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Nonreduction of Relations in the Gromov Space to
Polish Actions

Jesús A. Álvarez López and Alberto Candel

Abstract We show that in the Gromov space of isometry classes of pointed
proper metric spaces, the equivalence relations defined by existence of coarse
quasi-isometries or being at finite Gromov–Hausdorff distance cannot be reduced
to the equivalence relation defined by any Polish action.

1 Introduction

Gromov [3], [4, Chapter 3] described a space, denoted here by M�, whose points
are isometry classes of pointed complete proper metric spaces. It is endowed with a
topology which resembles the Tychonoff topology of RN, or the compact open topol-
ogy on the space of continuous functions C.R/. It also supports several equivalence
relations of geometric interest, like the relation of being at finite Gromov–Hausdorff
distance, EGH, and the relation of being (coarsely) quasi-isometric, EQI.

The following concepts relate the complexity of two equivalence relations on
topological spaces, E over X and F over Y . A map � W X ! Y is called
.E; F /-invariant if xEx0 H) �.x/F �.x0/ (� induces a mapping N� W X=E ! Y=F ).
It is said that E is Borel reducible to F , denoted by E �B F , if there is an
.E; F /-invariant Borel mapping � W X ! Y such that xEx0 , �.x/F �.y/

( N� W X=E ! Y=F is injective). If E �B F and F �B E, then E is said to be Borel
bireducible with F , and is denoted by E �B F . If the map � can be chosen to be
continuous, then the terms continuously reducible and continuously bireducible are
used, with notation �c and �c .

For an example of an equivalence relation, let G be a Polish group acting contin-
uously on a Polish space X (a Polish action). We then let EX

G denote the orbit equiv-
alence relation whose equivalence classes are exactly the G-orbits. For instance,
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Hjorth’s theory of turbulence (see [5], [6]) is valid for relations defined by Polish
actions. The following is our main result.

Theorem 1.1 For any Polish group G and any Polish G-space X , we have
EGH —B EX

G and EQI —B EX
G .

The theory of turbulence is extended in Álvarez López and Candel [1] to more gen-
eral equivalence relations on Polish spaces, and it is applied to EQI and EGH. This is
a nontrivial extension by Theorem 1.1.

The proof of Theorem 1.1 uses the following. Let E1 be the equivalence relation
on RN consisting of the pairs .x; y/, with x D .xn/ and y D .yn/, such that there
is some N 2 N so that xn D yn for all n � N (the relation of eventual agreement).
We have E1 —B EX

G for any Polish group G and any Polish G-space X (see Kechris
and Louveau [7, Theorem 4.2]; see also [5, Theorem 8.2] for a different proof).

On the other hand, let EK�
be the equivalence relation on

Q1

nD2¹1; : : : ; nº con-
sisting of the pairs .x; y/, with x D .xn/ and y D .yn/, such that supn jxn�ynj < 1.
We have E �B EK�

for any K� equivalence relation E (see Rosendal [9, Theo-
rem 17, Proposition 19],1 and therefore E1 �B EK�

because E1 is K� (see [9], Gao
[2, Exercise 8.4.3]); in particular, EK�

—B EX
G for any Polish group G and every

Polish G-space X . Therefore, Theorem 1.1 follows by showing that EK�
�B EGH

and EK�
�B EQI (see Proposition 4.1).

The relations EGH and EQI resemble the equivalence relation E`1
on RN defined

by the action of `1 on RN by translations,2 or the equivalence relation E1 on C.R/

defined by the action of Cb.R/. Thus Proposition 4.1 has some analogy with the
property EK�

�B E`1
(see [9, Proposition 19]); in particular, E1 �B E`1

(see
also [2, Theorem 8.4.2]). It also has some similarity with the property EK�

�B E1,
which follows because E`1

�c E1; this reduction can be realized by the map
RN ! C.R/, assigning to each element its canonical continuous piecewise affine
extension that is constant on .�1; 0�.

