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Invariance and Definability, with and without Equality

Denis Bonnay and Fredrik Engström

Abstract The dual character of invariance under transformations and definabil-
ity by some operations has been used in classical works by, for example, Galois
and Klein. Following Tarski, philosophers of logic have claimed that logical
notions themselves could be characterized in terms of invariance. In this arti-
cle, we generalize a correspondence due to Krasner between invariance under
groups of permutations and definability in L11 so as to cover the cases (quanti-
fiers, logics without equality) that are of interest in the logicality debates, getting
McGee’s theorem about quantifiers invariant under all permutations and defin-
ability in pure L11 as a particular case. We also prove some optimality results
along the way, regarding the kinds of relations which are needed so that every
subgroup of the full permutation group is characterizable as a group of automor-
phisms.

1 Introduction

Permutations and relations may be seen as two ways of encoding information about
a domain of objects. In the case of relations, it is pretty obvious that some piece
of information is encoded: a difference is made between objects between which the
relation holds, and objects between which it does not. This is also true, if slightly
less obvious, of permutations. By taking into account a permutation, it is recognized
that some differences between objects do not matter: given the purpose at hand, one
may as well consider that such and such objects have been interchanged.

Moreover, permutations and relations may be seen as two dual ways of encod-
ing information about objects. Permutations tell us which objects are similar (they
can be mapped to each other), relations tell us which objects are different (think
of a unary relation true of one object and false of another). This duality is at work
whenever mathematicians or physicists consider groups of isomorphisms and classes
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of invariants.1 A group of automorphisms is a group of permutations that respect a
given structure: permutations are extracted from a domain equipped with relations.
A class of invariants consists of a class of relations that respect a given group of per-
mutations: extensions for symbols to be interpreted in the domain of objects under
consideration are extracted from permutations.

In logic, this duality has been extensively investigated within model theory. Typ-
ical questions include the characterization of structures that can be described in
terms of their automorphism groups, or more generally how much automorphism
groups say about the structures they come from (see Cameron [4] on model theory
and groups). Within the philosophy of logic, the duality between permutations and
extensions comes to the forefront in debates regarding the characterization of logical
constants. Invariance under all permutations has been taken as the formal output of a
conceptual analysis of what it is to be a logical notion. Thus, it has been proposed as
a mathematical counterpart to the generality of logic (by Tarski himself in [24]) and
to its purely formal nature (by Sher [22] and MacFarlane [19]).

Our aim here is to bring these two traditions closer together by adapting some
results in model theory to the cases that are discussed by philosophers of logic inter-
ested in invariance as a logicality criterion. As a case in point, we will show how
the much quoted theorem by McGee [20, p. 572] about invariance under all permu-
tations and definability in the pure infinitary logic L11 can be seen as following
from a suitable extension of much earlier work by Krasner [15], [16]. Our motiva-
tion for such a generalization is that a conceptual assessment of a given logicality
criterion stated in terms of invariance properties should be grounded in a prior eval-
uation of the significance of the general duality between groups of permutations and
sets of relations and in an independent assessment of what invariance under groups
of permutations (or other kind functions) can and cannot do in the contexts of inter-
est. From a technical perspective, our starting point will be Krasner’s work and his
so-called abstract Galois theory. Application to cases of interest in the logicality
debates involve two generalizations. To cover the interpretation of quantifiers, we
will to need to consider structures equipped with second-order relations. To cover
scenarios in which the logicality of identity is not presupposed, we will need to con-
sider functions that are not injective, as suggested by Feferman [9].

To the best of our knowledge, Krasner was the first to generalize Galois theory
to a logical setting, but others have followed (see, e.g., da Costa and Rodrigues [8]
for an explanation, and comparison with Krasner’s work, of the contributions of José
Sebastião e Silva). Also, model-theoretic work has been done to generalize Galois
theory in a first-order finitary setting (see, e.g., Poizat [21] and Casanovas and Farré
[7]). In this article, we investigate a second-order infinitary setting.

Our main result (Theorem 12 below) provides a unified perspective on the dual-
ity by establishing a correspondence between certain monoids of relations and sets
of operations closed under definability in an infinitary language without equality.
In Section 2, we recall Krasner’s correspondence between classes of relations of
possibly infinite arity closed under definability in L11 and subgroups of the per-
mutation group. We show how Krasner’s correspondence relates to the standard
model-theoretic characterization of groups of permutations which are the automor-
phism groups of a first-order structure (with relations of finite arity) as closed groups
in the topology of pointwise convergence. Section 3 is devoted to extending Kras-
ner’s correspondence to second-order relations. We prove some optimality results
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along the way: What kind of relations are really needed so that every subgroup is
the automorphism group of a class of relations? In the first-order case, infinitary
relations were necessary. Second-order binary relations suffice to do the job, but
second-order unary relations do not. The next section is devoted to relaxing the
assumption of injectivity, extending the correspondence to logics without equality.
Finally, we draw some lessons in Section 5 for the logicality debate.

2 Abstract Galois Theory and Permutation Groups

2.1 Krasner’s abstract Galois theory To begin with, we will recall the fundamentals
of Krasner’s abstract Galois theory, following in particular [21]. The starting point
of Krasner is classical Galois theory, in which a particular instance of the general
duality we have outlined is at play. Classical Galois theory is the study of the duality
between the subgroups of the automorphism group of certain types of field exten-
sions, called Galois extensions, and the intermediate fields in the field extension.

A field is an algebraic structure with addition, multiplication, inverses, and units.
If k � K are both fields, then we say that K W k is a field extension; it is Galois if it
is algebraic, normal, and separable (definitions may be found in Lang [17]). Given
a field extension K W k, let G be the Galois group of K W k, that is, the group of
automorphisms of K fixing the elements of k pointwise. Define the following pair
of mappings:

Fix.H/ D ¹a 2 K j ha D a for all h 2 H º;

Gal.A/ D ¹g 2 G j ga D a for all a 2 Aº;

where H is any subset of G, and A is any subset of the domain of K. The funda-
mental theorem of Galois theory says that, for finite Galois extensions, Fix.Gal.A//
is the smallest subfield of K including k [ A and that Gal.Fix.H// is the smallest
subgroup of G including H . There is thus a one-to-one correspondence between
fields K 0 such that k � K 0 � K and subgroups of G.

According to Krasner, “the true origin of Galois theory [does not lie] in algebra, in
the strict sense of the word, but in logic” ([16, p. 163]). This claim is to be substan-
tiated by exhibiting a general duality, between automorphism groups and relations
definable over a structure. Consider a domain �, S� the full symmetric group on
�, and a set r of relations on �; these relations may include infinite arity relations
regarded as subsets of �˛ , where ˛ is some ordinal number. We now define the
following pair of mappings:

Inv.H/ D
®
R � �˛

ˇ̌
hR D R for all h 2 H;˛ � j�j

¯
;

Aut.r/ D
®
g 2 S�

ˇ̌
gR D R for all R 2 r

¯
:

The logic L11 is the infinitary generalization of the predicate calculus where for-
mulas are built by means of arbitrarily long conjunctions and disjunctions and by
means of arbitrarily long universal and existential quantifier sequences (see, e.g.,
Karp [13]). The L11-closure of r is the set of relations definable in L11 from
relations in r . The following theorem is essentially shown by Krasner in [15].2

Theorem 1 Let � and S� be as above, let H � S� be any set of permutations,
and let r be any set of relations on � of arities at most j�j.

(1) Inv.Aut.r// is the L11-closure of r .
(2) Aut.Inv.H// is the smallest subgroup of S� including H .
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Thus, there is a one-to-one correspondence between the subgroups of the full sym-
metric group S� of � and the sets of relations closed under definability in L11.

