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The Logical Strength of Compositional Principles

Richard G. Heck Jr.

Abstract This paper investigates a set of issues connected with the so-called
conservativeness argument against deflationism. Although I do not defend that
argument, I think the discussion of it has raised some interesting questions about
whether what I call “compositional principles,” such as “a conjunction is true iff
its conjuncts are true,” have substantial content or are in some sense logically
trivial. The paper presents a series of results that purport to show that the com-
positional principles for a first-order language, taken together, have substantial
logical strength, amounting to a kind of abstract consistency statement.

In 1998, Shapiro [29], and later, in 1999, Ketland [22], independently developed
what is now known as the “conservativeness argument” against deflationary views
of truth. Attempting to understand in what sense a deflationary truth-predicate is
“insubstantial,” they proposed that the principles concerning truth that a deflationist
accepts should conservatively extend whatever nonsemantic theories the deflation-
ist also accepts: no “insubstantial” theory of truth ought to allow us to prove things
about nonsemantic matters that we cannot prove without it. In particular, the thought
was, adding principles about truth to Peano arithmetic (PA) should yield a conser-
vative extension of PA. And, indeed, if we add only what Horwich [21] called a
“minimal” theory of truth, consisting simply of the T-sentences1 for the language of
arithmetic, then the result is indeed a conservative extension of PA.

By the time Shapiro and Ketland were writing, however, Gupta [12] had made it
clear that the minimal theory of truth is too weak to do the work that even a defla-
tionist needs truth to do. Generalizations about truth, such as:

(1) A conjunction is true if and only if both of its conjuncts are true,
are going to be required, as well. But if we add all of the various principles of that
sort to PA—that is, if we add a theory of truth of the kind Tarski [31] showed us
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how to formulate—then the result is not a conservative extension of PA, since the
resulting theory proves that PA is consistent, via the following sort of argument.
Every axiom of PA is true; the rules of inference preserve truth; so every theorem of
PA is true; but there is at least one sentence that is not true, for example, 0 D 1,2
which is therefore not a theorem of PA; so PA is consistent.

Shapiro’s version of the conservativeness argument attracted a direct response
from Field, who had by then emerged as one of the leaders of the deflationist uprising.
Field [9] notes that, if we only add “compositional principles” like (1) to PA, then the
result is again a conservative extension (see [26, pp. 5–7]). It is only if we also extend
the induction scheme to permit semantic vocabulary that we get a nonconservative
extension (see also [16]). And so Field writes:

Since truth can be added in ways that produce a conservative extension. . . , there
is no need to disagree with Shapiro when he says that “conservativeness is essen-
tial to deflationism”. . . . Shapiro’s position, however, is that a deflationist must
hold that adding ‘true’ to number theory in the full-blooded way that involves
[extending the induction axioms also] produces a conservative extension. ([9,
p. 536])

Field then goes on to argue that a deflationist need hold no such thing. At most,
the deflationist should hold that the principles about truth that “flow from its dis-
quotational nature” are conservative over number theory; she need not hold that all
principles about truth are conservative. But, Field claims, the induction principles
flow not from the nature of truth, but from the nature of the natural numbers. They
are not semantical but arithmetical in character, so whether adding them yields a
conservative extension is irrelevant to the issue at hand.

In what seems to me to be the crucial passage, Field quotes Shapiro [29, p. 499]
as asking: “How thin can the notion of arithmetical truth be if, by invoking it, we can
learn more about the natural numbers?” Field then replies:

. . . [T]he way in which we “learn more about the natural numbers by invoking
truth” is that in having that notion we can rigorously formulate a more powerful
arithmetical theory than we could rigorously formulate before. There is nothing
very special about truth here: using any other notion not expressible in the origi-
nal language we can get new instances of induction, and in many cases these lead
to nonconservative extensions. ([9, p. 536])

This is right, so far as it goes, but it is also extremely misleading.
What does Field mean by “using [a] notion not expressible in the original lan-

guage”? The natural way to read him would be as talking about definability: about
what happens if we add a new predicate whose extension is not definable in the orig-
inal language. In that case, Field would be saying something like this:

If we add a new predicate whose extension is not definable in the original lan-
guage, then we will get new instances of induction, which may lead to new theo-
rems in the original language.

That is of course right. We will get new instances of induction that may lead to new
theorems. But the case of the truth-predicate is precisely not one of those cases.
Tarski’s theorem tells us that the set of truths of the language of PA is not definable
in the language of arithmetic. But if we add a truth-predicate T.x/ to the language
of PA and extend PA by adding the T-sentences, then that is enough to guarantee
that T.x/ defines a set not definable in the original language, namely: the set of true
sentences of the language of arithmetic. But the result is still a conservative extension
of PA even if we extend induction. It follows that the nonconservativity result is not
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due just to the presence of “new instances of induction” formulated using a “notion
not expressible in the original language.” It is also necessary that we have a fully
compositional truth-theory, and not just the T-sentences.

So, again: It is only if we both add a compositional truth-theory to PA and extend
the induction axioms to permit semantic vocabulary that we get a nonconservative
extension. Neither is sufficient by itself. That makes the dialectical situation com-
plicated. Field wants to allow that compositional principles about truth “flow from
truth’s disquotational nature” and so should be conservative;3 he can do so by blam-
ing the nonconservativity result on the extension of induction. Shapiro, by con-
trast, blames the nonconservativity result on the compositional principles, because
he thinks we are independently committed to induction for any well-defined predicate
we can understand. Are we, then, at a standoff?

