
Notre Dame Journal of Formal Logic
Volume 59, Number 3, 2018

The Admissible Rules of BD2 and GSc

Jeroen P. Goudsmit

Abstract The Visser rules form a basis of admissibility for the intuitionistic
propositional calculus. We show how one can characterize the existence of cov-
ers in certain models by means of formulae. Through this characterization, we
provide a new proof of the admissibility of a weak form of the Visser rules.
Finally, we use this observation, coupled with a description of a generalization
of the disjunction property, to provide a basis of admissibility for the intermedi-
ate logics BD2 and GSc.

1 Introduction

The admissible rules of a logic are those rules that can be added without making new
theorems derivable. The intuitionistic propositional calculus (IPC) has many rules
that are admissible, yet nonderivable. An example of an admissible rule of IPC is the
following, shown to be both admissible and nonderivable by Mints [41]:

.' ! �/ ! ' _  =
�
.' ! �/ ! '

�
_

�
.' ! �/ !  

�
:

Some rules are admissible in IPC as well as in its axiomatic extensions. An early
example is the following rule, shown to be admissible in IPC by Harrop [25] and
proven to be admissible in all intermediate logics by Prucnal [43]:

:� ! ' _  = .:� ! '/ _ .:� !  /:

Some intermediate logics enjoy a nice characterization of their admissible rules.
Independently, Iemhoff [28] and Rozière [47] proved that all admissible rules of IPC
derive from the Visser rules, a scheme of rules that can be seen as a generalization of
Mints’s rule. The Visser rules are useful in describing the admissible rules of many
an intermediate logic. When they are admissible in an intermediate logic, Iemhoff
[29] showed that all other admissible rules must follow from them. The intermediate
logic BD2, the weakest intermediate logic of the second finite slice, however, is not
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IPC

BD2 KC D IPC C :p _ ::p

GSc LC D IPC C .p ! q/ _ .q ! p/

G2BD2 C LC D

CPC

Figure 1 The intermediate logics with the interpolation property ordered by inclu-
sion, as illustrated by Rothenberg [46, Figure 3.1].

amendable to this approach. Indeed, Citkin [11] showed that this intermediate logic
does not admit the Visser rules.

The logic BD2 was among the first intermediate logics to be studied. Jankov [32]
introduced the logic under the name M (cf. Rose [45]) and proved it to be complete
with respect to a particular class of Heyting algebras. McKay [40] proved that BD2

derives the same implicationless formulae as IPC. The concept of finite slices was
introduced by Hosoi [26], where BD2 appeared in the guise of LP2. The logic BD2

also appears as one of the three pretabular intermediate logics and as one of the seven
intermediate logics with interpolation, both proven by Maksimova [37], [38].

The seven logics with interpolation are ordered as in Figure 1. There is much
known about the admissible rules of these logics. Per [29, Theorem 5.3], we know
that the classical propositional calculus (CPC), the two-valued Gödel logic (or
Smetanich’s logic) G2, and the Gödel–Dummett logic LC (see Dummett [16]) have
no nontrivial admissible rules. The structural completeness of LC and G2 was proven
by Dzik and Wroński [17], and Citkin [10] showed that these logics are hereditarily
structurally complete.1 Both IPC and the Jankov–de Morgan logic KC have nontriv-
ial admissible rules, and all admissible rules follow from the Visser rules by [29,
Theorem 5.1] and [28]. It is known that BD2 admits nontrivial rules, but to the best
of our knowledge, no axiomatization of admissibility is known. We are unaware of
any admissibility results on GSc of Avellone, Ferrari, and Miglioli [2], which is the
intermediate logic defined by

GSc WD BD2 C
�
.p ! q/ _ .p ! q/ _ .p � :q/

�
:

Since Jeřábek [33], there has been interest in a notion of admissibility concerning
rules with multiple conclusions, as already suggested by Kracht [36]. This notion
encompasses the disjunction property, and as such, it offers a convenient setting to
formulate bases of admissibility.2 For instance, Cintula and Metcalfe [9] gives a basis
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of multiconclusion admissibility for the implication-negation fragment of IPC. Sim-
ilarly, Goudsmit and Iemhoff [23] provided bases of multiconclusion admissibility
for the logics Tn with n � 2.

In this paper we introduce a scheme of multiconclusion rules, called D::
n , inspired

by Skura [53]. This scheme can be seen as a weakened version of the Visser rules.
We prove that all admissible rules of BD2 follow from the scheme D::

n , and that all
admissible rules of GSc follow from D::

2 . This provides a positive answer to the last
two questions stated in Iemhoff [30].

The bulk of this paper is spent on developing the machinery to smoothly tackle
these problems. Of central importance to our end goal is the notion of projective
unification, as developed by Ghilardi [20], [21]. Using Jankov–de Jongh formulae
and the universal model, we semantically characterize the admissibility of a variant
of the Visser rules Dn. With this characterization, we prove that the rules Dn are
admissible for all subframe logics. As a particular consequence, this proves that the
restricted Visser rules of [29] are admissible for all subframe logics. This includes
the logics IPC, BDn, Gn, LC, Mn, KC, and Sm, all discussed in the aforementioned
paper.

In Section 2, we provide the basic definitions and notation we work with. Most
importantly, we define what we mean by a basis of admissibility in terms of (multi-
conclusion) consequence relations. Providing a basis of admissibility will be our
formal codification of the intuitive statement that all admissible rules of BD2 follow
from D::

n .
Section 3 describes the universal model. This model allows us to comfortably pro-

vide a connection between syntax and semantics for the intermediate logics at hand.
In Section 4, we lay the groundwork for characterizing exactly in which situations
D::

n is admissible. Moreover, we provide the scheme of rules Dn and show it to be
admissible for all subframe logics. We introduce all the relevant admissible rules in
Section 5. In Section 6, we finally obtain the bases of admissibility.

2 Preliminaries

We are concerned with propositional statements. Often, it will be useful to restrict
the propositional variables to a given set, say, X . Typically, this set will be finite or
countably infinite. The propositional language over these variables is defined through
the following Backus–Naur form:

L.X/ WD > j ? j X j L.X/ ^ L.X/ j L.X/ _ L.X/ j L.X/ ! L.X/:

We say that ' is a formula when ' 2 L.X/ for some X . For clarity, we reserve
'; ; � for formulae and �;…;� for sets of formulae. As abbreviations, we write
:' to mean ' ! ? and write ' �  to mean .' !  / ^ . ! '/. By a
substitution we mean a function on formulae that commutes with all connectives.

The intuitionistic propositional calculus, from here onward abbreviated as IPC,
has many equivalent definitions. For us, it is most convenient to see it as a Hilbert-
style system, that is, a collection of theorems closed under modus ponens. We assume
its definition to be known (for details, refer to Troelstra and van Dalen [57]). Inter-
mediate logics are consistent axiomatic extensions of IPC. Let us give a formal
definition.
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Definition 1 (Intermediate logic) An intermediate logic L is given by a set of
formulae containing the theorems of IPC, satisfying:

(i) if � is a substitution and ' 2 L, then �.'/ 2 L;
(ii) if ' !  2 L and ' 2 L, then  2 L;
(iii) ? … L.

We will often write L C ' to mean the least intermediate logic extending L [ ¹'º.
To reason semantically, we use Kripke models. We repeat the definition below

(for details, see, e.g., [57] or Chagrov and Zakharyaschev [8]).

Definition 2 (Kripke model) A Kripke model, on a set of variables X , is a mono-
tone map v W K ! PX , where K is a partially ordered set and PX denotes the set
of subsets of X ordered by inclusion. We define truth at a point inductively in the
usual manner:

k 
> iff >;

k 
? iff ?;

k 
x iff x 2 v.k/;

k 
' ^  iff k 
 ' and k 
  ;

k 
' _  iff k 
 ' or k 
  ;

k 
' !  iff l ± ' or l 
  for all l � k:

We often omit reference to the monotone map and refer to the model by its underlying
partial order for the sake of brevity when little confusion is possible. Given a set
W � K we define

W " WD ¹k 2 K j there is a w 2 W with w � kº:

Such a set is called an upset whenW " D W . We writeW "" forW "�W , where �

denotes set difference. WhenW is a singleton set, we will often omit braces, so ¹kº"

will be written as k". An upset U is said to be principal when there is a u 2 U such
that u" D U . We say that a model is rooted when K itself is principal and denote
the root, the smallest element in K, by �K . A model L is said to be a generated
submodel of K when L D K � U for some upset U � K. The model K is said to
be image-finite when all principal upsets are finite.3

Given a model v W K ! PX and a node k 2 K we write Th.k/ for the theory of
that node, defined as

Th.k/ WD
®
' 2 L.X/

ˇ̌
k 
 '

¯
:

For convenience, we often write W 
 ' to mean that w 
 ' for all w 2 W . We
will also write W 
 � to mean that W 
 ' for all ' 2 � .

