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Proof of Theorem 1 Consider a finite Lascar rank expansion Z D .Z;C; 0; : : :/
of .Z;C; 0/, and let � � Z be a sufficiently saturated elementary extension. As
� has finite Lascar rank, its principal generic type is nonorthogonal to a type q
of Lascar rank 1, and hence, we can find an ;-definable normal subgroup H of
infinite index in � in a way that �=H is Q-internal, where Q is the family of all
;-conjugates of q. In fact, since H is defined without parameters, the subgroup
H \ Z has infinite index in Z, hence H \ Z must be trivial, and so is H . This
yields that � is Q-internal. On the other hand, as � is not !-stable, by Buechler’s
dichotomy theorem (see [5, Corollary 2.33]) q must be a one-based type and so
are all its conjugates. Thus � is one-based by Wagner [11, Corollary 12], and so
is the theory of Z. Thus, by the characterization of one-based stable groups in [5,
Corollary 4.4.8], every definable subset of Zn in the expanded structure is a Boolean
combination of cosets of definable subgroups of Zn and therefore, any definable set
in the theory of Z is already definable in the theory of .Z;C; 0/ by the previous
lemma, as desired.

We note, in contrast, that not all subgroups of Zn are definable in .Zn;C; 0/. For
example, the finite index subgroup 3Z˚ 2Z of Z2 is not definable in .Z2;C; 0/, and
of course any nontrivial infinite index subgroup of Zn, for n � 2, is not definable in
.Zn;C; 0/.

Theorem 2.3 Any finite Lascar rank expansion of .Zn;C; 0/ is one-based and
has Lascar rank at most n.

Proof Consider a finite Lascar rank expansion Z D .Zn;C; 0; : : :/ of .Zn;C; 0/.
A similar argument as in the previous theorem yields that the theory of Z is one-
based. For this, let � � Z be a sufficiently saturated model. As it has finite Las-
car rank by assumption, the general theory yields the existence of a finite series of
;-definable normal subgroups

� D H0 D H1 D � � � D HmC1 D ¹0º

such that HmC1 is finite and each factor Hi=HiC1 is infinite and internal to a family
Qi of ;-conjugates of some type qi of Lascar rank 1. Since free Abelian groups are
torsion-free they do not have any finite (nontrivial) subgroups, and so neither does � .
This implies thatHmC1 is trivial. Furthermore, by Fact 2.1 we obtain that no infinite
quotient of Zn is !-stable. As all subgroups Hi are ;-definable, we deduce that the
quotients Hi=HiC1 cannot have ordinal Morley rank, and neither do the types from
the families Qi . Whence, we conclude by Buechler’s dichotomy theorem that all of
them are one-based, and so is � again by [11, Corollary 12].

To see that the expansion Z has Lascar rank at most n, consider the structure Zproj
given as .Zn;C; 0; P1; : : : ; Pn/, where the predicate Pi is interpreted as the projec-
tion of Zn onto its i th coordinate. It is clear that Zproj is interpretable in .Z;C; 0/ and
so it has Lascar rank n. On the other hand, since Z is one-based, it is interpretable in
Zproj by the characterization of one-based stable groups in [5, Corollary 4.4.8] and
thus, it has Lascar rank at most n.

Remark 2.4 Observe that the proof yields that any superstable finite Lascar rank
expansion of .Zn;C; 0/ is interpretable in the structure Zproj.
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3 Superstable Expansions of .Z; C; 0/

In this section we will see that there are proper superstable expansions of .Z;C; 0/,
necessarily, by Theorem 1, of infinite Lascar rank.

Definition 3.1 Let L be a first-order language, and let P.x/ be a unary predicate.
We denote by LP the first-order language L [ ¹P º. We say that an LP -formula
�. Ny/ is bounded (with respect to P ) if it has the form

Q1x1 2 P � � � Qnxn 2 P . Nx; Ny/;

where the Qi ’s are quantifiers and  . Nx; Ny/ is an L-formula.

The following theorem is useful for proving Theorem 2; we refer the reader to
Casanovas and Ziegler [2] for the proof.

Theorem 3.2 Let M be an L-structure, and let A � M . Consider .M; A/ as a
structure in the expanded language LP WD L[¹P º. Suppose that every LP -formula
in .M; A/ is equivalent to a bounded one. Thus, for every � � jLj, if both M and
Aind are �-stable, then .M; A/ is �-stable.