Not necessarily. As we shall see, the situation is not entirely symmetrical. Adding
a compositional truth-theory does yield a conservative extension if we do not extend
the induction axioms, but the resulting theory is, in most cases, still logically stronger
than the original theory. On the other hand, if we just add the T-sentences, then, in
almost all cases, the resulting theory is, in a well-defined sense, not logically stronger
than the original theory even if we do extend the induction axioms. And that already
seems to me to be out of the spirit of deflationism. Deflationists routinely deride
compositional principles like (1) as trivial (see [10, p. 24]) and of “no interest in their
own right” (see [8, p. 269]). In fact, however, such principles, taken together, have
significant logical strength, independent of the extension of the induction axioms,
and for reasons that are closely connected with the sort of consistency proof on which
the conservativeness argument was originally based.

In the remainder of this article, the results to which I have just alluded will be
stated precisely and, in some cases, proved.4 In Section 1, I shall present the back-
ground material from logic that is necessary for the rest of the discussion. In Sec-
tion 2, I shall present a first form of the results. In Section 3, we shall encounter two
natural worries about the significance of those results. In Section 4, I will present the
results in a different form, one that should assuage such concerns. There is a different
worry about that form of the results, however, which we shall discuss in Section 5.
I shall close, in Section 6, by returning to the philosophical issues we have just been
discussing and explaining how I think the technical results presented bear upon them.

1 Preliminaries

In an effort to make what follows as widely accessible as possible, I will first present
a brief overview of the machinery from logic that we will be using.

The theories we will be discussing will all be recursively axiomatized. And since
we will be discussing consistency statements, we need, for reasons famously made
clear by Feferman [7], to think of theories intensionally: not as sets of theorems,
nor even as sets of axioms, but as particular presentations of sets of axioms. Offi-
cially, we identify a theory with a formula that is true of (the Gödel numbers of) its
axioms. Where we are dealing with finitely axiomatized theories, we shall assume
that their axioms are presented in the simplest possible way: as a list or, if you prefer,
a disjunction.

A theory is “stated in” a language. The languages in which we will be inter-
ested here are first-order languages, constructed from terms, function-symbols, and
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predicate-letters in the usual way. These languages are assumed to be finite, in the
sense that they have only finitely many atomic expressions. It is convenient to iden-
tify a language with the set of its atomic expressions, together with some indication
of their logical type, that is, with what is sometimes called the signature of the lan-
guage.

1.1 Interpretatability There are a number of ways of comparing the logical strength
of theories. If the theories are stated in the same language, then the obvious question
is whether one proves all the results the other proves. Comparison is more difficult
when the theories are stated in different languages. In that case, the theories will
trivially prove different theorems: if A is in the language of the one but not the other,
then pA _ :Aq will be a theorem of the one but not of the other.

If the language of one theory contains that of the other, then one way to compare
them is to ask if the first is a “conservative extension” of the second, that is, whether
the theory in the extended language proves any new theorems that can be stated in
the original language.5 But even this fails if the theories are not so related. In that
case, the established method of comparison uses the notion of interpretation, which
was first explored in a systematic way by Tarski [30], although the basic idea is much
older.

Let theories B (for “base”) and T (for “target”) be given, stated in languages LB

and LT , respectively. A relative interpretation6 of T in B consists of two parts:
a translation of LT into LB , and proofs in B of the translations of the axioms of T .
The translation is compositional, in the sense that the only thing we actually need to
do is define the (nonlogical) atomic expressions of LT in terms of those of LB and to
specify a “domain” for the interpretation in terms of a formula ı.x/ of LB . This can
then be extended to a complete translation of LT into LB in the obvious way, where
quantifiers are “relativized” to ı.x/: 8x.�.x// is translated as: 8x.ı.x/ ! ��.x//,
where ��.x/ translates �.x/; 9x.�.x//, as: 9x.ı.x/ ^ ��.x//.7

Note that interpretability is transitive and reflexive.
If T is relatively interpretable in B, then it follows that, if B is consistent, so

is T . If a contradiction could be derived from the axioms of T , that proof could be
mimicked in B: Just prove the translations of the axioms of T used in the proof of
the contradiction, then append a modified version of the proof given in T . Indeed,
quite generally, if `T A, then `B A�, where, again, the asterisk means: translation
of. Moreover, if B and T are not too terribly weak,8 then all of this will be provable
in B and T themselves. So, in particular, T will prove Con.B/ ! Con.T / and
so, by the second incompleteness theorem, cannot prove Con.B/.9 By contrast, B

perfectly well could prove Con.T /.
One way to give content to the idea that B is at least as strong as T is therefore to

take it to mean: T is relatively interpretable in B. That this is a useful way to make
the intuitive idea of relative strength rigorous emerged only after a good deal of hard
work, beginning with Tarski, Mostowski, and Robinson [32] and continuing through
work by Feferman [7] to the present day. And, while the notion of interpretation is
particularly useful when we are dealing with theories stated in different languages,
we can still ask whether T can be interpreted in B even when LT and LB are the
same: the interpretation of the atomic vocabulary does not have to be the identity
function. So the notion is very general, and it links up nicely with what we know
about the strength of theories from the second incompleteness theorem.
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Now, a couple definitions that apply (sensibly) only to nonfinitely axiomatized
theories.

Definition T is locally interpretable in B if every finite subset of T is inter-
pretable in B.

Local interpretability obviously follows from “global” interpretability, but not con-
versely. Local interpretability is also transitive and reflexive, and it relates to relative
consistency just as global interpretability does: if T is locally interpretable in B,
then T is consistent if B is. The reason is that any proof of a contradiction in T will
use only finitely many of T ’s axioms.

