Nonreduction of Relations in the Gromov Space to Polish Actions

Jesús A. Álvarez López and Alberto Candel

Abstract

We show that in the Gromov space of isometry classes of pointed proper metric spaces, the equivalence relations defined by existence of coarse quasi-isometries or being at finite Gromov-Hausdorff distance cannot be reduced to the equivalence relation defined by any Polish action.

1 Introduction

Gromov [3], [4, Chapter 3] described a space, denoted here by \mathcal{M}_{*}, whose points are isometry classes of pointed complete proper metric spaces. It is endowed with a topology which resembles the Tychonoff topology of $\mathbf{R}^{\mathbf{N}}$, or the compact open topology on the space of continuous functions $C(\mathbf{R})$. It also supports several equivalence relations of geometric interest, like the relation of being at finite Gromov-Hausdorff distance, E_{GH}, and the relation of being (coarsely) quasi-isometric, E_{QI}.

The following concepts relate the complexity of two equivalence relations on topological spaces, E over X and F over Y. A map $\theta: X \rightarrow Y$ is called (E, F)-invariant if $x E x^{\prime} \Longrightarrow \theta(x) F \theta\left(x^{\prime}\right)(\theta$ induces a mapping $\bar{\theta}: X / E \rightarrow Y / F)$. It is said that E is Borel reducible to F, denoted by $E \leq_{B} F$, if there is an (E, F)-invariant Borel mapping $\theta: X \rightarrow Y$ such that $x E x^{\prime} \Leftrightarrow \theta(x) F \theta(y)$ ($\bar{\theta}: X / E \rightarrow Y / F$ is injective). If $E \leq_{B} F$ and $F \leq_{B} E$, then E is said to be Borel bireducible with F, and is denoted by $E \sim_{B} F$. If the map θ can be chosen to be continuous, then the terms continuously reducible and continuously bireducible are used, with notation \leq_{c} and \sim_{c}.

For an example of an equivalence relation, let G be a Polish group acting continuously on a Polish space X (a Polish action). We then let E_{G}^{X} denote the orbit equivalence relation whose equivalence classes are exactly the G-orbits. For instance,

Received February 18, 2015; accepted October 5, 2015
First published online January 8, 2018
2010 Mathematics Subject Classification: Primary 03E15, 54H05; Secondary 54H20, 54E50
Keywords: Gromov space, Gromov-Hausdorff metric, quasi-isometry
© 2018 by University of Notre Dame 10.1215/00294527-2017-0026

Hjorth's theory of turbulence (see [5], [6]) is valid for relations defined by Polish actions. The following is our main result.

Theorem 1.1 For any Polish group G and any Polish G-space X, we have $E_{\mathrm{GH}} \not \mathbb{Z}_{B} E_{G}^{X}$ and $E_{\mathrm{QI}} \not \mathbb{L}_{B} E_{G}^{X}$.
The theory of turbulence is extended in Álvarez López and Candel [1] to more general equivalence relations on Polish spaces, and it is applied to E_{QI} and E_{GH}. This is a nontrivial extension by Theorem 1.1.

The proof of Theorem 1.1 uses the following. Let E_{1} be the equivalence relation on $\mathbf{R}^{\mathbf{N}}$ consisting of the pairs (x, y), with $x=\left(x_{n}\right)$ and $y=\left(y_{n}\right)$, such that there is some $N \in \mathbf{N}$ so that $x_{n}=y_{n}$ for all $n \geq N$ (the relation of eventual agreement). We have $E_{1} \not \mathbb{L}_{B} E_{G}^{X}$ for any Polish group G and any Polish G-space X (see Kechris and Louveau [7, Theorem 4.2]; see also [5, Theorem 8.2] for a different proof).

On the other hand, let $E_{K_{\sigma}}$ be the equivalence relation on $\prod_{n=2}^{\infty}\{1, \ldots, n\}$ consisting of the pairs (x, y), with $x=\left(x_{n}\right)$ and $y=\left(y_{n}\right)$, such that $\sup _{n}\left|x_{n}-y_{n}\right|<\infty$. We have $E \leq_{B} \quad E_{K_{\sigma}}$ for any K_{σ} equivalence relation E (see Rosendal [9, Theorem 17, Proposition 19], ${ }^{1}$ and therefore $E_{1} \leq_{B} E_{K_{\sigma}}$ because E_{1} is K_{σ} (see [9], Gao [2, Exercise 8.4.3]); in particular, $E_{K_{\sigma}} \not \mathbb{Z}_{B} E_{G}^{X}$ for any Polish group G and every Polish G-space X. Therefore, Theorem 1.1 follows by showing that $E_{K_{\sigma}} \leq_{B} E_{\mathrm{GH}}$ and $E_{K_{\sigma}} \leq{ }_{B} E_{\mathrm{QI}}$ (see Proposition 4.1).