Maps of Kripke models are commutative triangles, where the maps involved are
understood to be continuous and open. That is to say, a map between Kripke models
v W K ! PX and u W L ! PY is a monotone function f W K ! L such that
u ı f D v, and for all upsets U � K the set f .U / is an upset. Such a function is
often called a p-morphism or bounded morphism; we will simply call it a map. We
write f .W / to mean the direct image of f under W , that is, ¹f .w/ j w 2 W º.

Given a not necessarily rooted modelK, we can adjoin a new root toK. There is a
choice of valuation to this new root. The operation of adjoining a root and selecting a
suitable valuation will play an important role, so let us define it here. Note that .�/=
;, in the notation of the following definition, is the same as the Smoryński operator
.�/0 of [54].4
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Definition 3 (Extension) Let v W K ! PX be a model, and let Y � X be a set
of variables such that K 
 Y . Write KC for the partial order of K adjoined with a
smallest element denoted �. We define the extension of K with Y , denoted K=Y , to
be the model

v=Y W KC ! PX; k 2 KC 7! if k 2 K, then v.k/, else Y :

A rule is a pair of finite sets of formulae, written �=�. We say that such a rule
is single-conclusion when j�j � 1. To abstract away from all matters relating to
axiomatizations, we use consequence relations, or rather, a generalization of the con-
cept that also allows for nonsingle-conclusion rules. The definition we use below
follows that of [9]. For more information on consequence relations per se we refer
to Wójcicki [58] (see Scott [50] and Shoesmith and Smiley [51] for background on
multiconclusion consequence relations)).

Definition 4 (Multiconclusion consequence relation) Let ' be a formula, and let
� , …, �, ‚ be finite sets of formulae. A multiconclusion consequence relation is a
relation between finite sets of formulae, denoted j�, subject to the following axioms:5

reflexivity: 'j�';
monotonicity: if �j��, then �;…j��;‚;

transitivity: if �j��; ' and ';…j�‚, then �;…j��;‚;
structurality: if �j�…, then �.�/j��.…/ for all substitutions � .

Given an intermediate logic L, we work with the multiconclusion relation j�L defined
by

�j�L� iff
^
� !

_
� 2 L:

We say that a rule �=� is derivable whenever �j�� holds.

Definition 5 (Admissible) A rule �=� is said to be admissible for j�, written
�j��, when for all substitutions � the following holds:

if j��.'/ for all ' 2 � , then j��.�/ for some � 2 �.

Note that j� is a multiconclusion consequence relation such that j� � j�. Given a
set of rules R we write j�

R to mean the least consequence relation extending both
j� and R. We say that R forms a basis of admissibility when j�

R
D j�.

3 The Universal Model

In this section we explicate some machinery convenient in discussing the universal
model. Moreover, we introduce Jankov–de Jongh formulae. The main results of this
section are well established within folklore. Some of the definitions and techniques
are (slightly) novel though. In particular, Definition 8 appears to be absent from the
literature, but it seems to smoothen some arguments, such as Theorem 2.

Bellissima [4] describes free Heyting algebras in terms of definable upsets of par-
ticular Kripke models (cf. Darnière and Junker [13] and Elageili and Truss [18]).
Rybakov [48] considered a similar model, under the name “characterizing model,”
to prove results about admissibility. The central property of his model is that it is
complete for all formulae on a specific set of variables. When considering interme-
diate logics with the finite model property, one can intuitively see that any model
which contains all finite models satisfies this property. We use this to define what it
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means to be a “universal model” in Definition 9. From Theorem 1, it is clear that the
common construction, as given for instance by [7], is a universal model in our sense.

Definition 6 (Cover) Let K be a Kripke frame. We say that W � K covers
k 2 K, denoted W � k, precisely if k" D W " [ ¹kº.

The above definition is equivalent to the one given by Ghilardi [22]. Let us first note
that ; � k precisely if k is maximal. The relation � is reflexive in the sense that
¹kº � k. We also have that .k""/ � k. Not every set W � K need have a node k
such that W � k holds.

A set W covers a node k precisely if k is a tight predecessor of W in the sense
of Iemhoff [27]. When K is the canonical model on a given set of variables, one
can see that W covers k precisely if k is a tight predecessor of

T
W in the sense of

[23]. Jeřábek [33] also has a notion of being a tight predecessor, but this notion is
irreflexive. That is to say,W covers k and k … W precisely if k is a tight predecessor
of W in his sense. Bezhanishvili [7] calls W a total cover of k in precisely the same
situation.

There is good reason to allow this reflexivity in the notion of covering. The fol-
lowing lemma shows that covers are preserved by maps, which would not be the case
were we to impose irreflexivity.

Lemma 1 ([22]) Let K and L be Kripke models, and let f W K ! L be a
monotone map respecting the underlying valuations. The statement (i) entails (ii),
and the converse holds whenever K is conversely well founded.

(i) f is a map of Kripke models.
(ii) For all k 2 K and W � K such that W � k we have f .W / � f .k/.

Proof The implication from (i) to (ii) follows from straightforward computation.
Indeed, if W � k, then f .W / � f .k/ follows from the equation

f .k/" D f .k"/ D f
�
W " [ ¹kº

�
D f .W "/ [

®
f .k/

¯
D f .W /" [

®
f .k/

¯
:

Suppose that (ii) holds. We prove, by well-founded induction, that for all
k 2 K we have f .k/" D f .k"/. Consider k and W WD k"", and assume that
f .w/" D f .w"/ for all w 2 W . It follows that f .W /" D f .W "/. We know that
W � k, and thus f .W / � f .k/ holds by assumption. From here we compute

f .k"/ D f
�
¹kº

�
[ f .W "/ D f

�
¹kº

�
[ f .W /" D f .k/";

proving (i) as desired.

The theory of a node is determined by its valuation and by the nodes it covers, as
illustrated by the following lemma. We will later use this property to pinpoint the
existence of nodes covered by a specific set of nodes.

Lemma 2 Let K be model, let W � K be a set, and let k 2 K be such that
W � k. We now have

k 
 ' !  iff W 
 ' !  and (k ± ' or k 
  ). (1)

Proof By definition we know that k 
 ' !  if and only if l ± ' or l 
  for
all l � k. Now becauseW � k the latter is equivalent to the statement that l ± ' or
l 
  holds for l 2 K satisfying l D k or l 2 W ".
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In the canonical model, order is fully determined by the theory of the nodes. This
can be the case in many more models, in particular, in submodels of the canonical
model. Many consequences can be drawn from this definability of order alone, so let
us give it a name.
Definition 7 (Refined model) A model K is said to be refined when, for all
k; l 2 K such that k — l , there is a ' such that k 
 ' yet l ± '.
Lemma 3 LetK be a refined model on X , and letW � K be a finite set of nodes.
If k 2 K is such that it satisfies the equivalence (1) and W " � k" holds, then
W � k.
Proof We need to show that k" D W " [ ¹kº. The inclusion from right to left
holds by assumption. We proceed by contradiction, so assume the existence of a
node l 2 K with k > l and l … W ". The former, combined with the refinedness of
K, ensures that there is a ' 2 L.X/ such that k ± ' and l 
 '. Through the latter
and refinedness we get  w 2 L.X/ such that w 
  w and l ±  w .

We note that  WD
W

w2W  is such that W 
  , and thus, W 
 ' !  . By
the equivalence of Lemma 2, we know that k 
 ' !  , and so l 
 ' !  follows
by the preservation of truth. But l 
 ', so this proves l 
  . By definition, this
gives a w 2 W such that l 
  w , a contradiction, as desired.

Lemma 4 Let L be a refined model, and let f; g W K ! L be arbitrary maps. It
follows that f D g.
Proof If l1; l2 2 L are such that Th.l1/ D Th.l2/, then l1 D l2. This is immediate
from the refinedness of L. Pick k 2 K, and see that

Th
�
f .k/

�
D Th.k/ D Th

�
g.k/

�
:

Consequently f .k/ D g.k/ for all k 2 K, proving the desired result.