Definition T is reflexive if T proves the consistency of each of its finite sub-
theories. That is, for each finite U � T , T ` Con.U/.

A theory’s being reflexive can cause all sorts of unexpected phenomena as regards
the interpretability of other theories in it (see [7]). What will matter most to us here
is the fact that reflexive theories collapse the distinction between local and global
interpretability.10

Theorem (Orey’s compactness theorem) Suppose that T is locally interpretable
in B and that B is reflexive. Then T is globally interpretable in B.

Since PA is reflexive (see Mostowski [24]), then we can expect PA to be something
of a special case. Which, indeed, we shall see that it is.

1.2 Fragments of arithmetic We shall mostly be concerned here with PA and certain
of its subtheories.

Robinson arithmetic, or Q, is the theory whose axioms are the universal closures
of the following eight formulae:

Q1: x ¤ 0,
Q2: Sx D Sy ! x D y,
Q3: x C 0 D x,
Q4: x C Sy D S.x C y/,
Q5: x � 0 D 0,
Q6: x � Sy D .x � y/C x,
Q7: x ¤ 0 ! 9y.x D Sy/,
Q8: x < y � 9z.y D Sz C x/.

The last is often considered a definition of <; it is convenient in the present context
to regard < as just part of the language. The language of Q, ¹0; S;C;�; <º, is what
we call the “language of arithmetic” and denote by A.

A formula is said to be �0 if all quantifiers contained in it are “bounded,”
that is, if all of its quantified subformulae are of the form 8x.x < t ! � � � / or
9x.x < t ^ � � � /, where t is a term.11 A formula is †1 (resp., …1) if it is of the
form 9x1 : : : 9xn.�/ (resp., 8x1 : : :8xn.�/), where � is�0. A formula is†n (resp.,
…n) if it is 9x1 : : : 9xn.�/ (resp., 8x1 : : :8xn.�/), where � is …n�1 (resp., †n�1).
A formula A is †n in a theory T if T proves A � �, for some †n formula �, and
similarly for other notions.

An important class of subtheories of PA is characterized in terms of the induction
axioms these theories permit. PA itself is Q plus the full induction scheme:

A.0/ ^ 8x
�
A.x/ ! A.Sx/

�
! 8x

�
A.x/

�
;
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where A.x/ is any formula at all.12 The theory I‚ is Q plus induction for formulae in
the set‚: soA.x/ has to be in‚. Thus, I�0 is Q plus induction for�0 formulae; I†1

is Q plus induction for †1 formulae; I†n is Q plus induction for †n formulae. Note
that I†n, though not finitely axiomatized, as I have described it, is finitely axiomati-
zable (see Hájek and Pudlák [13, pp. 77ff]). We assume a finite axiomatization. It is
not known whether I�0 is finitely axiomatizable.

I�0 is in one sense clearly stronger than Q: it proves lots of important general-
izations about the natural numbers that Q does not, such as x ¤ Sx. But in another
sense I�0 is still very weak: It is interpretable in Q.13 Another respect in which I�0 is
weak is that, although one can define the relation y D 2x by means of a �0-formula
exp.x; y/, we cannot prove in I�0 that exponentiation is total: 8x9y.exp.x; y//.
The obvious proof uses induction on 9y.exp.x; y//, which is †1. But for that very
reason, the totality of exponentiation is provable in I†1, as is the totality of every
other primitive recursive function. So I†1 is much stronger than I�0: Indeed, I†1

proves Con.I�0/.

2 The Logical Strength of Compositional Principles

In this section, I present and discuss the technical results to which I alluded at the
end of the introduction. First, we need to talk about exactly what a theory of truth is.

2.1 Theories of truth Since the semantic axioms for the quantifiers, as Tarski for-
mulated them, make use of sequences of elements from the domain, we shall need
a nice theory of sequences if we are to formalize theories of truth. Technically, we
will need our base theory to be sequential,14 which essentially means that it can code
(and decode) finite sequences of its elements. Q is not sequential, but there are lots
of sequential theories that are interpretable in Q. For example, I�0 is sequential, and
it is interpretable in Q. We can also just add a simple theory of sequences to Q to
get a new theory, which we might call Qseq, which is also interpretable in Q and is
sequential by construction. We will assume something like that done.

A compositional theory of truth consists of Tarski-style axioms for the logical and
nonlogical vocabulary. The axioms for the logical part of the language will always
be the same:

(v) Den� .vi ; x/ � val.�; i/ D x, where vi is the i th variable,
(D) Sat� .pt D uq/ � 9x9yŒDen� .t; x/ ^ Den� .u; y/ ^ x D y�,
(:) Sat� .p:Aq/ � :Sat� .A/,
(^) Sat� .pA ^ Bq/ � Sat� .A/ ^ Sat� .B/,
(8) Sat� .p8vi .A.vi //q/ � 8�Œ�

i
� � ! Sat� .pA.vi /q/�.