How does this relate with the original correspondence of classical Galois theory?
The first half of the fundamental theorem of Galois Theory can be derived from the
first half of Theorem 1.3 Given a field extension K W k and A � K, let r be the set
of addition, multiplication, inverse, and the relation Ra D ¹aº for every a 2 k [ A.
By definition, we have that Gal.A/ D Aut.r/. Now Inv.Aut.r// and Fix.Gal.A//
are not exactly on a par, because Krasner’s theory takes sets of relations as values
instead of, as in the classical Galois theory, sets of points. However, the set of fixed
points can be extracted from the set of fixed relations by observing that an element
a 2 � is fixed by a permutation if and only if the singleton relation ¹aº is fixed.
Given that Inv.Aut.r// is closed under definability in L11, it is immediate that this
set of fixed points is a subfield of K. To get the first half of the fundamental Galois
theorem, one also needs to show that it is included in any subfield extending k [ A.
Krasner proves this in [16] by showing that if Ra is definable in L11 over r , then a
can be reached from elements in k [ A by means of the field operations.4

2.2 Permutation groups and topology Krasner’s result shows that for any group of
permutations of � there is some set of relations r on � such that Aut.r/ is exactly
that group. This is not true if we restrict the relations to be of finite arity. If r is a
set of relations of finite arity, then .�; r/ is a “standard” first-order relational struc-
ture and, obviously, the group Aut.r/ coincides with the automorphism group of the
first-order structure .�; r/. However, it is not true that every subgroup of the full per-
mutation group is the automorphism group of a first-order structure (with only finite
arity relations). We will give a detailed proof of the well-known characterization
of automorphism groups of first-order structures in terms of topological properties.
This is done partly to set up the scene for the next section.

Throughout this article, let � be an infinite domain. First we need to introduce
the topology, the product topology, on the group of permutations that we will be
using. Let � be equipped with the discrete topology, that is, the topology in which
every set is open. Let G be the full symmetric group S� on �, that is, the group of
all permutations of �. The stabilizer G Na of a finite tuple Na 2 �k is the set of all
permutations in G keeping all elements in Na fixed; that is,

G Na D ¹g 2 G j g Na D Naº:

The symmetric group S� on� is a subset of��; let G inherit the product topol-
ogy from ��. That is, a basis for this topology are the (right or left) cosets of
stabilizers of finite tuples, which are sets of the following form:

G
Na; Nb D ¹g 2 G j g Na D Nbº;

where Na; Nb 2 �k .5
This is the topology of pointwise convergence. The (topological) closure of a set

A � G consists of all permutations g 2 G such that for every k and every Na 2 �k ,
there is f 2 A such that f . Na/ D g. Na/.6

Given a subgroup H of G, let OH
Na D ¹h Na j h 2 H º be the orbit of Na under H .

Orbits provide a canonical way of “translating” a group of permutations on a domain
into relations on that domain. Then .�;OH

Na / Na2�k is thus a first-order relational
structure, called the canonical structure of H .
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The following well-known folklore result (see, e.g., Hodges [12, Theorem 4.1.4])
characterizes the subgroups ofG that are automorphism groups of a first-order struc-
ture (with only finite arity relations).

Proposition 2 Let H be a subgroup of G. The following are equivalent.
(1) There is a first-order structureM with domain� whose automorphism group

is H .
(2) H is the automorphism group of the canonical structure ofH , .�;OH

Na / Na2�k .
(3) H is closed.

Proof (1) implies (3): Let g 2 G be in the closure of H ; that is, for any Na 2 �k

there is h 2 Aut.M/ which is identical to g on Na. Let R be a relation in M , and let
Na 2 �k and h 2 Aut.M/ be such that g Na D h Na; then R Na iff Rh Na iff Rg Na and so R
is invariant under g. Similarly, we can show that any constant and function in M is
invariant under g; thus g 2 Aut.M/, and Aut.M/ D H is closed.

(2) implies (1): This is obvious.
(3) implies (2): Let M be the canonical structure of H . Clearly, H � Aut.M/

since H respects all its orbits; that is, for all h 2 H , Na 2 OH
Nb

iff h Na 2 OH
Nb

. Assume
that g 2 Aut.M/ and Na 2 �k . Then g Na 2 OH

Na and so there is an h 2 H such that
g Na D h Na. This shows that g is in the closure of H ; but since H is closed we have
Aut.M/ � H , proving that H is the automorphism group of M .

The proof actually shows that for any subgroup H of G, the automorphism group of
the canonical structure of H is the closure of H .

To see that not all subgroups of G are automorphism groups of first-order struc-
tures, it is, using the proposition, sufficient to find a subgroup of G which is not
closed. Let the support of a permutation g of� be the set of points moved by g, that
is, the set ¹a 2 � j ga ¤ aº. The set H of permutations with finite support is a
nonclosed subgroup of G. Take any permutation g 2 G and any Na 2 �k . We can
find h 2 H such that g Na D h Na by extending the bijection g j Na W ¹ Naº ! ¹g Naº to a
permutation of A D ¹Naº[¹g Naº. Let then h be this permutation on A and the identity
function outside A. This shows that the closure of H is the full group G, and since
not every permutation has a finite support, H is not closed.

Hence the use of relations of infinite arity in Krasner’s correspondence is indeed
necessary. For nonclosed H , if H D Aut.M/, then M includes relations of infinite
arity.

There is a connection between the allowed arities of relations in the structures
and the topological closure property characterizing automorphism groups as the fol-
lowing proposition shows. To see this, let us define the ˛-topology, for ˛ an infinite
ordinal, on G in the following manner. The basic open sets are of the form

G
Na; Nb¹g 2 G j g Na D Nbº;

where j Naj D j Nbj < ˛. The !-topology coincides with the ordinary product topol-
ogy described above. It should be noted that the ˇ-topology is a refinement of the
˛-topology if ˛ � ˇ, which means that an open set in the ˛-topology is also open in
the ˇ-topology. If we relax the definition of a first-order structure to include relations
of arity less than ˛ and define ˛-orbits of a subgroup H to be

OH
Na D ¹h Na j h 2 H º;
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where now Na 2 �˛ , then the proof of Proposition 2 goes through with the canonical
structure of H replaced by .�;OH

Na / Na2�˛ and “closed” replaced by “closed in the
˛-topology,” giving the following generalization.
Proposition 3 Let H be a subgroup of G, and let ˛ be an infinite ordinal. Then
the following are equivalent.

(1) There is a first-order structure M with domain � and relations of arity less
than ˛ whose automorphism group is H .

(2) H is the automorphism group of the (canonical) relational structure
.�;OH

Na / Na2�˛ .
(3) H is closed in the ˛-topology.

Krasner’s result that every subgroup of G is Aut.M/ for some relational structure
M when relations of infinite arity are allowed (first half of Theorem 1) follows from
Proposition 3. The .j�jC1/-topology is the discrete topology; that is, every set is
open. If g 2 G and Na is an enumeration of �, then

G Na;g Na D ¹gº

is a basic open set. Thus every set of permutations is the union of basic open sets,
and therefore open, and therefore also closed. Hence, if relations of arity j�j are
allowed, every group of permutations will be the automorphism group of some rela-
tional (infinitary) structure.

3 Quantifiers Come into Play

3.1 Second-order relations, L11, and Krasner’s correspondence We now extend
Krasner’s correspondence to second-order operations, to account for quantifier exten-
sions, which have been the traditional focus of the debates regarding logicality and
invariance. In this section, we state the corresponding generalization of Theorem 1
and prove its first part.

A finite second-order relation Q of type .i1; : : : ; ik/ on � is a subset of
P .�i1/ � � � � � P .�ik / for finite k and finite i1; : : : ; ik . A second-order struc-
ture q on a domain � is a set of (finite-ary) first-order and second-order relations on
�. A permutation g on � preserves a second-order relation Q of type .i1; : : : ; ik/
if .Ri1 ; : : : ; Rik / 2 Q iff .gRi1 ; : : : ; gRik / 2 Q, where Rij , 1 � j � k, are
first-order relations of arities ij . The mappings Aut and Inv admit a straightforward
generalization to the present setting: Aut.q/ is the group of permutations which pre-
serve all first-order and second-order relations in q, and Inv.H/, for H � G, is the
set of first-order and second-order relations which are preserved by all permutations
in H .