Every image-finite model on a set of variables has a unique map to the canonical
model on the same set of variables. Below, we show this, making use of the existence
criterion given by Lemma 3. We write can.X/ to denote the canonical model on X .
Lemma 5 Let K ! PX be an image-finite model. There is a unique map
ThK.�/ W K ! can.X/.
Proof The map is defined as

ThK.�/ W K ! can.X/; k 2 K 7!
®
' 2 L.X/

ˇ̌
k 
 '

¯
:

When we can show that this is a map, we are done, because uniqueness is immediate
through Lemma 4.

The monotonicity of ThK.�/ is clear by the preservation of truth. Let W � K

be arbitrary, and let k 2 K be such that W � k. By Lemma 1 we need and prove
that ThK.W / � ThK.k/. First note that W � k", and so W is finite as K is
image-finite. Now also observe that ThK.W / and ThK.k/ satisfy the equivalence as
given in Lemma 2. The proof is now immediate through Lemma 3.

The direct image of any image-finite model must be image-finite. Consequently,
the above proves the following theorem. Note that the image-finite part is not a
priori equal to the upper part in the sense of Bezhanishvili [7]. Bezhanishvili [7,
Theorem 3.1.10] shows that, when considering finitely many variables, these two
notions do coincide.
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Theorem 1 Let X be a finite set. The image-finite part of can.X/ is the terminal
object in the category of image-finite models on X .

We introduce an auxiliary notion, which we will show to be a special case of being
refined. This notion is not essentially new. It is, in fact, the disjunction of two notions
well established within the literature on Kripke models.

Consider a surjective map f W K ! L such that there are distinct k1; k2 2 K with
f .k1/ D f .k2/ and f .k/ D k for all k 2 K�¹k1; k2º. In [14], such a map is said to
be an ˛-reduction whenever k2 � k1 or k1 � k2, and it is called a ˇ-reduction when
k1 "" D k2 "". Let us, for convenience, call such pairs of nodes k1; k2 ˛-redexes
and ˇ-redexes, respectively. Odintsov and Rybakov [42] call these redexes twins and
duplicates, respectively. Similar configurations are described by others (see, e.g.,
[4, Lemmas 2.1, 2.0] and Anderson [1, Operations 1, 2]). We forego the distinction
between these settings and call the nodes k1 and k2 analogous in both cases. It is
easy to see that comparable analogous nodes form an ˛-redex, and incomparable
analogous nodes form a ˇ-redex.

Definition 8 (Analogous nodes) Let v W K ! PX be a model, and let a; b 2 K

be nodes. We say that a and b are analogous, written a � b, whenever v.a/ D v.b/

and
a � k if and only if b � k for all k 2 K � ¹a; bº:

A model is said to be concrete when all analogous nodes are equal.

We first make the connection with our motivating example in the following lemma.
We call a map f W K ! L a reduction when there exists a unique doubleton
¹a; bº � K with a � b such that f .k1/ D f .k2/ if and only if k1 D k2 or
¹k1; k2º D ¹a; bº. Consider any model K, and suppose that a; b 2 K are such that
a � b. The smallest equivalence relation R such that a R b holds is a congru-
ence relation with respect to the order on K. That is to say, if a � b, a R a0, and
b R b0, then a0 � b0 holds as well. Consequently, we can define a modelK=R on the
equivalence classes of R, and the quotient function K ! K=R is a reduction.

Lemma 6 ([14]) Let K be a finite model. For every proper map f W K ! L,
there exists a chain of reductions f1; : : : ; fn such that fn � � � f1 D f .

Proof We proceed by induction on the size of the model K. Let f W K ! L be
given, and consider the set

E WD
®
ha; bi 2 K �K

ˇ̌
a ¤ b and f .a/ D f .b/

¯
:

Order E by ha1; b1i � ha2; b2i if and only if a1 � a2 and b1 � b2. Because f
is proper we know E to be nonempty, and as K is finite we can pick a maximal
ha; bi 2 E. We claim that a � b. Indeed, if k 2 K � ¹a; bº is given and a � k,
then f .b/ D f .a/ � f .k/, and so there must be a k0 � b such that f .k/ D f .k0/.
Now k D k0 must hold; otherwise hk0; ki > ha; bi, contradicting the maximality of
ha; bi. This proves that b � k0 D k, as desired. The other direction can be proven
similarly.

Now consider the smallest equivalence relation R such that a R b. Define the
map f1 W K ! K=R to be the quotient map, and let f 0 W K=R ! L be defined on
representatives by f . It follows that f 0 is a well-defined map and f 0f1 D f . Also
note that the size ofK=R is smaller than that ofK. Induction yields maps f2; : : : ; fn

such that fn � � � f2 D f 0. This proves that fn � � � f1 D f , as desired.
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It is important to note that the relation � is reflexive and symmetric, but in general it
is not transitive. We generalize the definition of analogous from the binary setting to
the finitary setting and say that a set W � K is analogous whenever two conditions
are met: (i) if v.w1/ D v.w2/ for all w1; w2 2 W and (ii) if for all k 2 K � W

one has w < k for some w 2 W if w < k for all w 2 W . It is easy to see that
doubleton sets are analogous when their constituents are analogous nodes, though
the converse need not hold. We entertain this digression for a bit longer and define a
generalization of analogous based on the above notion.

Lemma 7 Let v W K ! PX be a model. Define the relations � and v on K as
follows:

a Š b if and only if there is an analogous set W � K with x; y 2 W ,
a v b if and only if there are a0; b0 2 K such that a Š a0 � b0 Š b.

The relation Š is an equivalence relation congruent with �. The relation v is the
least reflexive, transitive relation extending both Š and � such that x v y and y v x

entail x � y.

Proof The reflexivity and symmetry of Š are both evident. To prove transitivity,
assume a Š b Š c. This gives us analogous sets Wab 3 a; b and Wbc 3 b; c. Note
that Wab [Wbc is an analogous set, whence the transitivity follows.

It is clear that v extends � and �. We need to prove reflexivity, transitivity, and
antisymmetry. The former is immediate from the reflexivity of � and �.

To prove transitivity, assume a v b v c. This yields kab; kba; kbc ; kcb 2 K such
that

a Š kab � kba Š b Š kbc � kcb Š c:

Let W be an analogous set such that kba; b; kbc 2 W . If kcb 2 W , then kba Š kcb ,
whence the desired result is immediate. Assume the contrary. Then we know from
kbc � kcb that kba � kcb . But now a Š kab � kcb Š c, as desired.

We now turn to antisymmetry, so assume a � b and b � a. This yields
aab; bab; bba; aba 2 K such that

a Š aab � bab Š b and b Š bba � aba Š a:

Consider analogous sets Wa and Wb such that a; aab; aba 2 Wa and b; bab; bba 2

Wb . If these sets intersect, then we are done, so assume the contrary. It follows that
aba � bab because aab � bab and aba; aba 2 Wa. Similarly, bab � aba because
bba � aba and bba; bab 2 W . We now have, through the antisymmetry of �, that
aba D bba, quod non. We leave minimality to the reader; the proof technique is
similar to the above.

Let v W K ! PX be a model, and let Š and v be the relations of Lemma 7.
Define CK to be the set of Š-equivalence classes, ordered by v on representatives,
and define the model Cv W CK ! PX on representatives. The canonical quotient
function p W K ! CK can easily be seen to be a map of Kripke models. Moreover,
to each map f W K ! L such that f .a/ D f .b/ when a Š b there is a unique map
g W CK ! L such that f D gp. When we apply Lemma 6 to the map p W K ! CK
it becomes apparent that Š is, intuitively, like a transitive closure of �.

We do not explore this generalized notion any further and return to the binary case.
Let us first tie the concept to that of coverings. Note again that the “nonstrictness” of
the covering relation is quite essential.
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Lemma 8 Let v W K ! PX be a model. The following are equivalent, for all
k1; k2 2 K:

(i) the nodes k1 and k2 are analogous;
(ii) there is a W � K such that W � k1; k2 and v.k1/ D v.k2/.

Proof Assume that (ii) holds, and let k1; k2 2 K and W � K be such that
W � k1; k2 and v.k1/ D v.k2/. If k 2 K � ¹k1; k2º is such that k1 � k, then
k 2 W becauseW � k1. AsW � k2, this proves k2 � k. We can prove the converse
through a similar argument, showing (i) to hold.

Conversely, suppose that (i) holds. We distinguish two cases: either k1 and k2

are comparable or they are not. In the latter case, we define Wi WD ki " � ¹k1; k2º.
Observe that W1 D W2 because k1 � k2. It is easy to see that Wi � ki through the
incomparability of k1 and k2, proving the desired result.