The relations E_{GH} and E_{QI} resemble the equivalence relation $E_{\ell_{\infty}}$ on $\mathbf{R}^{\mathbf{N}}$ defined by the action of ℓ_{∞} on $\mathbf{R}^{\mathbf{N}}$ by translations, ${ }^{2}$ or the equivalence relation E_{∞} on $C(\mathbf{R})$ defined by the action of $C_{b}(\mathbf{R})$. Thus Proposition 4.1 has some analogy with the property $E_{K_{\sigma}} \sim_{B} E_{\ell_{\infty}}$ (see [9, Proposition 19]); in particular, $E_{1} \leq_{B} E_{\ell_{\infty}}$ (see also [2, Theorem 8.4.2]). It also has some similarity with the property $E_{K_{\sigma}} \leq_{B} E_{\infty}$, which follows because $E_{\ell_{\infty}} \leq_{c} E_{\infty}$; this reduction can be realized by the map $\mathbf{R}^{\mathbf{N}} \rightarrow C(\mathbf{R})$, assigning to each element its canonical continuous piecewise affine extension that is constant on $(-\infty, 0]$.

2 The Gromov Space

Let M be a metric space, and let d_{M}, or simply d, be its distance function. The Hausdorff distance between two nonempty subsets $A, B \subset M$ is given by

$$
H_{d}(A, B)=\max \left\{\sup _{a \in A} \inf _{b \in B} d(a, b), \sup _{b \in B} \inf _{a \in A} d(a, b)\right\} .
$$

Observe that $H_{d}(A, B)=H_{d}(\bar{A}, \bar{B})$ and $H_{d}(A, B)=0$ if and only if $\bar{A}=\bar{B}$. Also, it is well known and easy to prove that H_{d} satisfies the triangle inequality, and its restriction to the family of nonempty compact subsets of M is finite-valued, and moreover complete if M is complete.

Let M and N be arbitrary nonempty metric spaces. A metric on $M \sqcup N$ is called admissible if its restrictions to M and N are d_{M} and d_{N}, where M and N are identified with their canonical injections in $M \sqcup N$. The Gromov-Hausdorff distance (or GH distance) between M and N is defined by

$$
d_{\mathrm{GH}}(M, N)=\inf _{d} H_{d}(M, N),
$$

where the infimum is taken over all admissible metrics d on $M \sqcup N$. It is well known that $d_{\mathrm{GH}}(M, N)=d_{\mathrm{GH}}(\bar{M}, \bar{N})$, where \bar{M} and \bar{N} denote the completions of M and
$N, d_{\mathrm{GH}}(M, N)=0$ if \bar{M} and \bar{N} are isometric, d_{GH} satisfies the triangle inequality, and $d_{\mathrm{GH}}(M, N)<\infty$ if \bar{M} and \bar{N} are compact.

There is also a pointed version of d_{GH} which satisfies analogous properties. The (pointed) Gromov-Hausdorff distance between two pointed metric spaces (M, x) and (N, y) is defined by

$$
\begin{equation*}
d_{\mathrm{GH}}(M, x ; N, y)=\inf _{d} \max \left\{d(x, y), H_{d}(M, N)\right\}, \tag{1}
\end{equation*}
$$

where the infimum is taken over all admissible metrics d on $M \sqcup N$.
A metric space, or its distance function, is called proper (or Heine-Borel) if every open ball has compact closure. This condition is equivalent to the compactness of the closed balls, which means that the distance function to a fixed point is a proper function. Any proper metric space is complete and locally compact, and its cardinality is not greater than the cardinality of the continuum. Therefore it may be assumed that their underlying sets are subsets of \mathbf{R}. With this assumption, it makes sense to consider the set \mathcal{M}_{*} of isometry classes, $[M, x]$, of pointed proper metric spaces, (M, x). The set \mathcal{M}_{*} is endowed with a topology introduced by Gromov [4, Section 6], [3], which can be described as follows.

For a metric space X, two subspaces $M, N \subset X$, two points $x \in M$ and $y \in N$, and a real number $R>0$, let $H_{d_{X}, R}(M, x ; N, y)$ be given by

$$
H_{d_{X}, R}(M, x ; N, y)=\max \left\{\sup _{u \in B_{M}(x, R)} d_{X}(u, N), \sup _{v \in B_{N}(y, R)} d_{X}(v, M)\right\}
$$

Then, for $R, r>0$, let $U_{R, r} \subset \mathcal{M}_{*}^{2}$ denote the subset of pairs $([M, x],[N, y])$ for which there is an admissible metric d on $M \sqcup N$ so that

$$
\max \left\{d(x, y), H_{d, R}(M, x ; N, y)\right\}<r
$$

Let $\Delta \subset \mathcal{M}_{*}^{2}$ denote the diagonal.
Lemma 2.1 The following properties hold:
(i) $\bigcap_{R, r>0} U_{R, r}=\Delta$;
(ii) each $U_{R, r}$ is symmetric;
(iii) if $R \leq S$, then $U_{R, r} \supset U_{S, r}$ for all $r>0$;
(iv) $U_{R, r}=\bigcup_{s<r} U_{R, s}$ for all $R, r>0$; and
(v) $U_{S, r} \circ U_{S, s} \subset U_{R, r+s}$, where $S=R+2 \max \{r, s\}$.