2 The Gromov Space

Let M be a metric space, and let dM , or simply d , be its distance function. The
Hausdorff distance between two nonempty subsets A; B � M is given by

Hd .A; B/ D max
®
sup
a2A

inf
b2B

d.a; b/; sup
b2B

inf
a2A

d.a; b/
¯
:

Observe that Hd .A; B/ D Hd .A; B/ and Hd .A; B/ D 0 if and only if A D B .
Also, it is well known and easy to prove that Hd satisfies the triangle inequality, and
its restriction to the family of nonempty compact subsets of M is finite-valued, and
moreover complete if M is complete.

Let M and N be arbitrary nonempty metric spaces. A metric on M t N is
called admissible if its restrictions to M and N are dM and dN , where M and N are
identified with their canonical injections in M tN . The Gromov–Hausdorff distance
(or GH distance) between M and N is defined by

dGH.M; N / D inf
d

Hd .M; N /;

where the infimum is taken over all admissible metrics d on M tN . It is well known
that dGH.M; N / D dGH.M; N /, where M and N denote the completions of M and
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N , dGH.M; N / D 0 if M and N are isometric, dGH satisfies the triangle inequality,
and dGH.M; N / < 1 if M and N are compact.

There is also a pointed version of dGH which satisfies analogous properties. The
(pointed) Gromov–Hausdorff distance between two pointed metric spaces .M; x/

and .N; y/ is defined by
dGH.M; xI N; y/ D inf

d
max

®
d.x; y/; Hd .M; N /

¯
; (1)

where the infimum is taken over all admissible metrics d on M t N .
A metric space, or its distance function, is called proper (or Heine–Borel) if every

open ball has compact closure. This condition is equivalent to the compactness of the
closed balls, which means that the distance function to a fixed point is a proper func-
tion. Any proper metric space is complete and locally compact, and its cardinality is
not greater than the cardinality of the continuum. Therefore it may be assumed that
their underlying sets are subsets of R. With this assumption, it makes sense to con-
sider the set M� of isometry classes, ŒM; x�, of pointed proper metric spaces, .M; x/.
The set M� is endowed with a topology introduced by Gromov [4, Section 6], [3],
which can be described as follows.

For a metric space X , two subspaces M; N � X , two points x 2 M and y 2 N ,
and a real number R > 0, let HdX ;R.M; xI N; y/ be given by

HdX ;R.M; xI N; y/ D max
®

sup
u2BM .x;R/

dX .u; N /; sup
v2BN .y;R/

dX .v; M/
¯
:

Then, for R; r > 0, let UR;r � M2
� denote the subset of pairs .ŒM; x�; ŒN; y�/ for

which there is an admissible metric d on M t N so that
max

®
d.x; y/; Hd;R.M; xI N; y/

¯
< r:

Let � � M2
� denote the diagonal.

Lemma 2.1 The following properties hold:
(i)

T
R;r>0 UR;r D �;

(ii) each UR;r is symmetric;
(iii) if R � S , then UR;r � US;r for all r > 0;
(iv) UR;r D

S
s<r UR;s for all R; r > 0; and

(v) US;r ı US;s � UR;rCs , where S D R C 2 max¹r; sº.

Proof Items (i)–(iv) are elementary. To prove (v), let ŒM; x�; ŒN; y� 2 M� and
ŒP; z� 2 US;r .N; y/ \ US;s.M; x/. Then there are admissible metrics d on M t P

and Nd on N t P such that d.x; z/ < r , r0 WD Hd;S .M; xI P; z/ < r , Nd.y; z/ < s

and s0 WD H Nd;S .N; yI P; z/ < s. Let Od be the admissible metric on M t N such
that

Od.u; v/ D inf
®
d.u; w/ C Nd.w; v/

ˇ̌
w 2 P

¯
for all u 2 M and v 2 N . Then

Od.x; y/ � d.x; z/ C Nd.z; y/ < r C s:

For each u 2 BM .x; R/, there is some w 2 P such that d.u; w/ < r0. Then
dP .z; w/ � d.z; x/ C dM .x; u/ C d.u; w/ < r C R C r0 < S:

So there is some v 2 N such that Nd.w; v/ < s0, and we have
Od.u; v/ � d.u; w/ C Nd.w; v/ < r0 C s0:
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Hence Od.u; N / < r0 C s0 for all u 2 BM .x; R/. Similarly, Od.v; M/ < r0 C s0

for all v 2 BN .y; R/. Therefore H Od;R
.M; xI N; y/ � r0 C s0 < r C s. Then

ŒN; y� 2 UR;rCs.M; x/.

By Lemma 2.1, the sets UR;r form a base of entourages of a metrizable uniformity
on M�. Endowed with the induced topology, M� is what is called the Gromov space
in this article. It is well known that M� is a Polish space (see, e.g., Gromov [4] or
Petersen [8]); in particular, a countable dense subset is defined by the pointed finite
metric spaces with Q-valued metrics.

3 Equivalence Relations on the Gromov Space

Recall the following terminology. A map between metric spaces � W M ! N is
called bi-Lipschitz if there is some � � 1 such that

��1 dM .u; v/ � dN

�
�.u/; �.v/

�
� � dM .u; v/

for all u; v 2 M . The term �-bi-Lipschitz may be also used in this case. A sub-
set A � M is called a net3 (resp., separated) if there is some C � 0 such that
dM .x; A/ � C for all x 2 M (resp., there is some ı > 0 such that dM .x; y/ � ı

if x ¤ y). The term C -net (resp., ı-separated) may also be used in this case.
There always exist separated nets (see [1, Lemma 9.4]). A (coarse) quasi-isometry
of M to N is a bi-Lipschitz bijection � W A ! B for some nets A � M and
B � N . The existence of a quasi-isometry of M to N is equivalent to the exis-
tence of a finite sequence of metric spaces M D M0; : : : ; M2k D N such that
dGH.M2i�2; M2i�1/ < 1 and there is a bi-Lipschitz bijection M2i�1 ! M2i for
all i 2 ¹1; : : : ; kº. A pointed (coarse) quasi-isometry is defined in the same way,
by using a pointed bi-Lipschitz bijection between nets that contain the distinguished
points. The existence of a pointed quasi-isometry has an analogous characterization
involving pointed Gromov–Hausdorff distances and pointed bi-Lipschitz bijections.

The following equivalence relations are considered on M�.

– The canonical relation, Ecan, is defined by varying the distinguished point;
that is, Ecan consists of the pairs of the form .ŒM; x�; ŒM; y�/ for any proper
metric space M and all x; y 2 M .

– The Gromov–Hausdorff relation, EGH, consists of the pairs .ŒM; x�; ŒN; y�/

with dGH.M I N / < 1, or, equivalently, dGH.M; xI N; y/ < 1.
– The Lipschitz relation, ELip, consists of the pairs .ŒM; x�; ŒN; y�/ such

that there is a bi-Lipschitz bijection M ! N . If M and N are sepa-
rated, this is equivalent to the existence of a pointed bi-Lipschitz bijection
.M; x/ ! .N; y/.

– The quasi-isometric relation, EQI, consists of the pairs .ŒM; x�; ŒN; y�/ such
that there is a quasi-isometry of M to N , or, equivalently, there is a pointed
quasi-isometry of .M; x/ to .N; y/. By the above observations, EQI is the
smallest equivalence relation over M� that contains EGH [ ELip.

Since Ecan � EGH \ EQI, it follows that M�=EGH can be identified with the set
of classes of proper metric spaces modulo finite GH distance, and M�=EQI can be
identified with the set of quasi-isometry types of proper metric spaces.
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4 Nonreduction to Polish Actions

As indicated in Section 1, Theorem 1.1 results from the following.