There are similar clauses for the other logical constants. Here, val.�; i/ means the
value that � assigns to the i th variable;15 Den� .t; x/ means that t denotes x with
respect to the sequence � ; Sat� .A/means that � satisfies A; and � i

� � means that �
and � agree on what they assign to each variable, with the possible exception of vi ;
that is,

8k < lh.�/
�
k ¤ i ! val.�; k/ D val.�; k/

�
;

where lh.�/ is the length of the sequence � .
In the case of the language of arithmetic, we will also have these axioms for the

nonlogical constants:
(0) Den� .p0q; x/ � x D 0,
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(S ) Den� .pStq; x/ � 9y.Den� .t; y/ ^ y D Sx/,
(C) Den� .pt C uq; x/ � 9y9zŒDen� .t; y/ ^ Den� .u; z/ ^ x D y C z�,
(�) Den� .pt � uq; x/ � 9y9zŒDen� .t; y/ ^ Den� .u; z/ ^ x D y � z�,
(<) Sat� .pt < uq/ � 9y9zŒDen� .t; y/ ^ Den� .u; z/ ^ y < z�.

The pattern should be clear.16

Finally, then, we need to define the notion of truth itself:
(T) T.A/ � A is a sentence ^ 8�.Sat� .A//.

That is Tarski’s definition.
So that is what a theory of truth is. Now for some notation.

Definition Let T be sequential. Then
(1) DT�ŒT � is T plus all T-sentences for the language of T ;
(2) DS�ŒT � is the result of adding not just the T-sentences for the language of T

but also the Sat-sentences, such as:

Sat� .v0 D v1/ � val.�; 0/ D val.�; 1/I

(3) CT�ŒT � is the theory that extends T by adding the truth-theoretic axioms just
described for the logical and nonlogical vocabulary of the language of T .

Here, DT stands for disquotational truth, DS for disquotational satisfaction, and CT
for compositional truth.

Note that none of these theories extends any induction scheme that might be
present in T . There is no real chance, then, that even CT�ŒT � is going to prove
the consistency of T . One might therefore suspect that CT�ŒT � would logically be
no stronger than T . If so, then, as we shall see, one would suspect wrongly, at least
in general.

We shall also be interested in theories that do extend the induction scheme.

Definition Suppose that T is among I�0, I†n, and so forth. Then
(1) DTŒT � is like DT�ŒT � except that it extends the induction scheme to permit

semantic vocabulary;
(2) DSŒT � is like DS�ŒT � except that it extends the induction scheme;
(3) CTŒT � is the result of adding a fully compositional truth-theory and extending

the induction scheme.

To be frank, it is not at all obvious, in general, what it means to “extend the induction
scheme.” But in the cases in which we shall be interested, it is obvious enough:
One simply treats the semantic vocabulary as being among the primitives of the
language.17 So, for example, 9x.Den� .t; x// counts as †1, and 8x9�.Den� .t; x//

counts as …2.

2.2 Induction versus the compositional principles We are now ready to state—and
in some cases prove—the results I have been promising. We will begin by exploring
the various disquotational theories.

As noted earlier, DTŒPA� is a conservative extension of PA. Here are some similar
results, but stated in terms of interpretability.18

Theorem 2.1 DT�ŒT � is locally interpretable in T .
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Proof Let S be a finite subset of the axioms of DT�ŒT �. Then S will contain at
most finitely many T-sentences, say, for A1; : : : ; An. We interpret T.x/ in terms of a
“listlike” theory of truth, that is, as

.x D pA1q ^ A1/ _ � � � _ .x D pAnq ^ An/:

With T.x/ so defined, T will prove the T-sentences for A1; : : : ; An. For example,
the translation of the T-sentence for A1 is

.pA1q D pA1q ^ A1/ _ � � � _ .pA1q D pAnq ^ An/ � A1:

But the first conjunct of the first disjunct is provable, and the first conjunct of the
other disjuncts is refutable. So this is provably equivalent to A1 � A1, and so is
itself provable.

This result extends smoothly to the case of satisfaction.

Theorem 2.2 DS�ŒT � is locally interpretable in T .

Proof Essentially the same proof works as in the case of Theorem 2.1. To interpret
the Sat-sentences for A1.v1; v2/ and A2.v2; v3/, say, simply define Sat� .x/ as�

x D pA1.v1; v2/q ^ A1.val.�; 1/; val.�; 2//
�

_�
x D pA2.v1; v2/q ^ A2.val.�; 2/; val.�; 3//

�
:

Then the translation of the Sat-sentence for A1.v1; v2/ is�
pA1.v1; v2/q D pA1.v1; v2/q ^ A1.val.�; 1/; val.�; 2//

�
_�

pA1.v1; v2/q D pA2.v1; v2/q ^ A2.val.�; 2/; val.�; 3/
�

�

A1.val.�; 1/; val.�; 2//�;

which is again provable.

Theorem 2.3 DTŒPA� is interpretable in PA, and so is DSŒPA�.

Proof We will prove the more inclusive case. Let S be a finite subset of the axioms
of DSŒPA�. Then S will contain at most finitely many Sat-sentences. We interpret
Sat� .x/ as in the previous proof. So those Sat-sentences are all provable. But S
may also contain some extended induction axioms. However, under our definition of
Sat� .x/, those induction axioms simply become induction axioms of PA.

So DSŒPA� is locally interpretable in PA. Orey’s compactness theorem then
implies that DSŒPA� is globally interpretable in PA.

The proof of Theorem 2.3 does not extend to subsystems of PA such as I†1. The rea-
son is that the Ai ’s may be of any complexity, and so, if we have an induction axiom
for some †1-formula A.x/ containing semantic vocabulary, the result of replacing
T.x/ or Sat� .x/ by its “listlike” definition in A.x/ may yield a formula that is not
itself †1. But there is a slightly more complicated proof that does work in the case
of truth.

Theorem 2.4 DTŒI†n� is locally interpretable in I†n.