Given a second-order structure q, L11.q/ is an interpreted language in the logic
L11: it is the language whose signature matches the structure q and whose pred-
icate and quantifier symbols are interpreted by the relations in q. The syntax and
semantics for symbols interpreted by second-order relations is familiar from gener-
alized quantifier theory (see Lindström [18]). As a case in point, let us recall what
are the intended syntactic and semantic clauses for a second-order relation of type
.2/. Let Q in q be of type .2/; L11.q/ is then equipped with a matching quantifier
symbol NQ. The syntactic clause for NQ has it that if � is a formula of L11.q/, so is
NQx1x2 �. The satisfaction clause for NQ is given by

�; q � NQx1x2 � Œ��
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iff
k�k

�
x1;x2

2 Q;

where � is an assignment over � and

k�k
�
x1;x2

D
®
.a1; a2/ 2 �2

ˇ̌
�; q � �

�
�Œx1 WD a1; x2 WD a2�

�¯
:

We will need to consider definability in L11.q/ for a given q. Without loss of
generality, let Q be a second-order relation of type .2/. We say that Q is definable
in L11.q/ if and only if there is a sentence �Q. NR/ in L11.q/ expanded with a
binary predicate symbol NR such that

�; q;R � �Q. NR/

iff
R 2 Q;

where R is a binary first-order relation on � interpreting NR. The L11-closure of a
second-order structure q is the set of finite first-order and second-order relations on
� which are definable in L11.q/.

We can now state the generalization of Theorem 1 to second-order structures and
automorphism groups thereof as follows.

Theorem 4 Let � be a domain, let G D S� be the symmetric group on �, let
H � G be any set of permutations, and let q be a second-order structure on �.

(1) Q 2 Inv.Aut.q// if and only if Q is definable in L11.q/. The same holds
for relations R.

(2) Aut.Inv.H// is the smallest subgroup of G including H .

We will postpone the discussion and the proof of the second part of the theorem
until the next section. Regarding the first part, the proof that any relation definable in
L11.q/ is invariant under the automorphisms of q is a straightforward induction on
the complexity of formulas of L11.Q/. What remains to be proved is the following
lemma.

Lemma 5 Let Q be a first-order or second-order relation on �. If Q 2

Inv.Aut.q//, then Q is definable in L11.q/.

Proof For the sake of simplicity, we will give the proof for Q a second-order
relation of type .2/. So let Q be invariant under the automorphisms of q. We first
construct the sentence �Q. NR/ which defines it. Let us fix an enumeration I ! � of
the elements in � and, given a set of variables X of cardinality j�j, an enumeration
I ! X of the variables in X . Let � be a partial assignment over X defined by
�.xi / D ai for i 2 I .

For any relation S on � and for any symbol NT matching the type of S , let the
description �S . NT / of S by NT be as follows. If S is a first-order relation of arity
k, �S . NT / is the conjunction of formulas of the form NT xi1 : : : xik or : NT xi1 : : : xik ,
which are satisfied in �;S under � . Similarly, if S is a second-order relation, say,
again of type (2), �S . NT / is the conjunction of formulas of the form

NT y1; y2

_
.i;j /2K

.y1 D xi ^ y2 D xj /
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or

: NT y1; y2

_
.i;j /2K

.y1 D xi ^ y2 D xj /

forK � I �I , which are satisfied in�;S under � . Moreover, let  be the following
formula ^

i;j 2I;i¤j

xi ¤ xj ^ 8y
_
i2I

y D xi I

that is,  says that � is a bijection from X onto �.
Now �Q may be written down as

8X
��^

S2q

�S . NS/ ^  
�

!

_
U 2Q

�U . NR/
�
;

where 8X is short for the infinite sequence of universal quantifiers 8x1; : : : ;8xi ; : : :

quantifying over every variable in X .
We now prove that �; q;R � �Q. NR/ iff R 2 Q. From left to right, if �Q. NR/ is

true in �; q;R, we have in particular that^
S2q

�S . NS/ ^  !

_
U 2Q

�U . NR/ (1)

is satisfied under � . But, by construction, the premise of (1) is satisfied under � ,
hence there is a relation U 2 Q such that �U . NR/ is satisfied under � when NR is
interpreted by R. This forces U D R; hence R 2 Q as required.

From right to left, let R be a first-order relation in Q, and let � 0 be a partial
assignment on X . Assume that

�; q;R �
^
S2q

�S . NS/ ^  Œ� 0�:

We need to show that �;R �
W

U 2Q �U . NR/ Œ� 0�.
Since  is satisfied under � 0, � 0 is a bijection; hence there is a permutation f on

� such that f ı � 0 D � . Moreover, since
V

S2q �S . NS/ is satisfied under � 0, f is an
automorphism of q; hence f preserves Q.

By definition, �; fR � �fR. NR/ Œ��. Since � D f ı � 0, this implies �;R �
�fR. NR/ � 0. Since f preserves Q and R 2 Q, we also have fR 2 Q. Therefore,
�fR. NR/ is one the disjuncts in

W
U 2Q �U . NR/ and the formula is satisfied under � 0

as required.

McGee [20] proved that, on a given domain, an “operation is invariant under all
permutations if and only if it is described by some formula of L11” (p. 572). This
result follows quite directly from what we have.7 Consider the empty structure ;.
Aut.;/ is the group G of all permutations. By the first part of Theorem 4, Inv.G/
is the L11-closure of ;, which is exactly McGee’s result. It should be noted that
the proof of Lemma 5 itself is a rather straightforward generalization of Krasner’s
proof in [15]. The possibility to describe every subset of �k by means of formulas
of L11 is sufficient to handle the extension to second-order relations.
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3.2 A topology for second-order structures We now turn to the second half of The-
orem 4 and ask when a group of permutations is the automorphism group of a struc-
ture, in a context where second-order relations are allowed but all relations are fini-
tary. As with Proposition 2 earlier, we base our answer on topological properties of
groups of permutations. We will see that if we allow quantifiers of type .2/, then all
groups of permutations are automorphism groups of some second-order structure.
However, the case is quite different when we only allow monadic quantifiers, that
is, quantifiers of type .1; 1; : : : ; 1/. There is a natural topology such that exactly the
closed groups are the automorphism groups of monadic second-order structures.

We say that a second-order structure is monadic if all relations are relations on
the power set of �. A monadic second-order structure on � is nothing else than a
first-order structure on� together with a relational first-order structure on the power
set P .�/ of �. Let SP .�/ be the symmetric group on P .�/. The symmetric group
G D S� on � embeds in a natural way in SP .�/, by the mapping g 7! g� where

g�A D ¹ga j a 2 Aº:

Let SP .�/ be equipped with the product topology.
The second-order topology on G is defined by letting the basic open sets be

G NA; NB D ¹g 2 G j g�Ai D Bi for all iº;

where NA D A0; : : : ; An and NB D B0; : : : ; Bn are subsets of �. As is seen directly
from the definition of the basic open sets, the second-order topology on G is the
topology induced by the embedding � W G ! SP .�/.
Lemma 6 The set G� D ¹g� j g 2 Gº is a closed subgroup of SP .�/.
Proof Since � respects composition, G� is a group. To see that it is closed, let
h 2 S� be in the closure of G�; that is, for all NA D A0; : : : ; An there is g 2 G

such that hAi D g�Ai for i � n. Define f 2 G by fa 2 h¹aº, which uniquely
determines f since the set h¹aº is a singleton set. There is g 2 G such that
h¹aº D g�¹aº D ¹gaº.

Assume now that h … G�. Then there is A � � such that hA ¤ f �A. We may
assume that there is a 2 hA n f �A. For otherwise h.Ac/ n f �.Ac/ ¤ ;, since the
complement .f �A/c of f �A is f �.Ac/ and also that h.Ac/ D .hA/c , since there is
g 2 G such that g�A D hA and g�.Ac/ D h.Ac/ (take NA D A;Ac).

Let g 2 G be such that g�A D hA and g�¹f �1aº D h¹f �1aº (take
NA D A; ¹f �1.a/º). Thus gf �1a D ff �1a D a and so f �1a 2 A, contra-

dicting that a … f �A.

From this lemma it follows that a set A � G is closed in the second-order topology
if and only if A� is closed in SP .�/.

By using Proposition 2 and considering a second-order monadic structure on the
domain � as a first-order structure on P .�/, we can prove the characterization of
automorphism groups of monadic second-order structures.
Proposition 7 Let H be a subgroup of G. The following are equivalent.

(1) There is a second-order monadic structure q with domain� whose automor-
phism group is H .