Let �n be the congruence relation modulo n on the integers. Observe that a 6�n b is
equivalent to a �n bC 1_ a �n bC 2_ � � � _ a �n bC .n� 1/, and hence we get
the following remark.

Remark 3.3 Let Lmod be the language of groups expanded with countably
many 2-place predicates. We recall that an Lmod-formula �. Nx/ is equivalent, in
.Z;C; 0; ¹�nºn<!/, to a finite disjunction of formulas of the form

t1. Nx/ D 0 ^ � � � ^ tk. Nx/ D 0;

r1. Nx/ ¤ 0 ^ � � � ^ rl . Nx/ ¤ 0;

s1. Nx/ �n1
0 ^ � � � ^ sm. Nx/ �nm

0;

where ti . Nx/; si . Nx/; ri . Nx/ are terms in the above language.

Set …q to denote the set ¹qn j 1 � n < !º for some natural number q.

Lemma 3.4 Let q be a natural number. Let Nb be a tuple in Z, and let �. Nx; y; Nz/

be an L-formula, where L is the language of groups. Suppose that the set
�.y/ WD ¹�. Nb; y; N̨ / j N̨ 2 …

j Nzj
q º is consistent with T h.Z;C; 0/. Then there

exists c 2 Z realizing the set �.y/.

Proof We may assume that �. Nx; y; N̨ / is a formula as in Remark 3.3. If we fix
some tuple N̨0 in …q , then each disjunctive clause in �. Nb; y; N̨0/ asserts that y is
equal to some element from a finite list of elements in Z, and y is not equal to any
element from a finite list of elements in Z and y belongs to the intersection of finitely
many cosets of fixed subgroups of Z, where these fixed subgroups only depend on �
(not Nb or N̨0).

Our assumption that �.y/ is consistent implies that, for each tuple N̨0 in …q , we
may choose a disjunctive clause in �. Nb; y; N̨0/ such that the set of these clauses is
again consistent. Note that if one of the chosen clauses involves an equality, then the
result holds trivially. So we will assume that no equality is involved in any disjunctive
clause of �. On the other hand, the intersection of cosets of subgroups of a group is
either empty or a coset of the intersection of the subgroups, thus we may assume that
a disjunctive clause that involves congruence modulo relations, involves exactly one.
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Next we prove that a finite union of sets of the form

¹k0 C k1 � ˛1 C � � � C ks � ˛s j ˛1; : : : ; ˛s 2 …qº

cannot cover any coset of any (nontrivial) subgroup of Z. Suppose otherwise that the
coset mC nZ is contained in such a finite union, and observe that we may assume,
after subtractingm if necessary, thatm D 0. Thus, for each set of the above form we
can write each given coefficient ki in base q and obtain a natural number l such that
nZ is covered by finitely many sets of the form®

�0 C �1 � ˛1 C � � � C �l � ˛l

ˇ̌
˛1; : : : ; ˛l 2 …q; 0 � j�0j; : : : ; j�l j < q

¯
:

Assume that l is the biggest number obtained in the above-mentioned fashion. Then,
any multiple of n can be written in base q with at most l C 1 many summands. Now,
let � be the element n � .1CqCq2 C� � �CqlC1/, which clearly belongs to nZ. After
writing n in base q, we obtain that � is written in base q as the sum of at least l C 2

many summands. Thus, by the uniqueness of the representation of � in base q, we
obtain a contradiction.

Now, the consistency of �.y/ implies that y belongs to the intersection of finitely
many cosets of subgroups of Z and that y is not equal to any element of a finite union
of sets of the form

¹k0 C k1 � ˛1 C � � � C ks � ˛s j ˛1; : : : ; ˛s 2 …qº:

By the previous paragraph, a solution can be found in Z and this finishes the proof.

Now we are able to prove the following technical lemma.

Lemma 3.5 Let q be a natural number. Let L be the language of groups, and let
P.x/ be a unary predicate. Let Z WD .Z;C; 0;…q/ be an LP -structure.