Proof Items (i)-(iv) are elementary. To prove (v), let $[M, x],[N, y] \in \mathcal{M}_{*}$ and $[P, z] \in U_{S, r}(N, y) \cap U_{S, s}(M, x)$. Then there are admissible metrics d on $M \sqcup P$ and \bar{d} on $N \sqcup P$ such that $d(x, z)<r, r_{0}:=H_{d, S}(M, x ; P, z)<r, \bar{d}(y, z)<s$ and $s_{0}:=H_{\bar{d}, S}(N, y ; P, z)<s$. Let \hat{d} be the admissible metric on $M \sqcup N$ such that

$$
\hat{d}(u, v)=\inf \{d(u, w)+\bar{d}(w, v) \mid w \in P\}
$$

for all $u \in M$ and $v \in N$. Then

$$
\hat{d}(x, y) \leq d(x, z)+\bar{d}(z, y)<r+s
$$

For each $u \in B_{M}(x, R)$, there is some $w \in P$ such that $d(u, w)<r_{0}$. Then

$$
d_{P}(z, w) \leq d(z, x)+d_{M}(x, u)+d(u, w)<r+R+r_{0}<S
$$

So there is some $v \in N$ such that $\bar{d}(w, v)<s_{0}$, and we have

$$
\hat{d}(u, v) \leq d(u, w)+\bar{d}(w, v)<r_{0}+s_{0} .
$$

Hence $\hat{d}(u, N)<r_{0}+s_{0}$ for all $u \in B_{M}(x, R)$. Similarly, $\hat{d}(v, M)<r_{0}+s_{0}$ for all $v \in B_{N}(y, R)$. Therefore $H_{\hat{d}, R}(M, x ; N, y) \leq r_{0}+s_{0}<r+s$. Then $[N, y] \in U_{R, r+s}(M, x)$.

By Lemma 2.1, the sets $U_{R, r}$ form a base of entourages of a metrizable uniformity on \mathcal{M}_{*}. Endowed with the induced topology, \mathcal{M}_{*} is what is called the Gromov space in this article. It is well known that \mathcal{M}_{*} is a Polish space (see, e.g., Gromov [4] or Petersen [8]); in particular, a countable dense subset is defined by the pointed finite metric spaces with \mathbf{Q}-valued metrics.

3 Equivalence Relations on the Gromov Space

Recall the following terminology. A map between metric spaces $\phi: M \rightarrow N$ is called bi-Lipschitz if there is some $\lambda \geq 1$ such that

$$
\lambda^{-1} d_{M}(u, v) \leq d_{N}(\phi(u), \phi(v)) \leq \lambda d_{M}(u, v)
$$

for all $u, v \in M$. The term λ-bi-Lipschitz may be also used in this case. A subset $A \subset M$ is called a net ${ }^{3}$ (resp., separated) if there is some $C \geq 0$ such that $d_{M}(x, A) \leq C$ for all $x \in M$ (resp., there is some $\delta>0$ such that $\bar{d}_{M}(x, y) \geq \delta$ if $x \neq y$). The term C-net (resp., δ-separated) may also be used in this case. There always exist separated nets (see [1, Lemma 9.4]). A (coarse) quasi-isometry of M to N is a bi-Lipschitz bijection $\phi: A \rightarrow B$ for some nets $A \subset M$ and $B \subset N$. The existence of a quasi-isometry of M to N is equivalent to the existence of a finite sequence of metric spaces $M=M_{0}, \ldots, M_{2 k}=N$ such that $d_{\mathrm{GH}}\left(M_{2 i-2}, M_{2 i-1}\right)<\infty$ and there is a bi-Lipschitz bijection $M_{2 i-1} \rightarrow M_{2 i}$ for all $i \in\{1, \ldots, k\}$. A pointed (coarse) quasi-isometry is defined in the same way, by using a pointed bi-Lipschitz bijection between nets that contain the distinguished points. The existence of a pointed quasi-isometry has an analogous characterization involving pointed Gromov-Hausdorff distances and pointed bi-Lipschitz bijections.

The following equivalence relations are considered on \mathcal{M}_{*}.