(2) H is the automorphism group of the second-order structure

M D .�;OH �

NR
/ NR2.P .�//k :



118 Bonnay and Engström

(3) H is closed in the second-order topology.

Proof The implication (2) ) (1) is trivial.
To prove that (1) ) (3), let q be a second-order structure with Aut.q/ D H ,

let M be the first-order part of q, and let q0 be the second-order part. By Proposi-
tion 2, Aut.M/ � G is closed. Now, q0 can be seen as a first-order structure on the
domain P .�/, and by applying Proposition 2 to this structure on P .�/ we get that
AutP .�/.q

0/ � SP .�/ is closed.8 By the comment after Lemma 6, Aut�.q0/ � G is
closed since

Aut�.q0/� D G�
\ AutP .�/.q

0/;

and both of these subgroups are closed. To conclude the argument it is enough to
observe that Aut.q/ D Aut.M/ \ Aut.q0/ and that both of these groups are closed.

For the last implication (3) ) (2) it is enough to observe that H� � SP .�/ is
closed and thus, by Proposition 2, H� is the automorphism group of�

P .�/;O
H �

NR

�
NR2.P .�//k ;

and that g 2 G respects Q if and only if g� 2 SP .�/ respects Q, as a first-order
quantifier on P .�/. Thus, H is the automorphism group of M.

To conclude the discussion of automorphism groups of monadic second-order struc-
tures, we prove that not all subgroups of G are closed in the second-order topology,
implying that not all subgroups are automorphism groups of such structures, which
proves that the second part of Theorem 4 cannot hold if we restrict Inv.�/ to only
include monadic quantifiers. The following example of nonclosed subgroup comes
from Stoller [23].

Assume that � is countable and that � well-orders �. Say that a permutation p
of� is a piecewise order isomorphism if there are partitions .Ai /i�k and .Bi /i�k of
� such that p restricted to Ai is an order isomorphism from Ai to Bi . Let H be the
set of all such piecewise order isomorphisms.

Lemma 8 ([23, p. 220]) We have that H is a proper dense subgroup of G.

Proof For simplicity, assume that � D N and that the ordering � coincides with
the usual ordering of the natural numbers.

It is rather straightforward to check that H is a subgroup. That it is proper fol-
lows from the following argument. Let g.m/ be .n C 1/2 � .m C 1 � n2/, where
n2 � m < .n C 1/2. The function g is defined so that it reverses arbitrarily long
sequences of natural numbers: g.k2 C a/ D .k C 1/2 � a � 1 for 0 � a � 2k,
which means that g reverses the sequence k2; k2 C 1; : : : ; k2 C 2k of length 2kC 1.
Assume that there are partitions .Ai /i�k and .Bi /i�k of N into k blocks such that g
restricted to Ai is an order isomorphism from Ai to Bi . By the pigeonhole principle,
two elements of the sequence k2; k2 C 1; : : : ; k2 C 2k of 2k C 1 are in the same
block Ai . That contradicts the assumption that g is an order isomorphism from Ai

to Bi .
To see that H is not closed, take some g 2 G. We prove that for any NA there is

h 2 H such that g� and h� agree on NA, showing that g is in the closure of H . Let
the image of NA D A0; : : : ; Ak under g be NB D B0; : : : ; Bk . For any subset N of
Œk� D ¹0; 1; : : : ; kº, let

AN D

\
¹Ai j i 2 N º \

\
¹Ac

i j i … N º;



Invariance and Definability 119

and define BN similarly. Then, for any N � Œk�, g maps AN to BN ; and also the
AN s are pairwise disjoint. Clearly, there is an h 2 H mapping the AN s to the BN s.
It is now easy to see that h also maps the Ai s to the Bi s. Thus, the closure ofH isG,
and H is dense in G.

Let us now prove the second half of Theorem 4 by observing that the generalization of
the second-order topology onG where we regard the permutations ofG as permuting
binary relations on� is the discrete topology and thus that any subgroup is closed in
this topology.

Proposition 9 The topology on G given by the basic open sets
G NR; NS D

®
g 2 Gjg�.Ri / D Si

¯
;

where NR D R0; : : : ; Rn and NS D S0; : : : ; Sn are subsets of �2, is the discrete
topology.

Proof Let < well-order �, and let g 2 G be some permutation of �. Let
R D ¹g.</º be the image of < under g. Then the basic open set G<;R is the
singleton set ¹gº. If h.</ D R and h 2 G, then by transfinite induction on x over <
we see that h.x/ D g.x/ for every x 2 � and thus that h D g.

Let now H be any subgroup of G; by the proposition, H is closed in this topology.
By an argument similar to the case of monadic second-order structures, H� is a
closed subgroup of the symmetric group of P .�2/. Thus, by Proposition 2, there is
a relational structure on P .�2/ whose automorphism group is H�. This structure
is a second-order structure on � having H as its automorphism group. Thus, we
may conclude that any subgroup of G is the automorphism group of a second-order
structure with quantifiers of type .2; 2; : : : ; 2/, proving something slightly stronger
than the second half of Theorem 4.

4 Invariance under Similarities

4.1 The setting for equality-free languages In the present section, we propose an
extension of Krasner’s correspondence to languages without equality. Our motiva-
tions for doing so are twofold. First, we aim at greater generality: we will show that
the correspondence in Theorem 4 between groups of bijections and sets of first-order
and second-order operations closed under definability is a special case of an even
more encompassing correspondence. Second, invariance criteria in which functions
are not required to be one-to-one have recently been proposed (see Feferman [9] and
Casanovas [5]):9 the question is how much the situation does, or does not, change
when invariance is thus liberalized.

The generalized correspondence is to hold between monoids of similarities and
sets of operations closed under definability in L�

11 . A similarity � on a domain�
is simply a binary relation � � � ��, such that for all a 2 � there is a b 2 � with
a � b and for all b 2 � there is a 2 � such that a � b. We have that L�

11 is the
equality-free version of L11. For a given signature, its formulas are all the formulas
of L11 that do not contain the equality symbol. In their recent model-theoretic
studies of equality-free languages, Casanovas, Dellunde, and Jansana [6] have shown
that structure-preserving similarities play for first-order logic without equality the
same role that isomorphisms play for first-order logic with equality.10 The present
extension of Krasner’s correspondence pushes the analogy further.
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Our extension comes with a twist. In L11, on a fixed domain and with param-
eters, all subsets of the domain are definable. This is not the case in L�

11. Gen-
eralized quantifiers may add expressive power that remains ineffective even when
parameters are allowed. As a consequence, the proof method used in the proof of
Theorem 4 breaks down. It relied on describing “from below” the action of invariant
quantifiers by describing element-wise the sets and relations they apply to. Such a
strategy is no longer available.

To see this, let us first define invariance under similarity. When Na and Nb are
sequences of the same length, Na � Nb denotes the conjunction of all ai � bi . Also, if
R and S are relations of the same arity, R � S denotes the statement that for all Na

and Nb such that Na � Nb, Na 2 R iff Nb 2 S .
� A relation R � �k is invariant under the similarity relation � if R � R; that

is, for all Na � Nb we have Na 2 R iff Nb 2 R.
� A quantifier Q over the domain � is invariant under � if for all relations
R1; : : : ; Rk ; S1; : : : ; Sk on � such that Ri � Si we have hR1; : : : ; Rki 2 Q

iff hS1; : : : ; Ski 2 Q.
Consider now, as an extreme case, � D N and the operations q D ¹>;?;QEº,

where > and ? are the two trivial unary relations11 defined by > D �, ? D ;

andQE D ¹¹0; 2; 4; 6; 8; 10; : : :ºº. One may show thatQO D ¹¹1; 3; 5; 7; 9; 11; : : :ºº

is invariant under all similarities under which operations in q are invariant. But in
order to describe “from below” the action ofQO, we would need to be able to define
the set of odd numbers. As can easily be proved by induction, this is not possible
in a language in which > and ? are the only relation symbols, even in the presence
of QE.

Our alternative strategy will consist in showing that Krasner’s correspondence
holds when the extra expressive power is discarded. More precisely, we will show
that the desired definability and closure properties hold when attention is limited to
the action of generalized quantifiers on definable sets and relations. Note, however,
that even thoughQO is not definable “from below” in L�

11.q/, it is indeed definable
full stop, simply by the formulaQEx:Px. Therefore, the question whether a version
of Krasner’s correspondence without a restriction to definable relations holds is still
open.