Let �. Nx; y; Nz/ be an L-formula. Then there exists k < ! such that

Z ˆ 8 Nx
��

8Nz0 2 P : : :8Nzk 2 P 9y
^
j �k

�. Nx; y; Nzj /
�

! 9y 8Nz 2 P�. Nx; y; Nz/
�
:

Proof Since .Z;C; 0/ does not have the finite cover property, we can assign to each
formula � a natural number k such that any set of instances of the formula � is con-
sistent if and only if it is k-consistent. By Lemma 3.4, if a set ¹�. Nb; y; N̨ / j N̨ 2 …

j Nzj
q º

is consistent, then a solution can be found in Z and this is enough to conclude.

The following proposition is an easy corollary of Lemma 3.5. We leave the proof to
the reader (see [2, Proposition 2.1]).

Proposition 3.6 Let q be a natural number. Let L be the language of groups, and
let P.x/ be a unary predicate. Let Z WD .Z;C; 0;…q/ be an LP -structure. Then
every LP -formula in Z is bounded.

As a consequence, we deduce the following.

Corollary 3.7 Let q be a natural number. Let L be the language of groups, let
P.x/ be a unary predicate, and let .�;C0; 0;…0

q/ � .Z;C; 0;…q/ be LP -structures.
Two tuples of � realize the same LP -formulas over any set of parameters C � �

whenever they realize the same L-formulas over …0
q [ C .



162 Palacín and Sklinos

Proof Let a and b be two tuples realizing the same L-formulas over …0
q; C . It is

easy to see by induction on the number of quantifiers that a and b realize the same
formulas of the form

Q1x1 2 P � � � Qnxn 2 P . Nx; Ny/;

where the Qi ’s are quantifiers and  . Nx; Ny/ is an L.…0
q [ C/-formula. Hence, we

conclude by Proposition 3.6.

Our last task is to prove that the induced structure on the subset of the integers that
consists of powers of some natural number, coming from .Z;C; 0/, is tame. Recall
that ifB is a subset of the domainM , of a first-order structure M, then by the induced
structure on B we mean the structure with domain B and predicates for every subset
of Bn of the form Bn \ �.M n/, where �.x/ is a first-order formula (over the empty
set). We denote this structure by B ind.

Proposition 3.8 Let q be a natural number. The structure …ind
q (with respect to

.Z;C; 0/) is superstable and has Lascar rank 1.

The proof is split into a series of lemmas. We first prove some results, which we
believe are well known, in the spirit of Diophantine analysis.

Lemma 3.9 Let q be some natural number. Let k < n be natural numbers such
that n is coprime with q, and let Œk�n denote the congruence class of k modulo n.
Then …q \ Œk�n D ¹qm0C'.n/�m W m < !º, where '.n/ is Euler’s phi function and
m0 is the smallest natural number for which qm0 � k mod n.

Proof We first note that if k; n are not coprime, then the intersection of Œk�n with
…q is empty. The common factor of k and n does not contain a factor of q since n is
coprime with q, and it should appear as factor in any element of k C n � Z.

We now assume that k; n are coprime, and we fix k; n;m0, satisfying the hypoth-
esis of the lemma. We define �m recursively as follows:

�0 WD
qm0 � k

n
;

�mC1 WD �m � b'.n/
C k �

q'.n/ � 1

n
; for 0 � m < !:

Note that, by Euler’s theorem, all the �m’s are integers. Furthermore, one can easily
see, by induction on m, that �m � nC k is a power of q of the form qm0C'.n/�m and
therefore ¹�m � nC k j m < !º � …q \ Œk�n.

In fact, the other inclusion also holds. To see this, let ql be an arbitrary power of q.
We may assume that l > m0, since m0 is the smallest natural number satisfying the
hypothesis. Then we can find somem such that l D m0 C'.n/ �mCs with s < '.n/.
As '.n/ is the order of the multiplicative group .Z=nZ/�, we get qs 2 Œ1�n only when
s D 0. Since k; n are coprime, k has a multiplicative inverse modulo n. Therefore,

ql
D qm0C'.n/�m

� qs
�n k � qs

�n k if and only if s D 0;

and this concludes the proof.