Proposition 4.1 We have EK�
�c EGH and EK�

�c EQI.

Proof Let us prove first that EK�
�c EQI, which is more difficult. Consider the

metric d on R2 defined by

d
�
.u; v/; .u0; v0/

�
D

´
jvj C ju � u0j C jv0j; if u ¤ u0;

jv � v0j; if u D u0:

This is the metric of an R-tree. For each x D .xn/ 2
Q1

nD2¹1; : : : ; nº and n � 2, let

P ˙
x;n D

� nX
iD2

ei2

; ˙exn

�
2 R2;

Mx;n D ¹P C
x;n; P �

x;nº;

and let Mx D
S1

nD2 Mx;n, equipped with the restriction dx of d . Given any
x D .xn/ 2

Q1

nD2¹1; : : : ; nº, if A � Mx is C -net for some C � 0, it easily
follows that

en2

� C H) A \ Mx;n ¤ ;; (2)

.en2

� C & exn > C=2/ H) Mx;n � A: (3)

Let � W
Q1

nD2¹1; : : : ; nº ! M� be defined by �.x/ D ŒMx ; P C
x;2�.

Claim 4.2 We have that � is continuous.

With the notation of Section 2, given x D .xn/ 2
Q1

nD2¹1; : : : ; nº and R; r > 0, we
have to prove that ��1.UR;r .�.x/// is a neighborhood of x in

Q1

nD2¹1; : : : ; nº. Take
some integer n0 � 2 so that e2 C

Pn0

iD2 ei2
C en0 > R. Hence BMx

.P C
x;2; R/ �Sn0

nD2 Mx;n. Let N .x; n0/ be the open neighborhood of x in
Q1

nD2¹1; : : : ; nº

consisting of the elements y D .yn/ such that yn D xn if n � n0. Then
P ˙

x;n D P ˙
y;n for 2 � n � n0 and y 2 V , obtaining d.P C

x;2; P C
y;2/ D 0 and

Hd;R.Mx ; P C
x;2I My ; P C

y;2/ D 0 for the isometric inclusion of Mx and My in R2

with d . Thus �.N .x; n0// � UR;r .�.x//, completing the proof of Claim 4.2.

Claim 4.3 We have .� � �/.EK�
/ � ELip, and therefore .� � �/.EK�

/ � EQI.

This claim can be easily proved as follows. Let .x; y/ 2 EK�
for x D .xn/ and

y D .yn/ in
Q1

nD2¹1; : : : ; nº. Thus there is some C � 0 such that jxn � ynj � C

for all n. Consider the pointed bijection � W .Mx ; P C
x;2/ ! .My ; P C

y;2/ defined by
�.P ˙

x;n/ D P ˙
y;n. Then, with � D eC , we have

dx.P C
x;n; P �

x;n/ D 2exn � 2eynCC
D �dy.P C

y;n; P �
y;n/ D � dy

�
�.P C

x;n/; �.P �
x;n/

�
;

and, similarly,

dx.P C
x;n; P �

x;n/ �
1

�
dy

�
�.P C

x;n/; �.P �
x;n/

�
:
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On the other hand, for P 2 Mx;m and Q 2 Mx;n with m < n,

dx.P; Q/ D exm C

nX
iDmC1

ei2

C exn

� eymCC
C

nX
iDmC1

ei2

C eynCC

� �
�
eym C

nX
iDmC1

ei2

C eyn

�
D � dy

�
�.P /; �.Q/

�
;

and, similarly,

dx.P; Q/ �
1

�
dy

�
�.P /; �.Q/

�
:

Thus � is a �-bi-Lipschitz bijection, completing the proof of Claim 4.3.

Claim 4.4 We have .� � �/�1.EQI/ � EK�
.