In the former case, we assume, for convenience, that k1 � k2. Now define
W WD k2 ", and see that W � k2 and W � k1. The first statement is trivial; the
second holds because if k 2 K is such that k1 < k, then k2 < k or k1 D k. In both
cases we derived (ii).

The following can be shown by a straightforward computation, but is also an imme-
diate corollary of Lemmas 1 and 8.

Corollary 1 Let f W K ! L be a morphism. If a � b, then f .a/ � f .b/ for all
a; b 2 K. In particular, if f is bijective and L is concrete, then K is concrete too.

Corollary 3 follows immediately from Corollary 2, and the former is a direct conse-
quence of Lemmas 8 and 2. This shows, as promised, that concreteness is a special
case of refinedness. In particular, this proves that the universal model, as we con-
structed it, is concrete. Because universal models are unique up to isomorphism, and
analogousness is preserved through maps, it also follows that any universal model is
concrete.

Corollary 2 Let K be a model. For all a; b 2 K we have Th.a/ D Th.b/ when-
ever a � b.

Corollary 3 Any refined model is concrete.

Note that the universal model (on a fixed set of variables), constructed for instance in
de Jongh and Yang [15] or Bezhanishvili [7], is the terminal object in the category of
image-finite models (again, on this same fixed set of variables). We use this property
as the very definition of the universal model for arbitrary intermediate logics. In
Theorem 1 we proved that such a model actually exists for IPC. Corollary 4 shows
that universal models always exist.

Do note that here there is a difference between the established definition of a char-
acterizing model, in the sense of Rybakov, and a universal model, in the sense defined
below. A characterizing model is complete, whereas a universal model need only be
complete when the logic at hand has the finite model property. This interpretation
of what it means to be a universal model is not standard; for instance, Renardel de
Lavalette, Hendriks, and de Jongh [44, Section 4] require a universal model to be
large enough to distinguish between nonequivalent formulae, which entails complete-
ness in particular.

In the case of IPC, a characterizing model needs to include the universal model,
which follows immediately from Theorem 2 below.
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Definition 9 Let L be an intermediate logic, and let X be a set of variables.
The universal model on X , written UL.X/, is a terminal object in the category of
imagine-finite models on X satisfying L.

Corollary 4 Let L be an intermediate logic. Now

UL.X/ WD
®
k 2 UIPC.X/

ˇ̌
k 
 ' for all ' 2 L.'/ with j�L'

¯
is the universal model for L over X . Moreover, if L has the finite model property,
then the model UL.X/ is complete with respect to L on X . That is to say, for all
' 2 L.X/ we have

j�L' iff UL.X/ 
 '.

Proof Let v W K ! PX be an image-finite model, and assume that K 
 ' for
all ' 2 L.X/ with j�L'. There is a unique map i W K ! UIPC.X/, and this map
preserves the theory of K. This shows that i.K/ � UL.X/. Moreover, any map
f W K ! UL.X/ is such that f .k/ D i.k/. Consequently, UL.X/ truly is universal
for L on X .

To show completeness, assume that 6 j�L' for some ' 2 L.X/. By the finite
model property, we know of a finite rooted model K of L on X such that K ± '.
Universality ensures a map K ! UL.X/, and so UL.X/ ± ', as desired.

Let us now define the Jankov–de Jongh formulae. These formulae allow us to capture
a principal upset in an image-finite concrete model as the upset satisfying a given
formula. This definition is, in essence, the same as those given by [7] and [13]. We
include it here for the sake of completeness.

Definition 10 (Characteristic formulae) Let v W K ! PX be a model, and let
k 2 K be such that the upset it generates is finite. Make the following auxiliary
definitions:

propsk WD ¹p 2 X j k 
 pº;

newsk WD ¹p 2 X j k"" 
 p and k ± pº:

Let W denote the set of immediate successors of k. Now define maps up .�/;
nd .�/ W k" ! L.X/ by well-founded recursion as follows:

up k WD

^
propsk ^

��_
newsk _

_
w2W

ndw
�

!

_
w2W

upw
�
;

nd k WD up k !

_
w2W

upw:

In the above definition, it is understood that an empty disjunction stands for falsity
(?), and an empty conjunction stands for truth (>). Also remark that W is the
minimal set such that W � k. In particular, if W D ;, that is to say, k is a maximal
node, then the above specializes to

up k D

^
p2X

.if k 
 p, then p, else p ! ?/ and nd k D up k ! ?:

Theorem 2 (Characteristic formulae) Let v W K ! PX be a concrete model, and
let k 2 K be such that k" is finite. The following hold for all l 2 K:

l 
 up k iff k � l;

l ± nd k iff l � k:
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Proof We proceed by well-founded induction along k. For convenience, let W be
the set of immediate successors of k.

By the induction hypothesis, one can see the upper statement to be equivalent to
the following:

k � l iff v.k/ � v.l/ and, for all m � l ;
(2)

(v.k/ D v.m/ and W � m") or m 2 W ":

The implication from left to right is straightforward. Let l � k be arbitrary.
Monotonicity guarantees v.k/ � v.l/. Now consider any m � l , and note that as
l � k and W � k we know that either k D m or m 2 W ". In both cases the
implication holds for trivial reasons.

To prove the other direction, assume that k — l while l 
 up k. By upward
persistency and the finiteness of l ", we can, without loss of generality, assume l to
be maximal with respect to k — l . We distinguish two cases, either v.k/ D v.l/ and
W � l ", or l 2 W ". The latter case is clearly absurd, because then l 2 W " � k"

would follow, contradicting k — l . In the former case, we know that W � l through
the maximality of l . From Lemma 8 we learn that l � k and so k D l , quod non.

To finish our argument, we remark that l ± nd k is equivalent to the existence of
a node m � l such that m 
 up k and m ± upw for all w 2 W . By the above, we
know this to hold precisely if there is an m � l such that k � m and w — m for all
w 2 W . Recall that W � k, so if k � m and w … W ", then we know that k D m.
This shows that l ± nd k holds precisely if l � k.

Observe that, by the above, we know that to each finite W � K with K concrete
we have k 2 W " if and only if k 


W
w2W upw. We will denote this disjunction

by upW from now on. We close this section with the following corollary, relating
concreteness and refinedness. The introduction of concreteness was motivated as
an ostensible refinement of refinedness. In the setting of image-finite models, the
two notions in fact coincide. The implication from left to right holds in general, per
Corollary 3, and the converse holds through Theorem 2.

Corollary 5 Every image-finite model is refined if and only if it is concrete.

4 Existence of Covers

Recall that Lemma 5 proved that to each image-finite model there is a unique map
into the canonical model. By Lemma 1, such a map must preserve covers. This
suggests a close relation between the nodes covered by the theory of a model (in
the universal model) and the possible extensions of this model. Observe that all
statements in Corollary 6 still hold when replacing can.X/ by UIPC.X/.

Corollary 6 Let v W K ! PX be a model, and let W � can.X/ be a set of
nodes such that Th.W / D Th.K/. For all Y � X with K 
 Y we have that
W � Th.K=Y /. Moreover, if k 2 can.X/ is such that W � k, then Th.K=Y / D k

for Y D Th.k/ \X .

Proof The first statement is immediate from Lemma 3. Let k 2 can.X/ be such
that W � k. From the first statement we gather that W � Th.K=Y /. It is quite clear
that Th.K=Y / and k make the same variables true. So Lemma 8 shows these nodes
to be analogous. But, as the model is concrete through Corollary 3, we know these
nodes to be equal, whence they have equal theories.
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Iemhoff [29], [30] showed that there is a correspondence between the admissibility
of certain rules and the existence of certain extensions. Per the previous lemma,
this amounts to finding out which sets of the canonical model have nodes that they
cover. When restricting to logics with the finite model property, it suffices to restrict
attention to the universal model. Instead of fixating on the universal model, we often
consider an arbitrary image-finite concrete model. This gives us slightly greater
flexibility, because this allows us to also consider submodels of the universal model
in particular.

Let us first start with some notions approximating the existence of covers. In
Lemma 10, these properties will all be related to one another. The following defini-
tion is a generalization of the set� of [27, page 288], as already investigated in [23].
Here we present some more general arguments, although the proofs have a similar
flavor.

Definition 11 (Vacuous implications) LetK be a model over X . The set of vacu-
ous implications is defined as

I.K/ WD
®
' !  2 L.X/

ˇ̌
K 
 ' !  and K ± '

¯
:

Definition 12 Let K be a model, let W � K be a subset, and let k 2 K be a
node. We say that W is comparable above k when for all l � k one has l " � W "

or W " � l ".