Remark 3.10 Let q be some natural number. Assume that n is a power of a prime
which is not coprime with q. Then the intersection of…q with Œk�n is either finite or
cofinite in …q .
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Lemma 3.11 Let k1x1 C � � � C knxn D k be an equation over the integers, and
let S � Zn be its solution set. Then S \…n

q is either empty or a finite union of sets
of the form ®

.q�1 ; : : : ; q�n/
ˇ̌
�i1 > m1; : : : ; �ik > mk ;

�ikC1
D ˛kC1�ij1

CmkC1;

:::

�in D ˛n�ijn�kC1
Cmn

¯
;

where m1; : : : ; mn 2 Z, ˛i 2 ¹0; 1º, and ¹ij1
; : : : ; ijn�kC1

º � ¹i1; : : : ; ikº.

Proof The proof is by induction. For the base case n D 1, we easily see that
k1x1 D k can either be empty or have a single solution; thus, the solution set is
of the required form. Suppose that for every m < n the solution set of any linear
equation in m variables is of the required form; we show that the same holds for
equations with n variables.

We split the solution set into finitely many subsets according to the finitely
many orderings we can put on the n variables. For example, to the ordering
x1 � x2 � � � � � xn corresponds the subset of solutions for which each coordinate
takes a greater or equal value to its previous one. We analyze those subsets in
parallel. For notational purposes, we analyze the set with the above ordering. Let
¹.q�1.i/; : : : ; q�n.i// j i < !º be an enumeration of this set. Then

q�1.i/.k1 C k2q
�2.i/��1.i/

C � � � C knq
�n.i/��1.i// D k:

We take the following cases.
(Case 1) Suppose that the sequence �1.i/ is bounded. Then for each of the finitely

many values of �1.i/, we have k2q
�2.i/��1.i/ C � � � C knq

�n.i/��1.i/ D
k

q�
1

.i/
� k1.

Using the inductive hypothesis for the linear equation k2x2C� � �Cknxn D
k

q�
1

.i/
�k1,

we see that the solution set is contained in a set of the required form.
(Case 2) Suppose that the sequence �1.i/ is unbounded. Then k must be zero and

k1 C k2q
�2.i/��1.i/ C � � � C knq

�n.i/��1.i/ D 0. Thus, we have

q�2.i/��1.i/.k2 C � � � C knq
�n.i/��2.i// D �k1:

Note that in this case, since k1 ¤ 0, we must have that �2.i/ � �1.i/ is bounded.
For each of the finitely many values �2.i/� �1.i/ takes, we continue our analysis in
parallel. We have

k3q
�3.i/��2.i/

C � � � C knq
�n.i/��2.i/

D
�k1

q�2.i/��1.i/
� k2:

At this step and every step thereafter, we take cases according to whether �j C1.i/ �

�j .i/ is bounded or not. In the case where it is bounded, for each value of the finitely
many, a relation of the form �j C1 D �j C mj is introduced. In the case where
it is unbounded, we use the induction hypothesis as our solution set is contained
in the solution set of linear equations of the form k1x1 C � � � C kmxm D 0 and
kmC1xmC1 C � � � C knxn D 0.

Lemma 3.12 Let q be some natural number. Let N WD .N; s; ¹Qk;nºn<!;k<n/

be a first-order structure where the function symbol s is interpreted as the successor
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function and the predicate Qk;n is interpreted as the set of natural numbers which
are residual to k modulo n. Then …ind

q is definably interpreted in N .

Proof Throughout the proof the symbol sm will be used to denote s ı s ı � � � ı s

m-times. We also allow m to be negative, in which case sm denotes the composition
of the predecessor function m-times (which is clearly definable).

We first interpret…q to be the domain of N . Now let P be a predicate of…ind
q . By

the construction of…ind
q , we have that P is a subset of the form �.Zn/\…n

q for some
quantifier-free formula � in .Z;C; 0; ¹�nºn<!/. Since a quantifier-free formula is a
Boolean combination of formulas of the form t . Nx/ D 0 and s. Nx/ �l 0, we only need
to interpret in N solution sets of equations and congruence relations of the above
simple form intersected with …n

q .
Suppose that �. Nx/ is the equation t . Nx/ D 0. Then, by Lemma 3.11, the set

�.Zn/ \ …n
q can be interpreted as a finite union of sets which—for the sake of

clarity—can be assumed to have the following form:^
1�i<n

x1 D smi .xiC1/ ^

^
1�j �k

x1 ¤ j:

Otherwise, suppose that �. Nx/ is the congruence relation s. Nx/ �l 0. If .r1; : : : ; rn/ is
a tuple of integers that satisfy the congruence relation, then any tuple .q1; : : : ; qn/ for
qi 2 Œri �l satisfies this relation. Note that we can only have finitely many solutions up
to l-congruence. Moreover, we may assume, by the Chinese remainder theorem, that
l is a power of a prime number. Thus, by Lemma 3.9 and Remark 3.10, �.Zn/\…n

q

can be interpreted as a finite union of sets of the form^
1�i�n

Qki ;mi
.xi / ^ “xi is not equal to finitely many elements”:

This finishes the proof.

Lemma 3.13 The theory of N WD .N; s; ¹Qk;nºn<!;k<n/ admits quantifier elim-
ination after adding a constant and a unary function symbol. Moreover, it is super-
stable and has Lascar rank 1.

Proof We add a constant to name 1 and a function symbol s�1 to name the prede-
cessor function; observe that both are definable in N .

We prove elimination of quantifiers by induction on the complexity of the for-
mula �. It is enough to consider the case where �. Nx/ is a consistent formula of the
form 9y . Nx; y/, where jyj D 1 and  . Nx; y/ is a quantifier-free formula. We can
clearly assume that is in normal disjunctive form. Thus, since the negation ofQk;n

is equivalent to the conjunction
W

l¤k Ql;n, it is enough to consider the case where
 . Nx; y/ is a finite conjunction of formulas of the following form:

Qk;n.xi / ^Ql;m.y/ ^ xi D c ^ y D d ^ xi ¤ a ^ y ¤ b

^ sp.xi / D xj ^ sr .xl / D y ^ sf .xi / ¤ xj ^ sg.xl / ¤ y:

Furthermore, we split  into a conjunction  0. Nx; y/ ^  1. Nx/, where  1 is the
conjunction of the atomic formulas of  that do not contain y. Clearly we may
assume that  0. Nx; y/ does not contain instances of the form y D d or sg.xi / D y.
We claim that 9y 0. Nx; y/ is equivalent to Nx D Nx. Indeed, the projection of any
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formula of the form

Qk;n.y/ ^

^
1�i�k

sgi

.x/ ¤ y ^

^
1�j �l

y ¤ dj

is equivalent to x D x, thus the claim follows and  . Nx; y/ is equivalent to  1. Nx/.
So, we obtain the first part of our statement.

Quantifier elimination allows us to prove by an easy counting types argument that
the theory is superstable. Fix a set of parameters B . Clearly any nonalgebraic type
over B extends the set �.x/ given by ¹sn.x/ ¤ a W a 2 B; n 2 Zº. Hence, by the
elimination of quantifiers, we obtain that any complete nonalgebraic type over B (in
one variable) is equivalent to �.x/[�0.x/, where �0.x/ is a complete type without
parameters. Whence, jS.B/j D jBj C jS.;/j, as desired. In fact, any type without
parameters is determined by positive formulas since, as noted before, the formula
:Qk;n.x/ is equivalent to a disjunction of formulas Ql;n.x/ for l ¤ k. In addition,
as for any n 2 N the formulaQk;n.x/^Ql;n.x/ is inconsistent for distinct l; k < n,
every complete type contains only one predicate of the form Qk;n.x/ for a given n.
Thus, it is easy to see that there are continuum many types without parameters; for
instance, note that the predicateQk;2n.x/ splits intoQk;2nC1.x/ andQkC2n;2nC1.x/

when k is odd. Hence jS.B/j D jBj C 2! and whence, the theory is not !-stable.
Finally, again by quantifier elimination it is easy to see that the only formulas

that divide are the algebraic ones. This shows that the theory has Lascar rank 1; the
details are left to the reader.

Now, the proof of Proposition 3.8 follows from Lemmas 3.12 and 3.13. We can prove
our second main theorem.

Proof of Theorem 2 It follows from Proposition 3.8 together with Theorem 3.2
that the expanded structure .Z;C; 0;…q/ is superstable. As it is a proper expansion
of .Z;C; 0/, it has infinite Lascar rank by Theorem 1. Whence, it remains to see that
it has Lascar rank !. For this, it is enough to show that any forking extension of the
principal generic has finite Lascar rank.