- The canonical relation, $E_{\text {can }}$, is defined by varying the distinguished point; that is, $E_{\text {can }}$ consists of the pairs of the form $([M, x],[M, y])$ for any proper metric space M and all $x, y \in M$.
- The Gromov-Hausdorff relation, E_{GH}, consists of the pairs ([M, x], $[N, y]$) with $d_{\mathrm{GH}}(M ; N)<\infty$, or, equivalently, $d_{\mathrm{GH}}(M, x ; N, y)<\infty$.
- The Lipschitz relation, $E_{\text {Lip }}$, consists of the pairs $([M, x],[N, y])$ such that there is a bi-Lipschitz bijection $M \rightarrow N$. If M and N are separated, this is equivalent to the existence of a pointed bi-Lipschitz bijection $(M, x) \rightarrow(N, y)$.
- The quasi-isometric relation, E_{QI}, consists of the pairs $([M, x],[N, y])$ such that there is a quasi-isometry of M to N, or, equivalently, there is a pointed quasi-isometry of (M, x) to (N, y). By the above observations, E_{QI} is the smallest equivalence relation over \mathcal{M}_{*} that contains $E_{\text {GH }} \cup E_{\text {Lip }}$.
Since $E_{\mathrm{can}} \subset E_{\mathrm{GH}} \cap E_{\mathrm{QI}}$, it follows that $\mathcal{M}_{*} / E_{\mathrm{GH}}$ can be identified with the set of classes of proper metric spaces modulo finite GH distance, and $\mathcal{M}_{*} / E_{\mathrm{QI}}$ can be identified with the set of quasi-isometry types of proper metric spaces.

4 Nonreduction to Polish Actions

As indicated in Section 1, Theorem 1.1 results from the following.
Proposition 4.1 We have $E_{K_{\sigma}} \leq_{c} E_{\mathrm{GH}}$ and $E_{K_{\sigma}} \leq_{c} E_{\mathrm{QI}}$.
Proof Let us prove first that $E_{K_{\sigma}} \leq_{c} E_{\mathrm{QI}}$, which is more difficult. Consider the metric d on \mathbf{R}^{2} defined by

$$
d\left((u, v),\left(u^{\prime}, v^{\prime}\right)\right)= \begin{cases}|v|+\left|u-u^{\prime}\right|+\left|v^{\prime}\right|, & \text { if } u \neq u^{\prime} \\ \left|v-v^{\prime}\right|, & \text { if } u=u^{\prime}\end{cases}
$$

This is the metric of an \mathbf{R}-tree. For each $x=\left(x_{n}\right) \in \prod_{n=2}^{\infty}\{1, \ldots, n\}$ and $n \geq 2$, let

$$
\begin{aligned}
& P_{x, n}^{ \pm}=\left(\sum_{i=2}^{n} e^{i^{2}}, \pm e^{x_{n}}\right) \in \mathbf{R}^{2} \\
& M_{x, n}=\left\{P_{x, n}^{+}, P_{x, n}^{-}\right\}
\end{aligned}
$$

and let $M_{x}=\bigcup_{n=2}^{\infty} M_{x, n}$, equipped with the restriction d_{x} of d. Given any $x=\left(x_{n}\right) \in \prod_{n=2}^{\infty}\{1, \ldots, n\}$, if $A \subset M_{x}$ is C-net for some $C \geq 0$, it easily follows that

$$
\begin{align*}
e^{n^{2}} \geq C & \Longrightarrow A \cap M_{x, n} \neq \emptyset \tag{2}\\
\left(e^{n^{2}} \geq C \quad \& \quad e^{x_{n}}>C / 2\right) & \Longrightarrow M_{x, n} \subset A \tag{3}
\end{align*}
$$

Let $\theta: \prod_{n=2}^{\infty}\{1, \ldots, n\} \rightarrow \mathcal{M}_{*}$ be defined by $\theta(x)=\left[M_{x}, P_{x, 2}^{+}\right]$.
Claim 4.2 We have that θ is continuous.
With the notation of Section 2, given $x=\left(x_{n}\right) \in \prod_{n=2}^{\infty}\{1, \ldots, n\}$ and $R, r>0$, we have to prove that $\theta^{-1}\left(U_{R, r}(\theta(x))\right)$ is a neighborhood of x in $\prod_{n=2}^{\infty}\{1, \ldots, n\}$. Take some integer $n_{0} \geq 2$ so that $e^{2}+\sum_{i=2}^{n_{0}} e^{i^{2}}+e^{n_{0}}>R$. Hence $B_{M_{x}}\left(P_{x, 2}^{+}, R\right) \subset$ $\bigcup_{n=2}^{n_{0}} M_{x, n}$. Let $\mathcal{N}\left(x, n_{0}\right)$ be the open neighborhood of x in $\prod_{n=2}^{\infty}\{1, \ldots, n\}$ consisting of the elements $y=\left(y_{n}\right)$ such that $y_{n}=x_{n}$ if $n \leq n_{0}$. Then $P_{x, n}^{ \pm}=P_{y, n}^{ \pm}$for $2 \leq n \leq n_{0}$ and $y \in V$, obtaining $d\left(P_{x, 2}^{+}, P_{y, 2}^{\mp}\right)=0$ and $H_{d, R}\left(M_{x}, P_{x, 2}^{+} ; M_{y}, P_{y, 2}^{+}\right)=0$ for the isometric inclusion of M_{x} and M_{y} in \mathbf{R}^{2} with d. Thus $\theta\left(\mathcal{N}\left(x, n_{0}\right)\right) \subset U_{R, r}(\theta(x))$, completing the proof of Claim 4.2.