Proof Let S be a finite subset of the axioms of DTŒI†n�. Then S contains only
finitely many T-sentences. For illustration, say these are for A and B . As before, we
interpret T.x/ as: .x D pAq ^ A/ _ .x D pBq ^ B/. We can then easily prove
the T-sentences for A and B . But, of course, S may also contain some extended
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induction axioms from DTŒI†n�. We need to see that these are also going to be
provable.

Suppose that one of these induction axioms is the axiom for the formula
�.x/ _ T.sb.p .x/q; x//, where �.x/ is †n but  .x/ need not be. Here, sb.y; x/
means: the result of substituting the numeral for x for the sole free variable in y.
I choose this example because the threat is that the ability to substitute in this way
will allow us to get the induction axiom for �.x/ _  .x/, which need not be †n.
But, in fact, the threat is idle, because the induction axiom for the mentioned formula�
�.0/ _ T

�
sb

�
p .x/q; 0

���
^

8x
�
�.x/ _ T

�
sb

�
p .x/q; x

��
! �.Sx/ _ T

�
sb

�
p .x/q; Sx

���
!

8x
�
�.x/ _ T

�
sb

�
p .x/q; x

���
can be proven under our interpretation of T.x/. I am claiming, that is, that we can
prove�

�.0/ _
�
sb

�
p .x/q; 0

�
D pAq ^ A

�
_

�
sb

�
p .x/q; 0

�
D pBq ^ B

��
^

8x
�
�.x/ _

�
sb

�
p .x/q; x

�
D pAq ^ A

�
_

�
sb

�
p .x/q; x

�
D pBq ^ B

�
!

�.Sx/ _
�
sb

�
p .x/q; Sx

�
D pAq ^ A

�
_

�
sb

�
p .x/q; Sx

�
D pBq ^ B

��
!

8x
�
�.x/ _

�
sb

�
p .x/q; x

�
D pAq ^ A

�
_

�
sb

�
p .x/q; x

�
D pBq ^ B

��
: (2.1)

(Sorry about that.) The crucial point is that A and B are sentences, so the quantifier
8x cannot bind any variables in A or B . Hence, they can be “pulled out” in the
following way.

Abbreviate (2.1) as ˆ.A;B/. Then it is logically equivalent to�
A ^ B ! ˆ.>;>/

�
^

�
A ^ :B ! ˆ.>;?/

�
^�

:A ^ B ! ˆ.?;>/
�

^
�
:A ^ :B ! ˆ.?;?/

�
; (2.2)

where > is 0 D 0 and ? is 0 ¤ 0. By completeness, this equivalence is provable.
Now ˆ.>;>/ is�

�.0/ _
�
sb

�
p .x/q; 0

�
D pAq ^ >

�
_ �.0/ _

�
sb

�
p .x/q; 0

�
D pBq ^ >

��
^

8x
�
�.x/ _

�
sb

�
p .x/q; x

�
D pAq ^ >

�
_ �.x/ _

�
sb

�
p .x/q; x

�
D pBq ^ >

�
!

�.Sx/ _
�
sb

�
p .x/q; Sx

�
D pAq ^ >

�
_ �.Sx/ _

�
sb

�
p .x/q; Sx

�
D pBq ^ >

��
!

8x
�
�.x/ _

�
sb

�
p .x/q; x

�
D pAq ^ >

�
_ �.x/ _

�
sb

�
p .x/q; x

�
D pBq ^ >

��
and that is the induction axiom for the formula

�.x/ _
�
sb

�
p .x/q; x

�
D pAq ^ >

�
_ �.x/ _

�
sb

�
p .x/q; x

�
D pBq ^ >

�
;

which is†n. So ˆ.>;>/ is provable, and hence so is A^B ! ˆ.>;>/. The same
goes for the other cases. So (2.2) is provable; so (2.1) is provable.

Nothing hinges on the details of this particular example.

We thus see that, for theories T in the usual arithmetical hierarchy—Q, I�0, I†n,
PA—the deflationary theory DTŒT � is always locally interpretable in T .

The situation with compositional truth-theories is different.

Theorem 2.5 Suppose that T � Q is sequential and finitely axiomatized. Then
CT�ŒT � interprets Q C Con.T /.
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It follows that, if T is finitely axiomatized, then CT�ŒT � is logically stronger than T .
This is a consequence of a beautiful form of the second incompleteness theorem due
to Pudlák.

Theorem 2.6 ([27, Corollary 3.5]) Suppose that T is finitely axiomatized, sequen-
tial, and consistent. Then T does not interpret Q C Con.T /.

The original form of the second incompleteness theorem says merely that T does
not prove Con.T /. Building on earlier work by Feferman [7, Theorem 6.5], however,
Pudlák improves on Gödel by showing that T cannot even interpret T C Con.T /, or
even Q C Con.T /. So, we have the following.

Corollary 2.7 Suppose that T � Q is sequential and finitely axiomatized. Then
CT�ŒT � is not interpretable in T . In particular, for no n � 1 does I†n interpret
CT�ŒI†n�.

Proof If I†n interpreted CT�ŒI†n�, then, since CT�ŒI†n� interprets QCCon.I†n/,
so would I†n, contradicting Theorem 2.6—on the assumption, of course, that I†n is
consistent.

The key result here is obviously Theorem 2.5. The proof of it turns out to be quite
messy and so is presented elsewhere (see [18, Section 3.2]).19 But certain features
of the proof will be important below, and the basic idea behind it is easy enough to
explain. As said above, there is no real hope that CT�ŒT � will prove Con.T /, since
whatever induction axioms might be present in T have not been extended. But it
turns out that we can get very close.