We will work in a sufficiently saturated extension of .Z;C; 0;…q/, where …q

is interpreted as …0
q . Let p 2 S.;/ be the generic of the connected component,

and let q D tp.b=B/ be an extension of p. Consider a realization a of p j B ,
and note by using Lemma 3.13 that …0

q has Lascar rank 1. Now, working in the
theory of .Z;C; 0/, we obtain that tp.b=…0

q; B/ is the principal generic whenever
b … acl.…0

q; B/. Moreover, if a finite tuple d is algebraic over …0
q [ B and this is

exemplified by some finite tuple .c1; : : : ; cn/ in…0
q , then we have in T h.Z;C; 0;…q/

that U.d=B/ � U. Nc=B/ < ! as the set …0
q�

n
� � � �…0

q has Lascar rank n. Hence
a … acl.…0

q; B/ in the sense of .Z;C; 0/ and hence its type over …0
q [ B is the

principal generic. Thus, by Corollary 3.7 we deduce that p j B D tp.b=B/whenever
b is not algebraic in the sense of .Z;C; 0/ over …0

q [ B . Therefore, in the case in
which tp.b=B/ is a forking extension of p we conclude that b 2 acl.…0

q; B/, and so
tp.b=B/ has finite Lascar rank, as desired.

One can see directly that the structure .Z;C; 0;…q/ has infinite Lascar rank, without
using Theorem 1, by showing that the set …qC

n
� � � C…q has Lascar rank n. This is

left to the reader.
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4 Generalizations

In this section we would like to mention a few generalizations, concerning proper
superstable expansions of the integers, that follow from our methods. The ideas
behind our proof are transparent and clear. First, one reduces the superstability of the
expanded structure to the superstability of the induced structure on the new predicate.
Second, one needs to understand the induced structure in this new predicate. It seems
that this is equivalent to understanding its intersection with arithmetic progressions
and with the solution set of linear equations over the integers.

The following example is not very different in nature from the ones we already
gave in the previous section. We leave its proof as an exercise to the interested reader.

Example 4.1 Let .k1; : : : ; km/ be a sequence of natural numbers, and let

SP.k1;:::;km/ WD ¹k
: : :

kn
m

1 j n < !º:

Then .Z;C; 0; SP.k1;:::;km// is superstable of Lascar rank !.

A more interesting example is the subset of the integers consisting of factorial ele-
ments, that is, Fac WD ¹nŠ j n < !º [ ¹0º.

Proposition 4.2 The structure .Z;C; 0; Fac/ is superstable of Lascar rank !.

We first note that the set Fac satisfies the following.

Lemma 4.3 A finite union of sets of the form

¹k0 C k1 � ˛1 C � � � C ks � ˛s j ˛1; : : : ; ˛s 2 Facº;

where k0; : : : ; ks are integers, cannot cover any coset of any (nontrivial) subgroup
of Z.

Proof Suppose otherwise that the cosetmCnZ is contained in such a finite union,
and note that we may assume that m D 0. By the pigeonhole principle, there are
integers �0; : : : ; �l determining one of these sets, a prime p greater than �0; : : : ; �l ,
and an infinite subset I0 of N such that ¹npkºk2I0

is contained in the set

¹�0 C �1 � ˛1 C � � � C �l � ˛l j ˛1; : : : ; ˛l 2 Facº:

Let ˛1.k/; : : : ; ˛l .k/ denote the factorial numbers such that

npk
D �0 C �1 � ˛1.k/C � � � C �l � ˛l .k/:

Now, suppose that there is some infinite subset I of I0 such that for some j , the set
¹˛j .k/ºk2I is finite. Without loss of generality, we may assume that j D l . Thus,
by the pigeonhole principle, there is some factorial ˛ and some infinite subset I 0 of
I such that

npk
D �0 C �l � ˛ C �1 � ˛1.k/C � � � C �l�1 � ˛l�1.k/;

for k in I 0. Hence, after replacing �0 by �0 C �l � ˛ and I by a suitable infinite
subset, and iterating this process, we may assume that for any infinite subset I of
I0 the set ¹˛j .k/ºk2I is unbounded for 1 � j � l . Thus, we can find recursively
on j an infinite subset Ij of Ij �1 such that ˛1.k/; : : : ; ˛j .k/ are greater than pŠ
for every k in Ij . In particular, there is a natural number k, in Il , for which the
factorial numbers ˛1.k/; : : : ; ˛l .k/ are greater than pŠ. Consequently, as p clearly
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divides �1 �˛1.k/C� � �C�l �˛l .k/, it also divides �0, which is a contradiction unless
�0 D 0. Therefore, we have shown that the set ¹npkºk2I0

is contained in
¹�1 � ˛1 C � � � C �l � ˛l j ˛1; : : : ; ˛l 2 Facº:

However, this yields a contradiction since for arbitrarily large k, we can find a prime
q dividing �1 � ˛1.k/C � � � C �l � ˛l .k/ but not npk .

Therefore, a proof similar to the one in Lemma 3.4 gives the following.

Lemma 4.4 Let L be the language of groups, and let P.x/ be a unary predi-
cate. Let Z WD .Z;C; 0; Fac/ be an LP -structure. Then every LP -formula in Z is
bounded.

We will next prove that the induced structure on Fac comes from equality alone.

Lemma 4.5 Let k < n be natural numbers, and let Œk�n denote the congruence
class of k modulo n. Then Fac \ Œk�n is either finite or cofinite in Fac.

Proof It is easy to see that when k is zero the intersection will be cofinite in Fac,
while in any other case the intersection will be finite.

Given an equation k1x1 C � � � C knxn D 0 over the integers and a partition
P D ¹Ij ºj �l of ¹1; : : : ; nº, we denote by XP the set of solutions .m1Š; : : : ; mnŠ/

such that mi D mk if and only if i; k 2 Ij for some j � l .

Lemma 4.6 Let k1x1 C � � � C knxn D 0 be an equation over the integers, and
let P D ¹Ij ºj �l be a partition of ¹1; : : : ; nº. Then the projection of XP on its
Ij -coordinates is an infinite set if and only if

P
i2Ij

ki D 0.

Proof Let P D ¹Ij ºj �l be a partition of ¹1; : : : ; nº, and suppose thatP
i2Ij

ki D 0 for some j � l . Clearly, there are infinitely many solutions of
the form .x1; : : : ; xn/ with xi D 0 for i … Ij and xi constant for i 2 Ij . Hence, we
get the result. For the converse, assume for some k � l that the projection of XP on
its Ik-coordinates yields an infinite set but

P
i2Ik

ki is nonzero, and let XP be the
set ¹.m1.t/Š; : : : ; mn.t/Š/ºt<! . Set sj .t/ to be the value of everymi .t/ when i 2 Ij ,
and note that all sj .t/’s are distinct by the definition of XP . It is clear thatX

j �l

�X
i2Ij

ki

�
� sj .t/Š D 0:

Now, let J be the set of subindices j � l for which
P

i2Ij
ki is nonzero; note that

J is nonempty as k 2 J and also thatX
j 2J

�X
i2Ij

ki

�
� sj .t/Š D 0:

By assumption, this equation holds for all t < ! and so, by the pigeonhole principle,
we can find an enumeration of J D ¹j1; : : : ; jrº such that sj1

.t/ > � � � > sjr
.t/

for infinitely many values of t . Additionally, for some of these t ’s we have that
sj1
.t/ > j

P
i2Ij2

ki C � � � C
P

i2Ijr
ki j and thusˇ̌̌� X

i2Ij1

ki

�
� sj1

.t/Š
ˇ̌̌
>

ˇ̌̌� X
i2Ij2

ki

�
� sj2

.t/ŠC � � � C

� X
i2Ijr

ki

�
� sjr

.t/Š
ˇ̌̌
;

which is a contradiction. Hence, we get the result.
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If k1x1 C � � � C knxn D 0 is an equation over the integers and S � Zn is its solution
set, observe that S is precisely the finite union of all XP . Therefore, Lemmas 4.5
and 4.6 give that all the induced structure on Fac comes from equality alone, thus
Facind is strongly minimal and Proposition 4.2 follows.

Our article can be seen as opening a pathway for answering the following inter-
esting questions.

Question 4.7

� (J. Goodrick) Characterize the subsets … � Z, for which .Z;C; 0;…/ is
superstable.

� Characterize the subsets … � Z, for which .Z;C; 0;…/ is stable.
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