Question 10 Is it true that if q is a set of operations and … a set of similarities,
thenQ is invariant under all similarities keeping all operations in q fixed? That is, is
it true that Q 2 Inv.Sim.q//, if and only if Q is definable in L�

11.q/?

We now introduce the setup for our result about quantifiers acting on definable rela-
tions. Given a set of operations q and a quantifierQ, let Q�q be the restriction of Q
to relations definable in L�

11.q/ (with parameters):

Q�q
D

®
hR1 : : : Rki 2 Q

ˇ̌
Ri is definable in L�

11.q; a/a2�; 1 � i � k
¯
:

Let q� be all the relations in q and all the restrictions Q�q of quantifiers in q. It is
easy to see that L�

11.q/ and L�
11.q

�/ are elementary equivalent. In that sense,
restricting quantifiers to their definable parts does not change the effective expressive
power of the logic.

Restriction to definable parts on the side of quantifiers will correspond to a similar
restriction on the side of the invariance condition. Invariance will only be required
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with respect to relations that respect the underlying equivalence relation generated
by the operations or the similarities under scrutiny. A set of operations q gives us an
equivalence relation �q corresponding to definability with parameters in L�

11.q/;
that is, a �q b iff ^

�2L�
11.q/

8 Nx
�
�.a; Nx/ $ �.b; Nx/

�
: (2)

Please observe that we allow infinite sequences Nx.
Likewise, a set of similarities… generates an equivalence relation by the following

condition:

a �… b iff for all Nc 2 �k there exists � 2 … such that a; Nc � b; Nc; for finite k:
Invariance is now parameterized by the equivalence relations � that we are con-

sidering.
� If � is a similarity, a quantifier Q is �-invariant under � if for any

NR; NS 2 P .�k1/ � � � � � P .�kl /, all invariant under �, if NR � NS , then
NR 2 Q iff NS 2 Q.

Please note that any equivalence relation, such as �, is a similarity and thus it makes
sense to say that a relation is invariant under �, meaning that for all Na � Nb, Na 2 R

iff Nb 2 R, or in other words, R is a union of equivalence classes under �.
As before, a relation is �-invariant under � if it is invariant under � . This yields

the main definitions of this section.

Definition 11

� Let Inv.…/ be the set of all relations R and quantifiers Q on � which are
�…-invariant under all similarities in ….

� Sim.q/ is the set of similarities � such that all relations and quantifiers in q
are �q-invariant under � .

Note that when … is a group H of permutations, then Inv.…/ D Inv.H/, where
Inv.H/ uses the old definition of Inv. This follows directly from the fact that �… in
this case is equality.

In general, Sim.q/ is not a group, because the similarities need not be invertible.
The relevant closure properties for Sim.q/ are the following. A set … of similarities
is a monoid with involution if it is closed under composition and taking converses.12

Moreover, … is full if it is a monoid with involution, �… 2 …, and closed under
taking subsimilarities, that is, such that if � 2 … and � 0 � � is a similarity, then
� 0 2 ….

We are now ready to state Krasner’s correspondence for the equality-free case,
with the aforementioned restriction to the definable parts of quantifiers.

Theorem 12 Let q be a set of operations, and let … be a set of similarities. Then
(1) Q 2 Inv.Sim.q// if and only if Q�q is definable in L�

11.q/, and
R 2 Inv.Sim.q// if and only if R is definable in L�

11.q/;
(2) Sim.Inv.…// is the smallest full monoid including ….

As a test case, let q include equality. Then �q is equality and Sim.q/ D Aut.q/.
Theorem 12 says that a quantifier Q is in Inv.Aut.q// if and only if it is definable in
L�

11.q/, which is the same as being definable in L11.q/. Thus, part (1) of Theo-
rem 4 follows easily from Theorem 12. Also part (2) follows since ifH is a subgroup
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of the symmetric group of �, then �H is nothing but equality and Aut.Inv.H// is
just Sim.Inv.H//, which is H by part (2) of Theorem 12.

The plan to prove Theorem 12 is to derive it from Theorem 4, showing how what
happens in the equality-free world of the base domain, in terms of similarities and
sets of operations, is reflected in a quotient structure, in terms of permutations and
sets of operations containing equality.

4.2 Intermediate steps To carry out this plan we need some technical machinery.
First, we need to be able to move from the base domain to a quotient structure where
the set of operations may be assumed to contain equality, and back. We define two
mappings: �=� and [ which will operate both on operations and on similarities and
permutations. Let � be an equivalence relation on �, let Œa� D ¹bja � bº be the
equivalence class of a, and let �=� be the set of all equivalence classes. Given
R � �k , we define the relation R=� on �=� by

R=� D
®˝
Œa1�; : : : ; Œak �

˛
2 .�=�/k

ˇ̌
ha1; : : : ; aki 2 R

¯
:

If R � .�=�/k , then

[R D
®
ha1; : : : ; aki 2 �k

ˇ̌ ˝
Œa1�; : : : ; Œak �

˛
2 R

¯
:

Similarly, given a quantifier Q on �, the quantifier Q=� on �=� is defined by
Q=� D

®
hR1; : : : ; Rki

ˇ̌
h[R1; : : : ;[Rki 2 Q

¯
;

and given a quantifier Q on �=�, the quantifier [Q on � is defined by
[Q D

®
h[R1; : : : ;[Rki

ˇ̌
hR1; : : : ; Rki 2 Q

¯
:

Thus, given a set q of operations on � and an equivalence relation � on �, we get
a set q=� of operations on �=�. Similarly, we can go from a set of operations on
�=� to a set of operations on � by the operation [.

Now, our main aim in this section will be to show that, under some minimal con-
ditions, �q and �Sim.q/ as well as �Inv.…/ and �… are the same (see Proposition 17).
This will enable us to describe, in the next section, what happens at the level of� in
terms of what happens at the level of�= � (see Proposition 19). To get there, we will
prove that, in the definition of the equivalence relation �q , one may restrict attention
to formulas with only one free variable (see Lemma 13) and that [ and �= �q behave
nicely with respect to :�q (see Proposition 14). On the way, we will also prove that
similarities yield permutations on the suitably defined quotient structure and preserve
satisfaction in L�

11 (see Lemmas 15, 16).
Since there are at most 22j�j many nonequivalent formulas with j�j many free

variables, the conjunction in (2) above can be bounded by that number, and thus (2)
is a formula of L�

11.q/. We now get the following easy lemma.

Lemma 13 For any a and b in �, a �q b iff^
�2L�

11.q/

8x
�
�.a; x/ $ �.b; x/

�
;

where the conjunction is only over �s with two free variables.

Proof Left to right holds trivially; the other direction follows by setting �.x; y/ to
be the formula x �q y and x to be a. Then we have

a �q a $ a �q b;
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and thus that a �q b.

Proposition 14 Let q be a set of operations on �. Then
(1) R � �k is definable in L�

11.q; a/a2� if and only if R is invariant under
�q;

(2) Q�q D [.Q= �q/.

Proof (1) The left-to-right implication is immediate. For the other implication,
assume that R is invariant under �q . Let �R.x1; : : : ; xn/ be the formula_

ha1;:::;ani2R

^
1�i�n

ai �q xi

defining R. If Na 2 R, �; q � �. Na/ since �q is reflexive. If �; q � �. Na/, there is
Nb 2 R such that Na �q

Nb, implying that Na 2 R since R is invariant under �q .
(2) By (1), R � �k is definable in L�

11.q; a/a2� if and only if it is of the form
[R0, where R0 � .�= �q/

k . This holds if and only if R D [.R= �q/.
Assume that NR 2 Q�q . Then Ri is definable in L�

11.q; a/a2�. Thus
Ri D [.Ri= �q/, proving that NR 2 [.Q= �q/. On the other hand, if
NR 2 [.Q= �q/, then each Ri satisfies Ri D [.Ri= �q/ and thus they are all

definable in L�
11.q; a/a2�. From the definition it also follows that [.Q= �q/ � Q

and thus NR 2 Q.