Claim 4.3 We have $(\theta \times \theta)\left(E_{K_{\sigma}}\right) \subset E_{\mathrm{Lip}}$, and therefore $(\theta \times \theta)\left(E_{K_{\sigma}}\right) \subset E_{\mathrm{QI}}$.
This claim can be easily proved as follows. Let $(x, y) \in E_{K_{\sigma}}$ for $x=\left(x_{n}\right)$ and $y=\left(y_{n}\right)$ in $\prod_{n=2}^{\infty}\{1, \ldots, n\}$. Thus there is some $C \geq 0$ such that $\left|x_{n}-y_{n}\right| \leq C$ for all n. Consider the pointed bijection $\phi:\left(M_{x}, P_{x, 2}^{+}\right) \rightarrow\left(M_{y}, P_{y, 2}^{+}\right)$defined by $\theta\left(P_{x, n}^{ \pm}\right)=P_{y, n}^{ \pm}$. Then, with $\lambda=e^{C}$, we have

$$
d_{x}\left(P_{x, n}^{+}, P_{x, n}^{-}\right)=2 e^{x_{n}} \leq 2 e^{y_{n}+C}=\lambda d_{y}\left(P_{y, n}^{+}, P_{y, n}^{-}\right)=\lambda d_{y}\left(\phi\left(P_{x, n}^{+}\right), \phi\left(P_{x, n}^{-}\right)\right)
$$

and, similarly,

$$
d_{x}\left(P_{x, n}^{+}, P_{x, n}^{-}\right) \geq \frac{1}{\lambda} d_{y}\left(\phi\left(P_{x, n}^{+}\right), \phi\left(P_{x, n}^{-}\right)\right)
$$

On the other hand, for $P \in M_{x, m}$ and $Q \in M_{x, n}$ with $m<n$,

$$
\begin{aligned}
d_{x}(P, Q) & =e^{x_{m}}+\sum_{i=m+1}^{n} e^{i^{2}}+e^{x_{n}} \\
& \leq e^{y_{m}+C}+\sum_{i=m+1}^{n} e^{i^{2}}+e^{y_{n}+C} \\
& \leq \lambda\left(e^{y_{m}}+\sum_{i=m+1}^{n} e^{i^{2}}+e^{y_{n}}\right) \\
& =\lambda d_{y}(\phi(P), \phi(Q))
\end{aligned}
$$

and, similarly,

$$
d_{x}(P, Q) \geq \frac{1}{\lambda} d_{y}(\phi(P), \phi(Q))
$$

Thus ϕ is a λ-bi-Lipschitz bijection, completing the proof of Claim 4.3.
Claim 4.4 We have $(\theta \times \theta)^{-1}\left(E_{\mathrm{QI}}\right) \subset E_{K_{\sigma}}$.
To prove this assertion, take some $x=\left(x_{n}\right)$ and $y=\left(y_{n}\right)$ in $\prod_{n=2}^{\infty}\{1, \ldots, n\}$ such that $(\theta(x), \theta(y)) \in E_{\mathrm{QI}}$. Then, for some $C \geq 0$ and $\lambda \geq 1$, there are C-nets, $A \subset M$ and $B \subset M(y)$ with $P_{x, 2}^{+} \in A$ and $P_{y, 2}^{+} \in B$, and there is a pointed λ-bi-Lipschitz bijection $\phi:\left(A, P_{x, 2}^{+}\right) \rightarrow\left(B, P_{y, 2}^{+}\right)$.
Claim 4.5 If $e^{n^{2}} \geq C, \frac{1}{n} e^{2 n+1}>\lambda$ and $e^{(n+2)^{2}-(n+1)^{2}}>3 \lambda$, then $\phi\left(M_{x, n} \cap\right.$ A) $\subset M_{y, n}$.