Lemma 9 Let K be a model, let W � K be a subset, and let k 2 K be a node. If
W is comparable above k and k is maximal with respect toW " � k", thenW � k.

Proof We need to prove that k" D W " [ ¹kº. The inclusion from right to left
holds by assumption. To prove the opposite, let l � k be given. If l D k, then we
are done, so assume k < l . This ensures that W " ª l ". But we also know that
W " � l " or l " � W ", so l " � W " must follow. This proves that l 2 W ", as
desired.

The following lemma illustrates the partial internalizability of being comparable
above. That is to say, W is comparable above some node in K precisely when the
subtheory I.W / of Th.W / holds on K. We thus capture a property of the model
in propositional language. We speak of partial internalization because the theory
need not be finite in general, so the property is not fully expressed in one proposi-
tional statement. This can, however, be done when the model K is assumed to be
image-finite.

Lemma 10 LetK be a refined model, letW � K be finite, and let k 2 K be such
that W " � k". The items (i) and (ii) are equivalent. If K is image-finite, then all
the following are equivalent.

(i) k 
 I.W /.
(ii) W is comparable above k.
(iii) k 


W
w2W ndw ! upW .

Proof Assume that (i) holds. We proceed by contradiction, so we assume there is
some l � k such that l " ª W " and W " ª l ". The former ensures that for all
w 2 W we know that w — l , and the latter proves that l — w for some w 2 W .
By refinedness, we thus know of 'w 2 L.X/ such that w 
 'w yet l ± 'w per
w 2 W . Again through refinedness, we know of a  2 L.X/ such that l 
  and
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w ±  for some w 2 W . Note that ' WD
W

w2W 'w is a proper formula because
W is finite. It follows that W 
 ' and k ± '. Moreover, W ±  and k 
  . As
a consequence ' !  2 I.W /, and so W 
 ' !  . But now W 
  follows, a
clear contradiction. This proves (ii).

To prove the other direction, assume that (ii) holds. Suppose that k ± ' !  

for some ' !  2 I.W /. This gives us an l � k such that l 
 ' yet l ±  . We
distinguish two cases: either l " � W " orW " � l ". In both cases we immediately
arrive at a contradiction through upward persistency, proving (i).

Now suppose that K is image-finite. Because K is refined, we know it to be
concrete by Corollary 3. We prove that (iii) is equivalent to (ii). By definition, (iii)
holds if and only if for all l � k one has l 
 upW whenever l 


W
w2W ndW . This

is equivalent to the statement that, for all l � k, we have l ± ndw for all w 2 W

or l 
 upW . Through Theorem 2, we see that the former disjunct is equivalent to
W " � l ", whereas the latter is equivalent to l " � W ". This is precisely (ii), as
desired.

Corollary 7 Let v W K ! PX be a concrete, image-finite model, and let W � K

be finite. The following are equivalent:
(i) there exists a node k 2 K such that W � k;
(ii) there exists a node k 2 K with k 
 I.W / and W " � k";
(iii) K ± ..

W
w2W ndw/ ! upW / !

W
w2W ndw;

(iv) there exists a node k 2 K such that W " � k" and W is comparable
above k.

Proof Suppose that (i) holds. Note that if W � k, then k 
 I.W / by Lemma 2.
From here (ii) is clear.

See that each of (ii), (iii), and (iv) ensure W " � k", per Theorem 2 in the case
of (iii). Their equivalence thus follows immediately from Lemma 10.

Finally, suppose that (iv) holds. Because K is image-finite, we know k" to be
finite. As such we can pick an l 2 k" maximal with respect to W " � l ". Through
Lemma 9 we know that W � l , proving (i) as desired.

Theorem 3 Let v W K ! PX be a concrete, image-finite model, and let n 2 N be
natural. The following are equivalent:

(i) for all k 2 K and all W � k" with jW j � n there exists a node l 2 K such
that W � l;

(ii) for all � � L.X/ with j�j � n and ' 2 L.X/ we have

K 

�_

� ! '
�

!

_
� implies K 


_
�2�

�_
� ! '

�
! �;

(iii) for all k 2 K and all W � k" with jW j � n we have that

K 

� _

w2W

ndw ! upW
�

!

_
w2W

ndw implies

K 

_

a2W

� _
w2W

ndw ! upW
�

! nd a:

Proof Suppose that (i) holds, and let � � L.X/ and ' 2 L.X/ be such that
j�j � n and K 
 .

W
� ! '/ !

W
�. We proceed by contraposition, so assume
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that K ±
W

�2�.
W
� ! '/ ! �. This gives us some k 2 K such that

k ±
�_

� ! '
�

! �;

for all � 2 �. From this we obtain, per � 2 �, a node w� � k such that
w� 


W
� ! ' and w� ± �. Define W WD ¹w� j � 2 �º, and observe

that jW j � n and W " � k". By assumption, this yields an l 2 K such that W � k.
Upward persistency ensures that l ±

W
�, so from Lemma 2 it readily follows that

l 

W
� ! '. This yields l ± .

W
� ! '/ !

W
�, proving that (ii) holds.

It is quite clear that (ii) entails (iii). Now assume that (iii) holds. We distinguish
two cases: either the assumption is false or the conclusion holds. In the former case,
the desired result is immediate from Corollary 7. Suppose we are in the latter case,
that is, the conclusion holds. In particular, this means that the conclusion holds in k.
As a consequence, we can pick a node a 2 W such that

k 

� _

w2W

ndw ! upW
�

! nd a:

Fix this a, and see that the same formula holds at a by the preservation of truth and
k � a. Because a 2 W ", we, through Theorem 2, know that a 
 upW . This yields
a 


W
w2W ndw ! upW , and so a 
 nd a must follow. Yet we can now derive

a — a through Theorem 2, which is blatantly false. This proves (i), as desired.

5 Admissible Rules

Iemhoff [29] investigated the admissibility of the Visser rules in intermediate logics.
In particular, she semantically characterized when the following rules V�

n , known
as the restricted Visser rules, are admissible for all n 2 N by means of the weak
extension property: Vn

iD1.pi ! qi / ! pnC1 _ pnC2 V�
nWnC2

j D1

Vn
iD1.pi ! qi / ! pj

:

Unfortunately, this result does not nicely stratify over the index n. The rule Dn

as given below, however, does stratify satisfactorily, hence our interest in this rule
scheme. Intuitively, the mismatch between Dn and the rules V�

n can be felt for
instance in Jeřábek [34, Lemma 3.2]. It should be noted that, for logics with the
finite model property, we know all restricted Visser rules to be admissible precisely
when all rules Dn are admissible, due to Corollary 8 and the characterization of [29,
Theorem 4.7]. We remark that the rule rn of Skura [52] can, informally, be seen as a
contrapositive formulation of the rule Dn:

.
Wn

iD1 pi ! q/ !
Wn

j D1 pj
Dn.Wn

j D1.
Wn

iD1 pi ! q/ ! pj

In Corollary 8 below, we show that the admissibility of Dn has semantic counterparts,
making heavy use of the theory developed in the previous section. The property (i) of
that corollary is, in essence, a stratification of the weak extension property, restricted
to the finite models of an intermediate logic.

Corollary 8 Let L be an intermediate logic with the finite model property. The
following are equivalent:
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(i) for every finite rooted K 
 L and every W � K with jW j � n there is an
extension of W forcing L;

(ii) for allX , all k 2 UL.X/, andW � k" with jW j � n there is a node covered
by W ;

(iii) L admits Dn.

Proof The equivalence between (i) and (ii) is immediate through Corollary 6. By
Corollary 4 and Theorem 3, it is clear that (iii) and (ii) are equivalent too.

An intermediate logic L is said to be a subframe logic when for every model
v W K ! PX of L and every subset W � K we have that v � W W W ! PX is a
model of L, too. For details on subframe logics in general, we refer to Bezhanishvili
and Ghilardi [6], Yang [59], and Zakharyaschev [60]. Let us note again that the
logics BDn, as described in Section 6, are known examples of subframe logics.

Theorem 4 Each subframe logic admits the rules Dn for all n 2 N.

Proof By Zakharyaschev [61, Theorem 4.1], we know L to have the finite model
property. We proceed via Corollary 8, so let K 
 L be a finite rooted model, and let
W � K be arbitrary. See that K � .W [ ¹�Kº/ is an extension of W . But as L is a
subframe logic and this is a subframe of K, we know this to be a model of L. This
proves the desired result.