To prove this assertion, take some x D .xn/ and y D .yn/ in
Q1

nD2¹1; : : : ; nº such
that .�.x/; �.y// 2 EQI. Then, for some C � 0 and � � 1, there are C -nets, A � M

and B � M.y/ with P C
x;2 2 A and P C

y;2 2 B , and there is a pointed �-bi-Lipschitz
bijection � W .A; P C

x;2/ ! .B; P C
y;2/.

Claim 4.5 If en2
� C , 1

n
e2nC1 > � and e.nC2/2�.nC1/2

> 3�, then �.Mx;n \

A/ � My;n.

Assume the conditions of this claim. Then A \ Mx;m ¤ ; for all m � n by (2).
Furthermore, for 2 � k < ` � n,

dy

�
�.Mx;n \ A/; �.Mx;nC1 \ A/

�
�

1

�
dx.Mx;n \ A; Mx;nC1 \ A/

>
1

�
e.nC1/2

> ne.nC1/2�2n�1

D nen2

� 2en
C

nX
iD3

ei2

� eyk C

X̀
iDkC1

ei2

C ey`

D dy.P 0; Q0/

for all P 0 2 My;k and Q0 2 My;`. On the other hand, for 2 � k < ` with ` � n C 2,

dy

�
�.P /; �.Q/

�
� � dx.Mx;n \ A; Mx;nC1 \ A/

< �.e.nC1/2

C 2enC1/

< �3e.nC1/2

< e.nC2/2
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� e`2

< eyk C

X̀
iDkC1

ei2

C ey`

D dy.My;k ; My;`/;

for all P 2 Mx;n \ A and Q 2 Mx;nC1 \ A. Therefore, either
�.Mx;n \ A/ � My;n and �.Mx;nC1 \ A/ � My;nC1; (4)

or
�

�
.Mx;n [ Mx;nC1/ \ A

�
� My;m (5)

for some m. In the case (5), we have
2em

D dy

�
�.Mx;n \ A/; �.Mx;nC1 \ A/

�
�

dx.Mx;n \ A; Mx;nC1 \ A/

�

>
e.nC1/2

�
;

giving m > .n C 1/2 � ln.2�/. Applying this to n C 1 and n C 2, we get that either
�.Mx;nC1 \ A/ � My;nC1 and �.Mx;nC2 \ A/ � My;nC2; (6)

or
�

�
.Mx;nC1 [ Mx;nC2/ \ A

�
� My;m0 (7)

for some m0 > .n C 2/2 � ln.2�/. If (5) and (7) hold, then m D m0 and
�

�
.Mx;n [ Mx;nC1 [ Mx;nC2/ \ A

�
� My;m;

which is a contradiction because � is a bijection whereas
#
�
.Mx;n [ Mx;nC1 [ Mx;nC2/ \ A

�
� 3 > 2 D #My;m:

If (5) and (6) hold, then n C 1 D m > .n C 1/2 � ln.2�/, which contradicts the
condition e.nC2/2�.nC1/2

> 3�. So (4) must be true, showing Claim 4.5.
From Claim 4.5, it easily follows that

�.Mx;n \ A/ D My;n \ B (8)
for n large enough. Suppose first that Mx;n � A for such an n, and therefore
My;n � B by (8). Thus

2eyn D dy.P C
y;n; P �

y;n/ D dy

�
�.P C

x;n/; �.P �
x;n/

�
�

dx.P C
x;n; P �

x;n/

�
D

2exn

�
;

giving yn � xn � ln �. Similarly, yn � xn C ln �, obtaining jxn � ynj � ln �.
Now, assume that Mx;n 6� A for such an n; in particular, C > 0. Then

My;n 6� B by (8). So exn ; eyn � C=2 by (3), giving xn; yn � ln.C=2/, and thus
jxn � ynj � ln.C=2/.

Hence jxn � ynj � max¹ln �; ln.C=2/º for all n large enough, and therefore
supn jxn � ynj < 1, obtaining that .x; y/ 2 EK�

. This completes the proof of
Claim 4.4.