Assume the conditions of this claim. Then $A \cap M_{x, m} \neq \emptyset$ for all $m \geq n$ by (2). Furthermore, for $2 \leq k<\ell \leq n$,

$$
\begin{aligned}
d_{y}\left(\phi\left(M_{x, n} \cap A\right), \phi\left(M_{x, n+1} \cap A\right)\right) & \geq \frac{1}{\lambda} d_{x}\left(M_{x, n} \cap A, M_{x, n+1} \cap A\right) \\
& >\frac{1}{\lambda} e^{(n+1)^{2}} \\
& >n e^{(n+1)^{2}-2 n-1} \\
& =n e^{n^{2}} \\
& \geq 2 e^{n}+\sum_{i=3}^{n} e^{i^{2}} \\
& \geq e^{y_{k}}+\sum_{i=k+1}^{\ell} e^{i^{2}}+e^{y_{\ell}} \\
& =d_{y}\left(P^{\prime}, Q^{\prime}\right)
\end{aligned}
$$

for all $P^{\prime} \in M_{y, k}$ and $Q^{\prime} \in M_{y, \ell}$. On the other hand, for $2 \leq k<\ell$ with $\ell \geq n+2$,

$$
\begin{aligned}
d_{y}(\phi(P), \phi(Q)) & \leq \lambda d_{x}\left(M_{x, n} \cap A, M_{x, n+1} \cap A\right) \\
& <\lambda\left(e^{(n+1)^{2}}+2 e^{n+1}\right) \\
& <\lambda 3 e^{(n+1)^{2}} \\
& <e^{(n+2)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \leq e^{\ell^{2}} \\
& <e^{y_{k}}+\sum_{i=k+1}^{\ell} e^{i^{2}}+e^{y_{\ell}} \\
& =d_{y}\left(M_{y, k}, M_{y, \ell}\right),
\end{aligned}
$$

for all $P \in M_{x, n} \cap A$ and $Q \in M_{x, n+1} \cap A$. Therefore, either

$$
\begin{equation*}
\phi\left(M_{x, n} \cap A\right) \subset M_{y, n} \quad \text { and } \quad \phi\left(M_{x, n+1} \cap A\right) \subset M_{y, n+1}, \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
\phi\left(\left(M_{x, n} \cup M_{x, n+1}\right) \cap A\right) \subset M_{y, m} \tag{5}
\end{equation*}
$$

for some m. In the case (5), we have

$$
\begin{aligned}
2 e^{m} & =d_{y}\left(\phi\left(M_{x, n} \cap A\right), \phi\left(M_{x, n+1} \cap A\right)\right) \\
& \geq \frac{d_{x}\left(M_{x, n} \cap A, M_{x, n+1} \cap A\right)}{\lambda} \\
& >\frac{e^{(n+1)^{2}}}{\lambda},
\end{aligned}
$$

giving $m>(n+1)^{2}-\ln (2 \lambda)$. Applying this to $n+1$ and $n+2$, we get that either

$$
\begin{equation*}
\phi\left(M_{x, n+1} \cap A\right) \subset M_{y, n+1} \quad \text { and } \quad \phi\left(M_{x, n+2} \cap A\right) \subset M_{y, n+2}, \tag{6}
\end{equation*}
$$

or

$$
\begin{equation*}
\phi\left(\left(M_{x, n+1} \cup M_{x, n+2}\right) \cap A\right) \subset M_{y, m^{\prime}} \tag{7}
\end{equation*}
$$

for some $m^{\prime}>(n+2)^{2}-\ln (2 \lambda)$. If (5) and (7) hold, then $m=m^{\prime}$ and

$$
\phi\left(\left(M_{x, n} \cup M_{x, n+1} \cup M_{x, n+2}\right) \cap A\right) \subset M_{y, m},
$$

which is a contradiction because ϕ is a bijection whereas

$$
\#\left(\left(M_{x, n} \cup M_{x, n+1} \cup M_{x, n+2}\right) \cap A\right) \geq 3>2=\# M_{y, m}
$$

If (5) and (6) hold, then $n+1=m>(n+1)^{2}-\ln (2 \lambda)$, which contradicts the condition $e^{(n+2)^{2}-(n+1)^{2}}>3 \lambda$. So (4) must be true, showing Claim 4.5.

From Claim 4.5, it easily follows that

$$
\begin{equation*}
\phi\left(M_{x, n} \cap A\right)=M_{y, n} \cap B \tag{8}
\end{equation*}
$$

for n large enough. Suppose first that $M_{x, n} \subset A$ for such an n, and therefore $M_{y, n} \subset B$ by (8). Thus

$$
2 e^{y_{n}}=d_{y}\left(P_{y, n}^{+}, P_{y, n}^{-}\right)=d_{y}\left(\phi\left(P_{x, n}^{+}\right), \phi\left(P_{x, n}^{-}\right)\right) \geq \frac{d_{x}\left(P_{x, n}^{+}, P_{x, n}^{-}\right)}{\lambda}=\frac{2 e^{x_{n}}}{\lambda}
$$

giving $y_{n} \geq x_{n}-\ln \lambda$. Similarly, $y_{n} \leq x_{n}+\ln \lambda$, obtaining $\left|x_{n}-y_{n}\right| \leq \ln \lambda$.
Now, assume that $M_{x, n} \not \subset A$ for such an n; in particular, $C>0$. Then $M_{y, n} \not \subset B$ by (8). So $e^{x_{n}}, e^{y_{n}} \leq C / 2$ by (3), giving $x_{n}, y_{n} \leq \ln (C / 2)$, and thus $\left|x_{n}-y_{n}\right| \leq \ln (C / 2)$.