The above can intuitively be understood as saying that, in subframe logics, all finite
models can be built in an inductive manner by means of extensions. From here, it
seems plausible enough that if every finite model is contained within a rooted model,
then all models can be built. More formally, [29] showed that the weak extension
property and the disjunction property together entail the extension property. From
this it is clear that IPC is the sole subframe logic with the disjunction property. In
order to fully characterize admissibility for subframe logics, it thus makes sense to
look for generalizations of the disjunction property.

The following lemma is a first attempt at internalizing the existence of nodes
below certain sets of nodes. At first reading one can fix n D 2, think of K as any
universal model, and takeL D K. The lemma then gives a semantic characterization
of the disjunction property, much like Maksimova [39, Theorem 1] and Gabbay and
de Jongh [19, Lemma 14]. Corollary 10 investigates what happens when we let L be
the set of maximal nodes in K.

Lemma 11 Let v W K ! PX be an image-finite, concrete model, let L � K be
an arbitrary subset, and let n be natural. The following are equivalent:

(i) for all � � L.X/ with j�j � n we have

K 

_
� implies L 
 � for some � 2 �;

(ii) for all W � L with jW j � n we have a k 2 K such that W " � k".

Proof Assume that (i) holds, and take W � L with jW j � n. Define �w WD ndw
and � WD ¹�w j w 2 W º, and note that j�j � n. See that w ± ndw through
Theorem 2, and so L ± � for all � 2 �. This proves that K ±

W
�. As a

consequence, we know of a k 2 K such that k ± � for all � 2 �. By Theorem 2,
this proves that k � w for all w 2 W , and so (ii) follows.

Suppose that (ii) holds. Let � � L.X/ with j�j � n be given. If L ± � for all
� 2 �, then this yields w� 2 L such that w� ± � for each � 2 �. Consequently,
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there is a k 2 K such that W " � k", where W is defined as ¹w� j � 2 �º. It is
easy to see that k ±

W
�, and so (i) follows.

Lemma 11 leads to several interesting results, in particular, after applying complete-
ness with respect to universal models. Observe that Corollary 9 below is simply a
dual formulation of [39, Theorem 1] restricted to intermediate logics with the finite
model property.

Corollary 9 Any intermediate logic with the finite model property has the dis-
junction property precisely if every pair of finite rooted models is contained in a
finite rooted model.

Corollary 10 Let v W K ! PX be an image-finite, concrete model. The following
are equivalent for all n 2 N:

(i) for all � � L.X/ with j�j � n we have that K 

W
� entails K 
 ::�

for some � 2 �;
(ii) for all W � K consisting of maximal nodes with jW j � n there is a k 2 K

such that W " � k".

Proof This is immediate from Lemma 11 and the observation that a formula '
holds at all maximal nodes if and only if ::' holds in the entire model.

Corollary 11 (nth doubly negated disjunction property) Let L be an intermediate
logic with the finite model property, and let n 2 N be a natural number. The following
are equivalent:

(i) for all sets of formulae � with j�j � n we have that j�
W
� implies j�::�

for some � 2 �;
(ii) given one-point models K1; : : : ; Kn there exists a rooted finite model K of L

which contains K1; : : : ; Kn as generated submodels.

The 0th doubly negated disjunction property states that 6 j�?. Written as a multi-
conclusion rule this amounts to ?=;, which is admissible in every intermediate logic.
Let us say that a modelK satisfies a rule �=� whenever it holds that ifK 
 � , then
K 
 � for some � 2 � . It is clear that for the empty model K we have K 
 ?, so
the empty model does not satisfy the rule ?=;. As a consequence, any model that
satisfies the multiconclusion rules of an intermediate logic must be nonempty.

6 Logics of Bounded Depth

Equipped with the above developed machinery, we are ready to tackle the problem
of admissibility for BD2. Let us start with a formal definition, as adapted from [8].

Definition 13 (Logic of bounded depth) Define, by induction, the formula
bdn 2 L.p1; : : : ; pn/ by

bd0 WD ?;

bdnC1 WD pnC1 _ .pnC1 ! bdn/:

For any n � 1 we define the intermediate logic of bounded depth n, denoted BDn, as
the least intermediate logic containing the axiom bdn.

The logics BDn are the intermediate logics complete with respect to finite Kripke
models of height at most n, as for instance proven by [37, Assertion 4.1]. Note that
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BD1 is simply equal to CPC. We also make use of the logic Tn (see [8]), which is
complete with respect to finite Kripke trees that branch at most n times.6

The logic TnC1 is also known as the nth Gabbay–de Jongh logic, as described by
[19]. For convenience we write T! for the logic IPC, and we write n � ! to mean
n 2 N or n D !. The following lemma characterizes the absence of covers in the
universal model of Tn. The proof is a minor adaptation of the original proof of [19,
Lemmas 17, 19]. Note that the implication from (ii) to (i) is similar to the proof of
[8, Proposition 2.41], but the setting is slightly different.

Lemma 12 Let K be a rooted, concrete, image-finite model. The following are
equivalent:

(i) for all '0; : : : ; 'n, the model K satisfies
n̂

iD0

��
'i !

_
j ¤i

'j

�
!

_
j ¤i

'j

�
!

n_
iD0

'i I

(ii) for each finite antichain W � K there is a k 2 K such that W � k only if
jW j � n.

Proof Assume that (i) holds, and suppose there is some finite W � K such that
jW j > n and W � k. Pick some U which partitions W into nC 1 disjoint sets. We
know that k … k"", and so k ± up k"" through Theorem 2. To each U 2 U we
assign 'U WD upU , and we claim that the following holds. Assuming this claim, we
immediately obtain a contradiction through (i):

k 

�
upU !

_
U ¤V 2 U

upV
�

!

_
U ¤V 2 U

upV:

We proceed via Lemma 2, which amounts to proving that the above implication
holds on W and that if k forces the antecedent, then it forces the succedent. To see
the former, assume that l 2 W " is given. When l 
 upU we are done, so assume
the contrary. This ensures that l … U " through Theorem 2. Pick some V 2 U such
that l 2 U ", which we know to exist, as W D

S
U and l 2 W ". It follows that

both V ¤ U and l 
 upV hold, so we are done.
We finish the argument by proving that the antecedent does not hold at W . Pick

anyw 2 U , and suppose thatw 2 V " for some V 2 U�¹U º. This would give some
v 2 V with v � w, violating the assumption that W is an antichain. Consequently,
we know by Theorem 2 that w 
 upU , yet w ±

W
U ¤V 2U upV . We thus know

(ii) has to hold.
Now suppose that (ii) holds, whereas (i) does not. The latter yields a k 2 K such

that

k 

n̂

iD0

��
'i !

_
j ¤i

'j

�
!

_
j ¤i

'j

�
and k ±

n_
iD0

'i ,

yet the implication does hold on k"". We know that k ± 'i for all i D 0; : : : ; n, so
k ± 'i !

W
j ¤i 'j follows. This entails the existence ofwi � k such thatwi 
 'i

but wi ±
W

j ¤i 'j . One can readily see that W WD ¹w0; : : : ; wnº is an antichain
and k … W . We have that W 6� k by assumption, so there must be some l > k and
I � ¹0; : : : ; nº with jI j � 2 and l < wi for all i 2 I . By the choice of k we know
that l 
 'i for some i . The preservation of truth ensures that wj 
 'i for all j 2 I .
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But there is some j 2 I with j ¤ i , contradicting wj ±
W

i¤j 'i . This proves that
(ii) implies (i).

We include the following lemma for the sake of completeness, although it is a well-
established fact.

Lemma 13 Let v W K ! PX be a refined model of BDn. It follows that any chain
W � K satisfies jW j � n.

Proof Suppose we have wn < wn�1 < � � � < w0 2 W . Through refinedness, we
know of 'i 2 L.X/ such that wi 
 'i but wiC1 ± 'i per 0 � i < n. Define a
substitution

� W L.p1; : : : ; pn/ ! L.X/; pi 7! 'i�1:

We prove, by induction alongm, that wm ± �.bdm/. The base case is clear because
w0 ± ?. Now suppose wm ± �.bdm/ and
wmC1 
 �.bdmC1/ D �

�
pmC1 _ .pmC1 ! bdm/

�
D 'm _

�
'm ! �.bdm/

�
:

As a consequence, at least one of wmC1 
 'm and wmC1 
 'm ! �.bdm/ must
hold. The former case contradicts the choice of 'm. In the latter case, because
wm 
 'm, we know wm 
 �.bdm/, which is false by induction. This finishes the
proof.

Corollary 12 For all k 2 UBD2CTn
.X/ we have that k"" is a set of maximal

nodes of size at most n.