Lemma 15 Let q be a set of operators, and suppose that � 2 Sim.q/. Then
(1) the relation �=�q is a permutation of �=�q ,
(2) if R is invariant under �q , then R � S , where S D �.R/, and
(3) if Na; Nb 2 �˛ , Na � Nb and �. Nx/ is a formula in L�

11.q/, then�; q ˆ �. Na/ $

�. Nb/.

Proof Let � be �q .
(1) To prove that �=� is a function we prove that for all a; a0 2 � and all b; b0 2 �

such that a � a0, a � b, and a0 � b0, we have b � b0. We prove, by induction, that
if  .x; Nc/ is a formula of L�

11.q;�/ (observe that Nc can be an infinite string), then
�; q ˆ �.b; Nc/ iff �; q ˆ �.b0; Nc/.

For the base case take R 2 q, and suppose that R.b; Nc/. Let Nd be such that Nd � Nc.
Then R.a; Nd/ since a; Nd � b; Nc. Now R.a0; Nd/ since a � a0, and then we have
R.b0; Nc/ since a0; Nd � b0; Nc.

For the induction steps negation, disjunction, and existential quantification are
easy. Let us thus take Q 2 q, and suppose that �; q ˆ Q Nx�.b; Nc; Nx/. Then
ŒŒ�.b; Nc; Nx/���

Nx 2 Q and by the induction hypothesis��
�.b0; Nc; Nx/

���

Nx
D

��
�.b; Nc; Nx/

���

Nx

and thus �; q ˆ Q Nx�.b0; Nc; Nx/.
The proof of the bijective property is very similar and left to the reader.
(2) From (1) we have that if � 2 Sim.q/ and R respects �, then R � S iff

S D �.R/. This is because if Na � Nb and Nb 2 �.R/, then there is Na0 2 R such that
Na0 � Nb and so by (1) Na � Na0 and since R respects �, Na 2 R.

(3) The proof is by induction on �. For the base case we have Na � Nb, where
� 2 Sim.q/, and R 2 q. Thus, R is invariant under � and R Na iff R Nb.
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For the induction step, negation and (infinite) conjunction are trivial. For the case
with (an infinite string of) existential quantifiers, assume that �; q ˆ 9 Nx�. Na; Nx/ is
true and thus that there are Nc such that �; q ˆ �. Na; Nc/. Since � is a similarity
relation, there are Nd such that Na; Nc � Nb; Nd and thus, by the induction hypothesis, we
have �; q ˆ �. Nb; Nd/ and thus �; q ˆ 9 Nx�. Nb; Nx/.

We are left with the case of a generalized quantifier Q 2 q. Suppose that
�; q ˆ Q Nx�. Na; Nx/, that is, that R D ŒŒ�. Na; Nx/���

Nx 2 Q. Since � 2 Sim.q/, R
is invariant under � and by (2) R � S where S D �.R/, we have S 2 Q. Now,
�.R/ D S is ŒŒ�. Nb; Nx/���

Nx and thus �; q ˆ Q Nx�. Nb; Nx/.

Next we prove that �… satisfies similar properties.

Lemma 16 Let … be a monoid of similarities with involution, and let � 2 ….
Then

(1) �=�… is a permutation of �=�…,
(2) if R is invariant under �, then R � S , where S D �.R/, and
(3) if also �… 2 …, Na; Nb 2 �˛ , Na � Nb and �. Nx/ is a formula in L�

11.Inv.…//,
then �; Inv.…/ ˆ �. Na/ $ �. Nb/.

Proof Let � be �….
(1) To prove that �=� is a function, we prove that for all a; a0 2 � and all

b; b0 2 � such that a � a0, a � b, and a � b0, we have b � b0. This follows
directly from … being closed under composition and taking inverses. The proof of
the bijective property is similar and left to the reader.

(2) If Na � Nb and Nb 2 �.R/, then there is Na0 2 R such that Na0 � Nb and so by (1)
Na � Na0, and since R is invariant under �, Na 2 R.

(3) The proof is by induction on �. For the base case we have Na � Nb, where
� 2 …, and R 2 Inv.…/. Thus, R is invariant under � and R Na iff R Nb.

For the induction step, negation and (infinite) conjunction are trivial. For the
case with (an infinite string of) existential quantifiers, assume that �; Inv.…/ ˆ 9

Nx�. Na; Nx/ is true and thus that there are Nc such that �; Inv.…/ ˆ �. Na; Nc/. Since �
is a similarity relation, there are Nd such that Na; Nc � Nb; Nd and thus, by the induction
hypothesis, we have �; Inv.…/ ˆ �. Nb; Nd/ and �; Inv.…/ ˆ 9 Nx�. Nb; Nx/.

We are left with the case of a generalized quantifier Q 2 q. Suppose that
Q Nx�. Na; Nx/, that is, that R D ŒŒ�. Na; Nx/���

Nx 2 Q. If R is invariant under �, then
we are finished since then, by (2) R � S where S D �.R/, we have S 2 Q.
Now, �.R/ D S is ŒŒ�. Nb; Nx/���

Nx and thus �; Inv.…/ ˆ Q Nx�. Nb; Nx/. To see that R
is invariant under �, take Nc 2 R and Nd such that Nc � Nd . There is � 2 … such
that Nc � Nd and then since �… 2 …, � 0 D � ı � 2 … and Na; Nc � 0 Na; Nd , and thus
�; Inv.…/ ˆ �. Na; Nc/ implies that�; Inv.…/ ˆ �. Na; Nd/ by the induction hypothesis
and we have Nd 2 R.

In fact, �… and �q are very much related as the next proposition shows.

Proposition 17 Let q be a set of operators, and let… be a monoid with involution.
Then

(1) if �… 2 …, then �… is the same relation as �Inv.…/, and
(2) �q is the same as �Sim.q/.



Invariance and Definability 125

Proof (1) First, �… � �Inv.…/. Assume a �… b. For any c 2 �, there is a � 2 …

such that ac � bc, hence, by (3) in Lemma 16 and since … is full, for every formula
�.x; y/ in L�

11.Inv.…//, we have �; Inv.…/ � �.a; c/ iff �; Inv.…/ � �.b; c/.
By Lemma 13, this suffices for a �Inv.…/ b.

Second, �… � �Inv.…/. Assume a �Inv.…/ b. For any Nc 2 �k , define a relation
H…

a Nc of arity k C 1 by

H…
a Nc D ¹ Nd 2 �kC1

j there is � 2 … such that a Nc � Ndº:

Check that H…
a Nc is invariant under …. Assume that Nd � Nd 0 for some � 2 …. If

Nd 2 H…
a Nc , there is a � 0 2 … with a; Nc � 0 Nd . Since … is closed under composition,

� 0 ı � 2 …, and then a; Nc � 0 ı � Nd 0 implies Nd 0 2 Ha Nc;…. If Nd 0 2 H…
a Nc , there is a

� 0 2 … with a; Nc � 0 Nd 0. Since … is closed under composition and taking converses,
� 0 ı �` 2 …, and then a; Nc � 0 ı �` Nd implies Nd 2 H…

a Nc . Therefore, H…
a Nc is the

interpretation of a predicate symbolP in the language L�
11.Inv.…//. By definition,

�; Inv.…/ � P.a; Nc/. Since a �Inv.…/ b, this implies �; Inv.…/ � P.b; Nc/, hence
there is a � 2 … such that a Nc � b Nc.

(2) First, �q��Sim.q/. Assume a �Sim.q/ b. For any c 2 �, there is a � 2 …

such that ac � bc, hence, by (3) in Lemma 15, for every formula �.x; y/ in
L�

11.q/, we have �; q � �.a; c/ iff �; q � �.b; c/. By Lemma 13, this suffices
for a �Inv.…/ b.

Second, �q��Sim.q/. Assume a �q b. Let Nc 2 �k . We need to find a
� 2�Sim.q/ with a Nc � b Nc. It is sufficient to show that H Sim.q/

a Nc is definable in
L�

11.q/ by some formula ', because then �; q � '.a; Nc/ and a �q b implies
�; q � '.b; Nc/, giving the needed � .
H

Sim.q/
a Nc is invariant under Sim.q/ since Sim.q/ is closed under compositions.