Claims 4.2, 4.3, and 4.4 show that � realizes the reduction EK�
�c EQI.

A similar argument with a slight modification of the definition of M.x/, using
P ˙

x;n D .
Pn

iD2 ei2
; ˙xn/, shows that EK�

�B EGH.
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Remark 4.6 In Claim 4.2, � is in fact a topological embedding, as shown in the
following argument. First, let us prove that � is injective. Suppose that �.x/ D �.y/

for some x D .xn/ and y D .yn/ in
Q1

nD2¹1; : : : ; nº. This means that there is a
pointed isometry � W .MxP C

x;2/ ! .My ; P C
y;2/. We get �.Mx;n/ D My;n for all

n � 2 by Claim 4.5 with A D Mx , B D My , C D 0, and � D 1; in fact, the
argument can be simplified in this case. Hence, for each n � 2,

2exn D dx.P C
x;n; P �

x;n/ D dy

�
�.P C

x;n/; �.P �
x;n/

�
D dy.P C

y;n; P �
y;n/ D 2eyn ;

giving xn D yn. Thus x D y.
Finally, let us prove that ��1 W �.

Q1

nD2¹1; : : : ; nº/ !
Q1

nD2¹1; : : : ; nº is con-
tinuous at �.x/ for every x D .xn/ 2

Q1

nD2¹1; : : : ; nº. With the notation of the
proof of Claim 4.2, we have to check that, for all n0 � 2, there is some R; r > 0

so that ��1.UR;r .�.x/// � N .x; n0/. Let y D .yn/ 2
Q1

nD2¹1; : : : ; nº such that
�.y/ 2 UR;r .�.x// for some R; r > 0 to be determined later. Then there is a
metric d 0 on Mx t My , extending dx and dy , such that d 0.P C

x;2; P C
y;2/ < r and

Hd 0;R.Mx ; P C
x;2I My ; P C

y;2/ < r . Since en < e.nC1/2 for all n � 2, we can take R

such that

e2
C

n0X
iD2

ei2

C en0 < R < e2
C

n0C1X
iD2

ei2

;

and therefore BMx
.P C

x;2; R/ D
Sn0

nD2 Mx;n and BMy
.P C

y;2; R/ D
Sn0

nD2 My;n.
So, for each P ˙

x;n with 2 � n � n0, there is some bP ˙
x;n 2 My such that

d.P ˙
x;n; bP ˙

x;n/ < r ; in particular, we can take bP ˙
x;2 D P ˙

y;2. Let cM x;n D ¹bP C
x;n;bP �

x;nº for 2 � n � n0. Choose r such that r < 1 and en C r < e.nC1/2 for
2 � n � n0. So cM x;n D My;n for 2 � n � n0. Then, by the triangle inequality,

2exn D dx.P C
x;n; P �

x;n/ � dy.bP C
x;n; bP �

x;n/C2r D dy.P C
y;n; P �

y;n/C2r D 2eyn C2r;

giving exn � eyn C r . Similarly, we get exn � eyn � r . Thus jexn � eyn j � r ,
obtaining xn D yn because r < 1. Therefore y 2 N .x; n0/, as desired.

Remark 4.7 According to Claim 4.3, the map � of the proof of Proposition 4.1
also gives the reduction EK�

�c ELip. An analogous property is satisfied with
another point of view: considering Polish metric spaces as the elements of the space
of closed subspaces of some universal Polish metric space, like the Urysohn space,
the relation given by the existence of bi-Lipschitz bijections is Borel bireducible with
EK�

(see [9, Theorem 24]).

Notes

1. Recall that a subset of a topological space is called K� when it is a countable union of
compact subsets.

2. Recall that `1 � RN is the linear subspace of bounded sequences, and Cb.R/ � C.R/

is the linear subspace of bounded continuous functions.

3. This term is used by Gromov [4, Definition 2.14] with this meaning. Other authors use
it with other meanings.
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