Proof Write W WD k"", and note that W � k. Maximality is immediate through
Lemma 13. We claim that W is an antichain. Indeed, if a; b 2 W are such that
a � b, then k < a � b, so by Lemma 13 it follows that a D b. By Lemma 12, we
now know that jW j � n, proving the desired result.

The multiconclusion rule below is a combination of the nth doubly negated disjunc-
tion property, per Corollary 11(i), and the rule Dn. We spend a few words explaining
why these rules are admissible. Note that the rule D::

n is similar to the rule yn of
[53, Theorem 4.1], with the proviso that the rule below is multiconclusion whereas
the rule yn ought to correspond to a single-conclusion rule:

.
Wn

iD1 �i ! '/ !
Wn

j D1 �j
D::

n .
¹::..

Wn
iD1 �i ! '/ ! �j / j j D 1; : : : ; nº

Lemma 14 The rule D::
n is admissible for L WD BD2 C Tn for all n � !.

Proof Consider the rules
n_

iD1

xi

ı
¹::xi j 1 � i � nº;� n_

iD1

xi ! y
�

!

n_
j D1

xj

. n_
j D1

� n_
iD1

xi ! y
�

! xj :

If both are admissible, then their composition is as well, because j� is closed under
transitivity. By Lemmas 12 and 13, we know that any set of nmany one-point models
has an extension satisfying L. Corollary 11 thus proves that the first rule is admis-
sible. Via Corollary 8 and, essentially, the argument of Theorem 4, the second rule
can be seen to be admissible.
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Lemma 15 The rule D::
n is not derivable in L WD BD2 C Tn for all 2 � n � !.

Proof Let X be any set of cardinality n. We need to prove that the rule D::
n is

not derivable in L. Recall that a rule �=� is derivable whenever the implicationV
� !

W
� holds in the logic, so we will construct a rooted model on which the

conjunction of the assumptions of the rule is confirmed, yet the disjunction of the
conclusions is falsified. In this particular case there is but one assumption, and there
are n conclusions.

Pick a maximal wx 2 UL.X/ per x 2 X such that wy 
 z if and only if y D z.
Write W WD ¹wx j x 2 Xº. There exists a node k 2 UL.X/ with W � k, and note
that k ± x for all x 2 X . One can see that

k 

� _

x2X

::x !

_
X

�
!

_
x2X

::x;

because the conclusion holds at W , and the assumption of the assumption does not
hold at k. Consider the following, for any y 2 x:

::

� _
x2X

::x !

_
X

�
! ::y:

If this formula were to hold at k, then it would also hold at W � ¹wyº. As this set is
nonempty, this cannot be. This proves that k" is the desired countermodel.

The remainder of this paper is devoted to showing that the rule D::
n is enough to

derive all admissible rules of BD2 C Tn for all n � !. Goudsmit and Iemhoff [23]
proved a similar result for Tn; the approach taken there works in this setting as well.
We proceed in a more general fashion than strictly necessary, in the hope that greater
generality leads to more intrinsic arguments. In the following we fix an interme-
diate logic L and the corresponding provability and (multiconclusion) admissibility
relation by j� and j�, respectively.

We first introduce the concept of an admissible approximation.7 The definition
captures the properties of a “projective approximation” in the sense of [21] that we
use to obtain a basis of admissibility, as shown in Lemma 17.

Definition 14 (Admissible approximation) An admissible approximation of a for-
mula ' 2 L.X/ is a formula  2 L.X/ such that the following holds for all Y � X

and finite � � L.Y /:
'j�� if and only if  j�� for some � 2 �.

Such an approximation is anchored by a set of rules R if 'j�
R .

The following lemma shows that admissible approximations are unique up to prov-
able equivalence. In the future we will write A' for an admissible approximation of
', given that it exists. This makes sense when its use only depends on the approxi-
mation up to provable equivalence.

Lemma 16 For all ' 2 L.'/ and all  1;  2 that admissibly approximate ', we
have  1j� 2.

Proof We know that 'j� 2 from  2j� 2, because  2 admissibly approximates
'. For the same reason we derive  1j� 2, proving the desired result.

Lemma 17 Let R � j� be a set of rules. If each formula has an admissible
approximation anchored by R, then j�

R
D j�.
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Proof The inclusion from left to right holds by assumption. To prove the other
direction, consider '; 2 L.X/, and assume 'j� . We know that A' exists,
and A'j� . Note that 'j�

RA'j� , whence the desired result follows from the
transitivity of j�

R and j� � j�
R.

Definition 15 A formula ' is said to be closed under a set of rules R if 'j�
R�

implies that 'j�� for some � 2 �.

To obtain an admissible approximation, we first consider an ostensibly stronger
notion, namely, that of projectivity. It is easy to prove that every projective formula
is closed under all admissible rules (see Iemhoff and Metcalfe [31, Lemma 6]).

Definition 16 (Projective) Let L be an intermediate logic, and let ' 2 L.X/

be a formula. We say that ' is L-projective whenever there is a substitution
� W L.X/ ! L.X/ such that j�L�.'/ and 'j�L�. / �  for all  2 L.X/.
The substitution � is said to be the projective unifier of '.

The following theorem is a straightforward generalization of [21, Theorem 5]. The
equivalence between the first two items follows from the same argument as is given
there. Equivalence between the latter two items is a direct consequence of Corol-
lary 6. With the machinery developed so far, we can readily characterize those for-
mulas that satisfy (iii), thus describing the L-projective formulae.

Theorem 5 Let L be an intermediate logic with the finite model property, and let
' 2 L.X/ be a formula. The following are equivalent:

(i) ' is L-projective;
(ii) for all finite models v W K ! PX with K 
 L and K � .�K ""/ 
 ' there is

an extension of K � .�K ""/ that forces ';
(iii) for all finite antichains W � UL.X/ with an l 2 UL.X/ such that W � l and

W 
 ', there is a k 2 UL.X/ such that k 
 '.

From now on, fix 2 � n � !, and let the intermediate logic at hand be
L WD BD2 C Tn. We will construct an admissible approximation anchored by
D::

n to each formula '. Let us first, in very broad brushstrokes, illustrate how we
are about to proceed. If 'j��, then A'j�� has to hold by its very definition, so
in particular, if 'j�D::

n
�, then A'j�� must hold. In Lemma 18, we show that a

formula which is closed under D::
n in a suitable sense (see Lemma 18(ii)) is in fact

projective. Using this observation, we obtain admissible approximations through
iteratively closing formulae under D::

n in Lemma 20, keeping in mind that this
terminates, as there are but finitely many formulae modulo L-equivalence on any
finite set of variables.

Lemma 18 The following are equivalent for each ' � L.X/:
(i) ' is L-projective;
(ii) for all � � L.X/ and � 2 L.�/ with j�j � n we have

'j�

�_
� ! '

�
!

_
� implies

'j� ::

��_
� ! '

�
! �

�
for some � 2 �;

(iii) for all sets of maximal nodes W � UL.X/ with W 
 ' and 1 ¤ jW j � n

we have a k 2 UL.X/ such that W � k.



346 Jeroen P. Goudsmit

Proof The implication from (i) to (ii) is immediate. Indeed, every projective
formula is closed under all admissible rules. The rules D::

n are admissible by
Lemma 14, so (ii) follows.

Suppose that (ii) holds, and let W � UL.X/ be such that W 
 ' and
1 ¤ jW j � n. By Corollary 8 we are done when we can find some l 2 UL.X/ such
that W � l ". This we obtain immediately through Corollary 10, proving (iii).8

Suppose that (iii) holds. LetW � UL.X/ be such thatW � l for some l 2 UL.X/

and W 
 '. By Theorem 5 we know that it suffices to find a k 2 UL.X/ such that
W � k and k 
 '. Because W � l "", we know that W is an antichain of maximal
elements and jW j � n. If jW j D 1, then the desired result is immediate, because W
covers itself. All requirements of (iii) are met, whence (i) follows.

We can apply the above theorem to prove that the intermediate logics BD2 CTn have
different admissible rules. Note that the corollary does not apply to BD2 C Tn for
n D 0; 1. Indeed, if n D 0, then this is CPC, and if n D 1, then it equals the greatest
nonclassical intermediate logic, known as Smetanich’s logic Sm. In both of these
logics, all admissible rules are derivable, as proven by [29, Theorem 5.3].

Corollary 13 The rule D::
nC1 is not admissible in BD2 C Tn for all 2 � n � !.