By Proposition 14, H Sim.q/
a Nc is definable in L�

11.q;�/ if H Sim.q/
a Nc is invariant under

�q . Thus, it is sufficient to show that �q2 Sim.q/. Let R be an n-ary relation
in q, d1 : : : dn 2 R and d1 : : : dn �q d 0

1 : : : d
0
n. d1 : : : dn 2 R and d1 �q d 0

1,
hence d 0

1d2 : : : dn 2 R, and by repeating this reasoning, d 0
1 : : : d

0
n 2 R. Let Q be a

quantifier in q, and let NR and NS be sequences of relations on � invariant under �q

and of a type appropriate for Q. We need that if NR �q
NS , then NR 2 Q iff NS 2 Q.

It is sufficient to note that if R is invariant under �q and R �q S , then R D S . Let
Nd 2 R and Ne be such that Ne �q

Nd . We have that Ne 2 R since R is invariant under
�q , hence since R �q S , Nd 2 S . Similarly, let Nd 2 S and Ne be such that Ne �q

Nd .
Since R �q S , Ne 2 R, and then Ne �q

Nd , and the fact that R is invariant under �q

implies Nd 2 R.

4.3 Krasner’s correspondence without equality In this section, we leverage the out-
put of the machinery which we have just set up to prove Theorem 4. We first charac-
terize the sets of similarities under which a set of operations is invariant, relying on
Lemma 15.

Lemma 18 We have that Sim.q/ is a full monoid.

Proof Let … D Sim.q/. To check that … is closed under taking converses is
trivial, and by using (2) of Lemma 15 we can easily see that … is also closed under
compositions.
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We prove that if � 2 … and � 0 � � is a similarity relation, then � 0 2 …. It
is trivial to check that every relation of q is invariant under � 0. For the case of
quantifiers, let R � 0 S be such that R and S are invariant under �q . Then R � S

because if not we may assume, without loss of generality, that there are Na � Nb, Na 2 R,
and Nb … S . There are Nc such that Na � 0 Nc and thus, since both Na � Nb and Na � Nc, we
have by (1) in Lemma 15 that Nb �q Nc, contradicting that S is invariant under �q .

Thanks to Proposition 17, we know that �q is the same as �Sim.q/ so when working
with Inv.Sim.q//, we can use �q instead of �Sim.q/. This enables us to prove the
following.

Proposition 19 Let q be a set of operators, and let � be �q . We have that

(1) Sim.q/=� is Aut.q=�/, and
(2) Inv.Sim.q// is the set of all quantifiers Q such that Q=� is in

Inv.Aut.q=�//.

Proof (1) For the left-to-right inclusion, let � 2 Sim.q/. By Lemma 15,
f D �=� is a bijection on �=� and if Q 2 q, then R 2 Q=� iff [R 2 Q

iff �.[R/ 2 Q iff [f .R/ 2 Q iff f .R/ 2 Q=�.
For the other inclusion, let f 2 Aut.q=�/. Define a � b iff f .Œa�/ D Œb�. Then

� is a similarity relation on � and f D �=�. Let Q 2 q, and if R is invariant
under �, then R 2 Q iff R=� 2 Q=� iff f .R=�/ 2 Q=� iff [f .R=�/ 2 Q.
But [f .R=�/ D �.R/. We have proved that R 2 Q iff �.R/ 2 Q, and thus Q is
invariant under � .

(2) Take Q 2 Inv.Sim.q// and f 2 Aut.q=�/. By (1) choose � 2 Sim.q/ such
that f D �=�. Then R 2 Q=� iff [R 2 Q iff �.[R/ 2 Q iff �.[R/=� 2 Q=�,
but �.[R/=� D f .R/. Note that [R is invariant under �q , hence under �Sim.q/

by Proposition 17, securing the fact that [R 2 Q iff �.[R/ 2 Q.
On the other hand, takeQ such thatQ=� 2 Inv.Aut.q=�//,R invariant under �,

which is the same as �Sim.q/ by Proposition 17, and � 2 Sim.q/, then f D �=� is
in Aut.q=�/. ThusR 2 Q iffR=� 2 Q=� iff f .R=�/ 2 Q=� iff [f .R=�/ 2 Q,
but [f .R=�/ D �.R/.

Proposition 19 describes the relationships between what happens at the level of a
given structure, in terms of similarities and sets of operations (possibly without
equality), and what happens at the level of the corresponding quotient structure, in
terms of permutations and sets of operations (with equality):

sets of permutations
on �= �

Inv ..
nn

AutOO

�=�

sets of operations
on �= �OO

�=�

sets of similarities
on �

Inv ..
nn

Sim

sets of operations
on �
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On the one hand, Sim.�/= � and Aut.�= �/ lead to the same result, and on the other
hand, Inv.Sim.�// is Inv.Aut.�= �// up to taking quotients. From these, we get what
was announced as the main theorem of this section.

Theorem 12 Let q be a set of operations, and let … be a set of similarities. Then
(1) Q 2 Inv.Sim.q// if and only if Q�q is definable in L�

11.q/, and
R 2 Inv.Sim.q// if and only if R is definable in L�

11.q/;
(2) Sim.Inv.…// is the smallest full monoid including ….

Proof (1) By Proposition 19, Q 2 Inv.Sim.q// iff
Q=� 2 Inv

�
Aut.q=�/

�
:

Thus, by Theorem 4, Q=� is definable in L11.q=�/ by a sentence �. Let �0 be
the translation of � into L�

11.q/ where D is replaced by �.
By induction of formulas, we see that for all Na 2 � and all  . Nx/ in L11.q=�/,

�=� ˆ  
�
Œ Na�

�
iff � ˆ  0. Na/;

where, again,  0 is the translation of  into L�
11.q/.

It follows that �0 defines [.Q=�/ and since � is definable in L�
11.q/, we have

what we wanted.
(2) We prove that for a full monoid …, we have Sim.Inv.…// D …. The general

theorem then follows from the fact that every Sim.q/ is a full monoid.
The inclusion … � Sim.Inv.…// is trivial. For the other inclusion, let

H D …=�. It is a group of permutations by Lemma 16. By straightforward
checking, we see that

Inv.…/=� D Inv.H/:
From (1) in Proposition 19, we get that

Sim
�
Inv.…/

�
=� D Aut

�
Inv.…/=�

�
and thus that this is equal to Aut.Inv.H//, which by Theorem 4 is nothing else than
H . Thus,

Sim
�
Inv.…/

�
=� D …=�

and by the assumption that … is full we get that Sim.Inv.…// D …. If � 2

Sim.Inv.…//, then there is � 0 2 … such that � 0=� D �=�, and then � �

.� ı � 0 ı �/, and thus � 2 ….

5 Concluding Remarks

5.1 Invariance under permutation as a logicality criterion Let us first go back to lan-
guages with equality and groups of permutations. The main benefit of a Krasnerian
approach to McGee’s result is to show that the correspondence between purportedly
logical operations on a domain and the symmetric group on that set is a special case
of the general duality which holds between sets of relations and groups of permuta-
tions, when sets of relations consist in first-order and second-order relations closed
under definability in L11. The light thus shed on McGee’s result is ambiguous,
depending on how the closure condition is looked at. One might insist that groups
of permutations are consequently shown to be a sure guide to characterizing sets
of relations. When L11 provides the logical context, any relevant structure may
be characterized in terms of invariance under permutation, and therefore the struc-
ture consisting of all and only logical relations on a given domain, in particular,
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is thus characterizable. Now which group of permutations should be the one giv-
ing us all (and only the) logical relations? Since logical notions have generality as
their distinguishing feature, we should go for the largest possible group, and take all
permutations: this is the gist of the generality argument. Since logic is formal and
does not make differences between objects, we should require insensitivity to any
possible way of switching objects, and take again all permutations: this is the gist
of the formality argument. Of course, several steps are in need of further justifica-
tion. Maybe identifying “being a logical notion” and “being a general notion” is too
quick, because generality remains underspecified. Or maybe “being formal” and “not
making distinctions between objects” are not quite the same (see [19] for a thorough
discussion of these issues). But our goal here is not to challenge the relevance of
the conceptual analysis in terms of generality or indifference to objects. Our point is
rather to suggest that these arguments may be deemed to be on the right track only if
we know that logical relations are characterizable in terms of invariants of a group
of permutations. Once this characterizability is granted, both arguments go through,
and nicely converge.