Hence $\left|x_{n}-y_{n}\right| \leq \max \{\ln \lambda, \ln (C / 2)\}$ for all n large enough, and therefore $\sup _{n}\left|x_{n}-y_{n}\right|<\infty$, obtaining that $(x, y) \in E_{K_{\sigma}}$. This completes the proof of Claim 4.4.

Claims 4.2, 4.3, and 4.4 show that θ realizes the reduction $E_{K_{\sigma}} \leq_{c} E_{\mathrm{QI}}$.
A similar argument with a slight modification of the definition of $M(x)$, using $P_{x, n}^{ \pm}=\left(\sum_{i=2}^{n} e^{i^{2}}, \pm x_{n}\right)$, shows that $E_{K_{\sigma}} \leq_{B} E_{\mathrm{GH}}$.

Remark 4.6 In Claim 4.2, θ is in fact a topological embedding, as shown in the following argument. First, let us prove that θ is injective. Suppose that $\theta(x)=\theta(y)$ for some $x=\left(x_{n}\right)$ and $y=\left(y_{n}\right)$ in $\prod_{n=2}^{\infty}\{1, \ldots, n\}$. This means that there is a pointed isometry $\phi:\left(M_{x} P_{x, 2}^{+}\right) \rightarrow\left(M_{y}, P_{y, 2}^{+}\right)$. We get $\phi\left(M_{x, n}\right)=M_{y, n}$ for all $n \geq 2$ by Claim 4.5 with $A=M_{x}, B=M_{y}, C=0$, and $\lambda=1$; in fact, the argument can be simplified in this case. Hence, for each $n \geq 2$,

$$
2 e^{x_{n}}=d_{x}\left(P_{x, n}^{+}, P_{x, n}^{-}\right)=d_{y}\left(\phi\left(P_{x, n}^{+}\right), \phi\left(P_{x, n}^{-}\right)\right)=d_{y}\left(P_{y, n}^{+}, P_{y, n}^{-}\right)=2 e^{y_{n}}
$$

giving $x_{n}=y_{n}$. Thus $x=y$.
Finally, let us prove that $\phi^{-1}: \phi\left(\prod_{n=2}^{\infty}\{1, \ldots, n\}\right) \rightarrow \prod_{n=2}^{\infty}\{1, \ldots, n\}$ is continuous at $\phi(x)$ for every $x=\left(x_{n}\right) \in \prod_{n=2}^{\infty}\{1, \ldots, n\}$. With the notation of the proof of Claim 4.2, we have to check that, for all $n_{0} \geq 2$, there is some $R, r>0$ so that $\phi^{-1}\left(U_{R, r}(\theta(x))\right) \subset \mathcal{N}\left(x, n_{0}\right)$. Let $y=\left(y_{n}\right) \in \prod_{n=2}^{\infty}\{1, \ldots, n\}$ such that $\theta(y) \in U_{R, r}(\theta(x))$ for some $R, r>0$ to be determined later. Then there is a metric d^{\prime} on $M_{x} \sqcup M_{y}$, extending d_{x} and d_{y}, such that $d^{\prime}\left(P_{x, 2}^{+}, P_{y, 2}^{+}\right)<r$ and $H_{d^{\prime}, R}\left(M_{x}, P_{x, 2}^{+} ; M_{y}, P_{y, 2}^{+}\right)<r$. Since $e^{n}<e^{(n+1)^{2}}$ for all $n \geq 2$, we can take R such that

$$
e^{2}+\sum_{i=2}^{n_{0}} e^{i^{2}}+e^{n_{0}}<R<e^{2}+\sum_{i=2}^{n_{0}+1} e^{i^{2}}
$$