Proof Suppose the contrary. Let X be a set of cardinality nC 1. There exists a set
of maximal nodes W � UBD2CTn

.X/ with jW j D n C 1. Instantiating Lemma 18
to ' D > now proves that there is a k 2 UBD2CTn

.X/ such that W � k. But this
contradicts Corollary 12.

Lemma 19 If W � UIPC.X/ is a set of maximal nodes of size at least 2 and
l 2 W , then nd l and the formula below are provably equivalent:

::

�� _
w2W

ndw ! upW
�

! nd l
�
:

Proof The implication from left to right is clear. The other implication we prove
semantically through Corollary 4. Now assume a node k forces the above implica-
tion, but k ± nd l . This proves that k � l by Theorem 2. Note that l 
 upW
by Theorem 2 and l 2 W . By upward persistency and the fact that l 
 ' if and
only if l 
 ::', we now obtain l 
 nd l . Yet now l — l by Theorem 2, a clear
contradiction.

Take X to be some fixed and finite set of variables. For convenience, we will write
Uuniv and Muniv for the set of upsets and the set of maximal nodes in UL.X/, respec-
tively. It follows immediately from Lemma 12 that UL.X/ is finite, and so there are
but finitely many upsets.

Fix some U 2 Uuniv andW 2 Muniv such thatW � U . Recall from Corollary 7
that there is no cover of W within U precisely if

U 

�� _

w2W

ndw
�

! upW
�

!

_
w2W

ndw:

So when W does not have a cover within U , we obtain, from the above, the com-
pleteness of the universal model, and Theorem 2 that

upU j�
D::

n

°
upU ^ ::

�� _
w2W

ndw ! upW
�

! nd a
� ˇ̌̌

a 2 W
±
: (3)
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Below we define a map Approx meant to be such that the above right-hand side equals
¹upV j V 2 Approx.U;W /º. One can verify that this indeed holds through a short
computation. We define

Approx W Uuniv � Muniv ! PUuniv;

hU;W i 7!

°°
k 2 U

ˇ̌̌
k 
 ::

�� _
w2W

ndw ! upW
�

! nd a
�± ˇ̌̌

a 2 W
±
:

Note that each V 2 Approx.U;W / is an upset such that V � U . It is impor-
tant that this inclusion be strict, that is to say, U … Approx.U;W /. Suppose that
U 2 Approx.U;W / is true. There must be some a 2 W such that

U D

°
k 2 U

ˇ̌̌
k 
 ::

�� _
w2W

ndw ! upW
�

! nd a
�±
:

Because a 2 W � U holds, the above ensures that a 
 nd a, a contradiction by
Theorem 2.

Another important observation to make is that U is empty precisely if there exists
no k 2 U such that ; � k. Indeed, ; � k simply means that k is a maximal node,
and as U is finite, it has a maximal node precisely if it has any node at all.

In the lemma below we employ the above mapping to construct an order on the
set of sets of upsets in UL.X/. Naturally, each upset corresponds to a formula in L
modulo derivability. We think of a set of upsets as corresponding to a disjunction
of formulae modulo derivability. The order will be such that the smallest elements,
called normal forms in the language of rewrite systems,9 correspond to disjunctions
of projective formulae. Moreover, the order will be such that for each element there
is a smallest element below it.

Lemma 20 Let 2 � n � ! be given, and consider L WD BD2 CTn. Every formula
has an admissible approximation in L.

Proof Let ' be a formula, and take X to be a finite set such that ' 2 L.X/.
Realize that there are but finitely many sets of maximal nodes in UL.X/. From here
onward, let Uuniv denote for the set of all upsets in UL.X/. Note that this set is finite.

Let � be the least reflexive transitive relation on PUuniv such that

U � U � ¹U º [ Approx.U;W /

holds for all sets U � Uuniv, all upsets U 2 U, and all sets of maximal nodes
W � U without covers in U . A straightforward inductive argument, using the rea-
soning above, shows that for all U � V

up
�[

U
�
j�

D::
n ¹upV j V 2 Vº and up

�[
V

�
j�up

�[
U

�
.

Because PUuniv is finite, we know every sequence on � will eventually stabilize.
We say that U is a normal form whenever U � U0 entails U D U0. By the previous
remark, it is clear that to each U there is a normal form.

We claim that every normal form U is such that for all U 2 U the formula upU
is projective. This follows from Lemma 18 and the discussion above. Indeed, if upU
were to not be projective, then Lemma 18 ensures the existence of a set of maximal
nodes W � UL.X/ such that W 
 upU and 1 ¤ jW j � n, yet W does not cover
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anything forcing upU . Note that W � U holds by Theorem 2. As a consequence,

U � U � ¹U º [ Approx.U;W /:

This inequality is strict, violating the assumption that U is a normal form. Hence,
upU must be projective. Define U WD ¹k 2 UL.X/ j k 
 'º, and let V be a
normal form associated to U. We simply set A' WD

W
V 2V upV , which satisfies all

the desired properties.

Theorem 6 Let 2 � n � ! be given. The rules D::
m for all m � n form a basis

of admissibility for BD2 C Tn.

Proof This is an immediate consequence of Lemmas 20 and 17.

Theorem 7 The rule D::
2 is a basis of admissibility for

GSc WD BD2 C
�
.p ! q/ _ .p ! q/ _ .p � :q/

�
:

Proof This follows immediately from Theorem 6 whenever GSc D BD2 C T2

holds. Let us first prove GSc � BD2CT2. Take some k 2 UBD2CT2
.X/. We want to

prove that k 
 GSc, from which the desired result is entailed by the completeness of
the universal model, as proven in Corollary 4. Assume the contrary, that is, suppose
there are '1; '2 2 L.X/ such that

k ± '1 ! '2; k ± '2 ! '1; k ± '1 � :'2:

The first two conjuncts give wi � k with wi 
 'i and wi ± '3�i for i D 1; 2, and
so w1; w2 must be incomparable. By Corollary 12 we know that k"" is an antichain
of size at most 2. Now note that wi 
 '1 � :'2 and k ± 'i for i D 1; 2. We
obtain k 
 '1 � :'2 per Lemma 2, a contradiction with the third conjunct.

We now prove the other inclusion. To this end, take k 2 UBD2
.X/, and suppose

that k 
 GSc. From Lemma 13 it readily follows thatW WD k"" consists of maximal
nodes. We are done if jW j < 2, so suppose a ¤ b 2 W are given. Note that

k 
 .up a ! up b/ _ .up a ! up b/ _ .up a � :up b/

must hold by assumption. Due to Theorem 2, one can see that the first two disjuncts
are false, because a and b are incomparable. Note that if w 2 W and w ¤ b, then
w ± up b and so w 
 up a, which proves w D a. This proves that W D ¹a; bº.
Consequently, k 
 T2 follows, proving the desired result through the completeness
of the universal model.

Notes

1. For more on structural completeness from the perspective of admissibility, we refer to
[49, Chapter 5].

2. The difference between single-conclusion and multiconclusion rules can be felt in formu-
lating the Visser rules. In the terminology of [11], V�

n as given at the start of Section 5
is the join-extension of the rule Vn given by [29].

3. For details on the general theory of image-finite models and their duals, see Bezhan-
ishvili and Bezhanishvili [5].
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4. Through the duality between finite Kripke frames and finite Heyting algebras as given
by [14], this operation is known as the Troelstra sum ([56]), star sum ([3]), vertical sum
([7]), concatenation ([12]), and glued sum ([24]).

5. We use a comma to denote set-union and omit braces around singleton sets for improved
readability.

6. As we only consider BD2 C Tn in the following, we could also have omitted Tn alto-
gether. Indeed, with Corollary 12 it can be shown that T2 C BWn D T2 C Tn, where
BWn is the intermediate logic of bounded width, as given by [8]. We prefer the detour
through Tn due to the connection between the admissibility of Dn and Tn studied in
[23], which makes the logic a nice conceptual fit for this setting.

7. Our use of the term “admissible approximation” is slightly different from earlier forms
such as [23, Definition 19]. Typically, one would define an admissible approximation
of ' to be a set of formulae � such that

W
� is an admissible approximation in our

sense, together with the constraint that all formulae in � be projective. Even though
this additional constraint will be satisfied below, we deem it unnecessary to include it
in the definition. Definition 14 only appeals to the relation between derivability and
admissibility, and this is all the information we need. See also [35, Definition 3.6].

8. Observe that, when W D ;, the statement W � k simply means that k is maximal. In
this case, one can also immediately see the proof, because instantiating � D ; in (ii)
immediately proves that ' 6 j�?.

9. See Terese [55] for background on rewriting systems.
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