Seeing McGee’s result as a special case of a more encompassing Krasnerian cor-
respondence reveals L11 to be a built-in feature of the framework. Definability
in L11 is the closure condition on sets of relations which corresponds to working
with groups of permutations, rather than with some other kind of transformations.
As soon as we choose to explicate logicality (either qua generality or qua formality)
in terms of groups of permutation, we let infinitary syntax sneak in. Now the gener-
ality and formality arguments tell us which group of permutations we should pick, if
we are to single out logical relations by picking one, but they do not tell us that we
should single out logical relations by picking a group of permutations to start with.
Thus, the fact that the infinitary logic L11 ends up being a full-blown logic on this
account of logicality might be deemed an artificial effect of the invariance under per-
mutation framework. McGee himself took his result to be an argument in favor of
invariance for permutation as a logicality criterion, “inasmuch as every operation on
the list is intuitively logical” ([20, p. 567]), the list being the list of basic operations
of L11. But this presupposes that having reasons to count conjunction as logical
automatically counts as having reasons to count infinitary conjunction, and similarly
for quantification.

Blaming invariance under permutation for its infinitary upshot is no new criticism
(see Feferman [9], [10] and Bonnay [2]), but, in the light of the generalized Kras-
nerian correspondence, this infinitary burden is seen to be the very consequence of
the use of permutations to demarcate the extensions that are admissible for logical
constants.

5.2 Invariance under similarity as a logicality criterion Invariance under similari-
ties has been put forward as an alternative logicality criterion by [9].13 The shift
from permutations to similarities makes for greater generality, which is crucial for
the generality argument. It also provides a way to escape the commitment of permu-
tations to cardinalities. Every cardinality quantifier, no matter how wild (“there are at
least @17 many”) is permutation-invariant. Shifting to invariance under similarities
expels these wild creatures from the paradise of logical quantifiers.14

Feferman shows that an operation is definable in first-order logic without equal-
ity just in case it is definable in the �-calculus from homomorphism invariant15
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monadic quantifiers and asks whether “there is a natural characterization of the
homomorphism-invariant propositional operations in general, in terms of logics
extending the predicate calculus” ([9, p. 47]). The question is all the more pressing
given that the syntactic restriction to monadic quantifiers lacks a proper justification.
With reference to an unpublished proof given in Bonnay [3], it has been claimed
that invariance under homomorphism corresponds to definability in pure L�

11

(see [2], [10]). The proof, however, was faulty, breaking down because of undefin-
able subsets. Theorem 12 provides a correct generalization. However, it does not
answer Feferman’s exact question, since the correspondence we eventually get only
holds with respect to the action of quantifiers on definable sets. What we know by
Theorem 12 is that invariance under homomorphism corresponds to definability in
pure L�

11 when quantifiers are restricted to their action on definable subsets of the
domain. Whether the original claim was correct is still unknown.

The restriction to definable sets notwithstanding, Theorem 12 shows that the shift
from permutations to similarities or homomorphisms does not change the picture
when it comes to the infinitary explosion of invariance criteria: infinitary syntax is
every bit as much hardwired in invariance under similarities as it is in invariance
under permutations. Moreover, invariance criteria do not seem well suited to help
us adjudicate the status of equality as a logical constant or not. As highlighted by
the close parallelism between Theorem 4 and Theorem 12, allowing identity at level
of relations exactly corresponds to banning non-injective functions at the level of
invariance conditions. Whether there are better grounds on which to adjudicate the
issue, or whether it should be considered as primarily a matter of convention remains
to be seen.

5.3 Further perspective To conclude, we would like to mention two lines of further
research. The first one is somewhat tangential to the main project. We have seen that
automorphism groups of monadic second-order structures are characterized as closed
groups in a way similar to the first-order case. What do these closed groups tell us
about the structures they come from? The question is whether remarkable properties
of monadic second-order structures can be reduced to properties of automorphism
groups—a famous example in the first-order case is the Ryll-Nardzewski theorem
which says that being @0 categorical is such a property.

The second line of research concerns further inquiries into the duality between
sets of transformations and sets of relations closed with respect to definability in a
given logic. Theorem 12 leaves as an open question whether the restriction to the
definable parts of quantifiers is mandatory. More generally, this duality could be
extended to other kinds of transformations and less demanding closure conditions.
Barwise [1] provides such a result for first-order relations with respect to semiau-
tomorphisms (automorphisms between substructures which are part of a back-and-
forth system) and closure under definability in L1! . This suggests generalizing
again to second-order relations. Another tempting move would consist in getting to
L!! by suitably weakening the conditions on semiautomorphisms. Finally, the con-
nection between properties of the logical syntax and properties of the transformations
still remains to be fully understood. It would be nice to achieve even greater general-
ity by connecting explicitly abstract properties of transformations (e.g., the depth of
Ehrenfeucht–Fraïssé games) and properties of the syntax for the logic providing the
closure condition.
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Notes

1. Klein’s Erlanger program in [14] and the systematic study of the duality between groups
of transformations on a space and geometries on that space is a famous example. It was
also a direct inspiration to Tarski [24].

2. The qualification “essentially” is due to the fact that Krasner thinks directly in terms of
closure under “logical” operations on relations rather in terms of definability in a formal
language.

3. To our knowledge, the question regarding the other half is still open.

4. This amounts to a property of eliminability of quantifiers. Krasner gives a general char-
acterization of structures having this property. See Poizat [21] regarding connections
with contemporary model theory.

5. This topology makes G into a topological group, which means that the operations of
multiplication (in this case composition) and taking inverses are continuous. As with
topological groups in general, all open subgroups are also closed: let H be an open
subgroup of G; then the complement ofH is the union of all cosets gH ofH which are
disjoint from H , and thus the complement of H is open.

6. If � D ¹a0; a1; : : :º is countable, then the topology is completely metrizable by the
metric d.g; h/ D 1=2k if g ¤ h and k is the least number such that gak ¤ hak

or g�1ak ¤ h�1ak , and d.g; g/ D 0. Thus, a sequence of permutations g0; g1; : : :

converges to g if and only if, for any k, gnak D gak for all sufficiently large n. It should
also be noted that G is not a closed subset of ��, which means that there are sequences
gi of permutations of � converging to a function f which is not a permutation. Let
� D N; the sequence

.0; 1/; .0; 1; 2/; .0; 1; 2; 3/; : : :

converges to the function f W n 7! nC 1 which is not a permutation.

7. McGee’s operations are actually defined as functions from sequences of sets of assign-
ments to sets of assignments. This difference does not matter in the present context,
since McGee’s operation may be translated into second-order relations and back in such
a way that invariance under sets of permutations is preserved.

8. AutP .�/.q
0/ is the group of all permutations of P .�/ respecting the quantifiers in q0.

Compare this to Aut�.q0/, which is the set of all permutations of� respecting the quan-
tifiers in q0.

9. Casanovas shows that several nonequivalent ways of defining invariance appear when
functions are allowed that are not one-to-one. We are concerned here with what he calls
“Feferman invariance,” as defined by Feferman in [9] and that we take to be the most
natural notion of invariance in that context. See [5] for a detailed examination of the
other options, as well as for characterization results for these other options.

10. Casanovas, Dellunde, and Jansana [6] use the term “relativeness correspondence,”
whereas Feferman [9] goes for “similarity relation.” Note also that, instead of similarity
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relations, one may work with surjective functions. Any relational composition of sur-
jective maps or inverses of surjective maps is a similarity relation, and any similarity
relation can be written as the composition f ı g�1, where f W C ! B and g W C ! A

are onto (see [6] for more details).

11. It is useful to assume that there are symbols in the language to express these, in order to
guarantee that L�

11.q/ is not empty.

12. The converse R�1 of R is such that a R�1 b iff b R a.

13. Feferman [10], [11] now favors mixed approaches in which invariance only provides
necessary conditions for logicality.

14. Feferman had another reason to favor similarities, namely, the fact that they can relate
domains of different sizes, and hence force a greater homogeneity for the extensions of
quantifiers across domains. We do not deal with across-domain invariance here.

15. Homomorphism invariance is equivalent to invariance under similarities.
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