One argument for Con.T / would proceed as follows.
Call a proof good if all of its lines are true. Proofs with 0 lines are trivially good.
So suppose that n line proofs are good, and consider some n C 1 line proof. If
the last line is an axiom, then it is true, since all T ’s axioms are true and all the
logical axioms are true, too. If it is not an axiom, then it must follow by one of
the rules of inference from some of the earlier lines. But those lines are true,
by the induction hypothesis, and the rules of inference preserve truth, so the last
line is again true. Hence, by induction, n line proofs are good, for all n; hence
all proofs are good; hence, all proofs have true conclusions. Since there is a
sentence that is not true, namely 0 D 1, it cannot be a theorem of T , and so T is
consistent.

The emphasized use of induction is unavailable in CT�ŒT �, but the rest of the proof
turns out to be perfectly fine. Proving that it is fine is what gets messy, for reasons
connected with such logical principles as universal instantiation. But, if T is finitely
axiomatized, then we can indeed show in CT�ŒT � that

(i) 0 line T -proofs are good;
(ii) if n line T -proofs are good, then nC 1 line T -proofs are good.

The formula expressing “n line T -proofs are good” is thus what Russell called
“inductive.” Quite general techniques, known as “shortening of cuts,”20 can then
be used to show that CT�ŒT � interprets Q plus the statement “8n(n line T -proofs
are good).” And from that it follows that CT�ŒT � interprets Q plus Con.T /—if,
again, T is finitely axiomatized.

One thing about this argument that it is important to appreciate is that it is abso-
lutely essential that we be able to prove that all of T ’s axioms are true. If we do not
know that all of T ’s axioms are true, but only know, of each of them, that it is true,
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then we cannot even prove that all one-line proofs are good. The best way to think
of this is to see Theorem 2.5 as a consequence of the following.21

Theorem 2.8 Let U be any theory in the language of arithmetic. Then
CT�ŒT �C T.U/ interprets Q C Con.U/.

Here, T.U/ is the formalization of: all axioms of U are true.

Proposition 2.9 If T is finitely axiomatized, then CT�ŒT � proves T.T /.22

The action, unsurprisingly, is in the proof of Theorem 2.8 (see [18, Section 3.2]).
Proposition 2.9 is fairly trivial. Indeed, it is easy to see that DT�ŒT � already proves
that all axioms of T are true, if T is finitely axiomatized.

Proposition 2.10 For each axiom A of T , DT�ŒT � proves T.pAq/.

Proof Let A be an axiom of T and so of DT�ŒT �. Since T.pAq/ � A is also an
axiom of DT�ŒT �, it proves T.pAq/.

Proposition 2.11 If T is finitely axiomatized, then DT�ŒT � proves T.T /.

Proof Let the axioms of T be A1; : : : ; An. Then by Proposition 2.10, DT�ŒT �

proves T.pA1q/^� � �^T.pAnq/. But then 8x.x D pA1q_� � �_x D pAnq ! T.x//
follows easily.

Proposition 2.9 now follows from the fact that CT�ŒT � contains DT�ŒT �.

Lemma 2.12 For each formula A.v1; : : : ; vn/, CT�ŒT � proves the corresponding
Sat-sentence:

Sat�

�
pA.v1; : : : ; vn/q

�
� A

�
val.�; 1/; : : : ; val.�; n/

�
:

A fortiori, for each sentence A in the language of T , CT�ŒT � proves T.pAq/ � A.

Proof A rigorous proof would be by induction on the complexity of sentences
of L. But this should be fairly obvious.23 A little experimentation will reveal that
proofs of T-sentences need no more than is available in Qseq: We are not proving any
general laws, just a bunch of particular facts, and Q is very good at proving particular
facts.

The crucial thing to note here is the contrast between Proposition 2.9 and Proposi-
tion 2.10. If T is not finitely axiomatizable, then there is no reason whatsoever to
suspect that CT�ŒT � will prove that all axioms of T are true, although it does prove
that each axiom of T is true.

To summarize, then: DTŒI†n� is locally interpretable in I†n, and so in that sense
is no stronger than I†n; but CT�ŒI†n� is not interpretable in I†n.24 Thus, CT�ŒI†n�

is logically stronger than DTŒI†n�. Indeed, DTŒI†n� is at best only very slightly
stronger than I†n,25 whereas CT�ŒI†n� is at least as strong as Q C Con.I†n/, which
is the theory that Pudlák’s version of the second incompleteness theorem tells us
must be stronger than I†n. So CT�ŒI†n� is significantly stronger than DTŒI†n�.
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3 Objections (I)

The moral of the last section is meant to be this: whereas deflationary truth-theories
are logically very weak, whether or not induction is extended, compositional truth-
theories have significant logical strength, even when induction is not extended. So,
as I suggested earlier, there is no symmetry between the compositional axioms and
the extension of induction. If we want to “blame” one or the other for the nonconser-
vativity result discussed earlier, then, we should blame the compositional axioms.

There are, however, two sorts of objections that might be made to the interpreta-
tion of the mathematical facts that I have just suggested.

3.1 Theories of satisfaction The first objection is that matters look different if we
consider satisfaction instead of truth.

We saw earlier that DSŒPA� is interpretable in PA. But corresponding results do
not hold for DSŒI†n�, as the following shows.26

Theorem 3.1 DSŒI†1�
27 contains PA.