and therefore $B_{M_{x}}\left(P_{x, 2}^{+}, R\right)=\bigcup_{n=2}^{n_{0}} M_{x, n}$ and $B_{M_{y}}\left(P_{y, 2}^{+}, R\right)=\bigcup_{n=2}^{n_{0}} M_{y, n}$. So, for each $P_{x, n}^{ \pm}$with $2 \leq n \leq n_{0}$, there is some $\widehat{P}_{x, n}^{ \pm} \in M_{y}$ such that $d\left(P_{x, n}^{ \pm}, \widehat{P}_{x, n}^{ \pm}\right)<r$; in particular, we can take $\widehat{P}_{x, 2}^{ \pm}=P_{y, 2}^{ \pm}$. Let $\widehat{M}_{x, n}=\left\{\widehat{P}_{x, n}^{+}\right.$, $\left.\widehat{P}_{x, n}^{-}\right\}$for $2 \leq n \leq n_{0}$. Choose r such that $r<1$ and $e^{n}+r<e^{(n+1)^{2}}$ for $2 \leq n \leq n_{0}$. So $\widehat{M}_{x, n}=M_{y, n}$ for $2 \leq n \leq n_{0}$. Then, by the triangle inequality, $2 e^{x_{n}}=d_{x}\left(P_{x, n}^{+}, P_{x, n}^{-}\right) \leq d_{y}\left(\widehat{P}_{x, n}^{+}, \widehat{P}_{x, n}^{-}\right)+2 r=d_{y}\left(P_{y, n}^{+}, P_{y, n}^{-}\right)+2 r=2 e^{y_{n}}+2 r$, giving $e^{x_{n}} \leq e^{y_{n}}+r$. Similarly, we get $e^{x_{n}} \geq e^{y_{n}}-r$. Thus $\left|e^{x_{n}}-e^{y_{n}}\right| \leq r$, obtaining $x_{n}=y_{n}$ because $r<1$. Therefore $y \in \mathcal{N}\left(x, n_{0}\right)$, as desired.

Remark 4.7 According to Claim 4.3, the map θ of the proof of Proposition 4.1 also gives the reduction $E_{K_{\sigma}} \leq_{c} E_{\text {Lip }}$. An analogous property is satisfied with another point of view: considering Polish metric spaces as the elements of the space of closed subspaces of some universal Polish metric space, like the Urysohn space, the relation given by the existence of bi-Lipschitz bijections is Borel bireducible with $E_{K_{\sigma}}$ (see [9, Theorem 24]).

Notes

1. Recall that a subset of a topological space is called K_{σ} when it is a countable union of compact subsets.
2. Recall that $\ell_{\infty} \subset \mathbf{R}^{\mathbf{N}}$ is the linear subspace of bounded sequences, and $C_{b}(\mathbf{R}) \subset C(\mathbf{R})$ is the linear subspace of bounded continuous functions.
3. This term is used by Gromov [4, Definition 2.14] with this meaning. Other authors use it with other meanings.

References

[1] Álvarez López, J. A., and A. Candel, "On turbulent relations," to appear in Fundamenta Mathematicae, preprint, arXiv:1209.0307v8 [math.LO]. 206, 208
[2] Gao, S., Invariant Descriptive Set Theory, vol. 293 of Pure and Applied Mathematics (Boca Raton), CRC Press, Boca Raton, Fla., 2009. Zbl 1154.03025. MR 2455198. 206
[3] Gromov, M., "Groups of polynomial growth and expanding maps," with an appendix by J. Tits, Publications Mathématiques Institut de Hautes Études Scientifiques, vol. 53 (1981), pp. 53-73. Zbl 0474.20018. MR 0623534. 205, 207
[4] Gromov, M., Metric Structures for Riemannian and Non-Riemannian Spaces, vol. 152 of Progress in Mathematics, Birkhäuser Boston, Boston, 1999. Zbl 0953.53002. MR 1699320. 205, 207, 208, 212
[5] Hjorth, G., Classification and Orbit Equivalence Relations, vol. 75 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, 2000. Zbl 0942.03056. MR 1725642. 206
[6] Hjorth, G., "A dichotomy theorem for turbulence," Journal of Symbolic Logic, vol. 67 (2002), pp. 1520-40. Zbl 1052.03025. MR 1955250. DOI 10.2178/jsl//1 190150297. 206
[7] Kechris, A., and A. Louveau, "The classification of hypersmooth Borel equivalence relations," Journal of the American Mathematical Society, vol. 10 (1997), pp. 215-42. Zbl 0865.03039. MR 1396895. 206
[8] Petersen, P., Riemannian Geometry, vol. 171 of Graduate Texts in Mathematics, Springer, New York, 1998. Zbl 0914.53001. MR 1480173. 208
[9] Rosendal, C., "Cofinal families of Borel equivalence relations and quasiorders," Journal of Symbolic Logic, vol. 70 (2005), pp. 1325-40. Zbl 1102.03045. MR 2194249. DOI 10.2178/jsl/1129642127. 206, 212

Acknowledgments

Álvarez López's and Candel's work was supported by Spanish Ministry of Science and Innovation grants MTM2011-25656 and MTM2008-02640.

[^0]
[^0]: Álvarez López
 Departamento de Xeometría e Topoloxía Facultade de Matemáticas Universidade de Santiago de Compostela 15782 Santiago de Compostela
 Spain
 jesus.alvarez@usc.es
 Candel
 Department of Mathematics
 California State University at Northridge
 Northridge, California 91330
 USA
 alberto.candel@csun.edu