Proof Let A.v0; v1/ be a formula in the language of arithmetic. We want to show
that we can prove the induction axiom for it. (Extension to the case of extra free
variables is straightforward.) Consider the formula

�.z; �/
df
� 9�

�
�

0
� � ^ val.�; 0/ D z ^ Sat�

�
pA.v0; v1/q

��
:

Now, �.z; �/ is †1 in I†1,28 so DSŒI†1� has induction for it. The induction axiom
for �.z; �/ is

9�
�
�

0
� � ^ val.�; 0/ D 0 ^ Sat�

�
pA.v0; v1/q

��
^

8v0

®
9�

�
�

0
� � ^ val.�; 0/ D v0 ^ Sat�

�
pA.v0; v1/q

��
!

9�
�
�

0
� � ^ val.�; 0/ D Sv0 ^ Sat�

�
pA.Sv0; v1/q

��¯
!

8v09�
�
�

0
� � ^ val.�; 0/ D v0 ^ Sat�

�
pA.v0; v1/q

��
: (3.1)

But the Sat-sentence for A.x; y/ is29

Sat�

�
pA.v0; v1/q

�
� A

�
val.�; 0/; val.�; 1/

�
:

So �.z; �/ is provably equivalent in DSŒI†1� to30

A
�
z; val.�; 1/

�
:

Hence, (3.1) reduces to

A
�
0; val.�; 1/

�
^ 8v0

�
A

�
v0; val.�; 1/

�
! A

�
Sv0; val.�; 1/

��
!

8v0

�
A

�
v0; val.�; 1/

��
: (3.2)

And this holds for any sequence � .
But, for any given v1, there is a sequence � such that val.�; 1/ D v1. Hence, for

this � , we have A.v0; v1/ � A.v0; val.�; 1//, for any v0. So (3.2) becomes

A.0; v1/ ^ 8v0

�
A.v0; v1/ ! A.Sv0; v1/

�
! 8v0

�
A.v0; v1/

�
:

And that is the induction axiom for A.v0; v1/.
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One might therefore suggest that it is not the compositional nature of CT�ŒT � that
gives it its strength, but its play with the notion of satisfaction.

It goes some way towards answering this objection to note that the extension of
induction here is essential. It remains the case that, if we do not extend induction,
then, as Theorem 2.2 shows, we get only a marginal increase in logical strength if we
add the Sat-sentences,31 but we get a significant increase in logical strength if we add
a compositional truth-theory. So the asymmetry to which I have pointed remains.
But it would be nice to have a bit more to say.

3.2 Finite axiomatizability The second worry concerns the fact that Corollary 2.7
does not apply to PA, as the following shows.32

Theorem 3.2 ([6, Theorem 5.1]) CT�ŒPA� is interpretable in PA.

The worry here is not just that Corollary 2.7 applies only to finitely axiomatized
theories (though one might pursue that point as well). The worry concerns what
Theorem 3.2 shows about why “adding a truth-theory” adds logical strength. It is
true that CT�ŒI†n� is stronger than I†n, but, since CT�ŒPA� is not stronger than
PA, maybe we should conclude that adding a truth-theory adds logical strength only
insofar as we pretend not to believe something we ought to believe, namely: full
induction. Or, to put it differently: perhaps the reason CT�ŒI†n� is stronger than I†n

is because the syntax on which we are building these theories is artificially weak.33

3.3 Toward a response Somewhat surprisingly, it turns out that these two objections
have a common source: a conflation, common in contemporary work on theories of
truth, between the object theory about which we propose to reason and the syntactic
theory in which we propose to reason about that object theory.

As we have seen, CT�ŒT � is not going to be able to prove the consistency of
T : It lacks the necessary induction axioms. If we do want to investigate theories in
which the consistency of T can be proven semantically, then, we need to consider
theories in which the induction axioms have been extended. Here, then, are some
obvious questions about such theories: How much induction do we need to prove the
consistency of Q? How much do we need to prove the consistency of I†n? or of PA?
Is it always the same amount? Or does it vary with the object theory?

Careful analysis of the structure of semantic consistency proofs shows that the
answer is that we always need the same amount of induction: We need it for certain
†1-formulae involving semantic vocabulary. More precisely, we have the follow-
ing.34

Theorem 3.3 Suppose that T � I†1. Then CTŒT �C T.U/ proves Con.U/.

Corollary 3.4 Suppose that T � I†1 is finitely axiomatized. Then CTŒT � proves
Con.T /.

The second of these results implies that CTŒI†1� proves Con.I†1/ and that CTŒI†n�

proves Con.I†n/. But we do not have any way, if we speak only in the terms in
which Corollary 3.4 is formulated, to express the insight that the only induction we
need to prove Con.I†n/ is already available in CTŒI†1�. The problem is that the
“base theory” is playing two roles. On the one hand, through the magic of Gödel
numbering, it is our theory of syntax. On the other hand, it is the object theory, and
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in that role it is what allows us to prove the basis of the induction: that all the axioms
of T are true.

The formulation in Theorem 3.3, which is ultimately more fundamental, goes
some way toward pulling these two roles apart. The “base theory” T is now providing
our theory of syntax, and the formalization of “all axioms of U are true” is providing
the basis for the induction; thus, U is the object theory. And so, the thought might be,
CTŒI†1�CT.I†2/will prove Con.I†2/, and CTŒI†1�CT.I†3/will prove Con.I†3/,
and so forth; the constant presence of CTŒI†1� now expresses the fact that we only
need a limited amount of induction for the argument, no matter what the object theory
may be.

In fact, however, the syntax, with its extended induction axioms, can still “infect”
the object theory. We have already seen in Theorem 3.1 that DSŒI†1� contains PA
since, for each axiom of PA, there is an extended induction axiom that implies it. So
DSŒI†1� by itself already proves Con.I†n/, for each n, since DSŒI†1� contains PA,
and PA is reflexive. And since CTŒI†1� proves all the Sat-sentences, CTŒI†1� con-
tains DSŒI†1� and so also proves Con.I†n/, for each n. So, yes, CTŒI†1�C T.I†2/

proves Con.I†2/, but CTŒI†1� already proves Con.I†2/ by itself.
Indeed, since CTŒI†1� contains PA, it contains CTŒI†1� C I†n, for each n. But

CTŒI†1�C I†n proves T.I†n/. So CTŒI†1� contains CTŒI†1�C T.I†n/, for each n,
which implies that CTŒI†1� C T.I†2/, CTŒI†1� C T.I†3/, and CTŒI†1� C T.I†n/

all have the same theorems as CTŒI†1� itself. It follows that the object theory U is
simply not playing the role it appeared to be.35

Things get worse. A modification of the proof of Theorem 3.1 shows that, in
CTŒI†1�, we can find a single extended induction axiom that bundles all the induction
axioms of PA together.36 We thus get the following.

Lemma 3.5 CTŒI†1� proves that all axioms of PA are true.

So CTŒI†1� actually contains CTŒI†1� C T.PA/. And so Theorem 3.3 implies the
following.

Corollary 3.6 CTŒI†1� proves Con.PA/.

And now we can see quite clearly that Theorem 3.3 does not really help us to dis-
entangle the different roles being played by the syntactic theory and by the object
theory.

If we are going to resolve these problems and get a proper formulation of the
insight expressed when we say that only †1 induction is needed for semantic consis-
tency proofs, then what we need to do is explicitly disentangle the syntactic theory
from the object theory. That is, we need to find a way to allow ourselves to vary the
syntactic theory we use when we talk about the object theory without thereby chang-
ing what object theory we are talking about. We will explore how we might do so in
the next section. Once we have done so, however, the first objection will have been
answered, since, as will then be clear, results like Theorem 3.1 and Corollary 3.6
depend essentially upon the entanglement.

Concerning the second objection, the first thing to note is that it is not the presence
of full induction that is driving the proof that CT�ŒPA� is interpretable in PA. It is
the reflexivity of PA, as the following more general results show. We first need the
following partial converse of Theorem 2.5.37
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Theorem 3.7 Suppose that T is finitely axiomatized. Then CT�ŒT � is inter-
pretable in I†1 C Con.T /.

This follows from results proven by Enayat and Visser [5, esp. Theorem 4.5] in their
recent explorations of full satisfaction classes.

Corollary 3.8 CT�ŒT � is locally interpretable in I†1 C
S

¹Con.U/: U a finite,
sequential fragment of T º.

Proof Every finite fragment of CT�ŒT � is contained in CT�ŒU�, for some finite
fragment U � T . But CT�ŒU� is interpretable in I†1 CCon.U/, which is of course
a subset of I†1 C

S
¹Con.U/º.

Theorem 3.9 If T � I†1 is reflexive, then CT�ŒT � is interpretable in T .

Proof Since T is reflexive, it proves Con.U/, for each finite U � T . So T

contains I†1 C
S

¹Con.U/º, so T locally interprets CT�ŒT �. It then follows from
Orey’s compactness theorem that T globally interprets CT�ŒT �.

Theorem 3.2 then follows from Theorem 3.9, since PA is reflexive.
There are plenty of theories that do not have full induction but are nonetheless

reflexive.38 For example, the following sort of construction allows us to build a reflex-
ive theory from any theory with which we wish to begin:

T0 D U; C0 D Con.U/;
T1 D U C Con.U/; C1 D Con

�
U C Con.U/

�
;

TnC1 D Tn C Cn; CnC1 D Con.TnC1/:

Now let the “reflexive closure” of U, RCl.U/, be
S
Tn. RCl.U/ is reflexive,

since every finite subtheory of RCl.U/ is contained in one of the Tn’s, and TnC1

proves Con.Tn/ by construction. So, in particular, we have the following from
Theorem 3.9.

Corollary 3.10 CT�ŒRCl.I†1/� is interpretable in RCl.I†1/.

That, however, does not look like a result that should call into question the philo-
sophical conclusions drawn from the discussion in Section 2.

Really to answer the second objection, however, we need to understand exactly
what role the reflexivity of the base theory is playing in the proof of Theorem 3.9.
As we shall see, it is not the reflexivity of the syntactic theory that is responsible for
this result, but the reflexivity of the object theory. In particular, the reason we get
Theorem 3.2 is because we have taken PA as our object theory, not because we have
taken PA as our syntactic theory. Indeed, once we have successfully disentangled the
syntactic theory from the object theory, we will see that (the relevant analogues of)
the results reported in Section 2 are largely insensitive to what syntactic theory we
use.

4 Disentangling the Syntactic Theory From the Object Theory

Our goal now is to disentangle the syntactic theory from the object theory. Inter-
estingly enough, we can do so simply by following what Tarski actually did in [31].
Here is his explanation of what a meta-language adequate for his purposes must be
like:
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A meta-language. . . must contain three groups of expressions: (1) expressions
of a general logical kind; (2) expressions having the same meaning as all the
constants of the language to be discussed. . . ; (3) expressions of the structural-
descriptive type which denote single signs and expressions of the language con-
sidered, whole classes and sequences of such expressions or, finally, the relations
existing between them. [31, pp. 210–11]

The expressions mentioned under (3) belong to syntax; those under (2), to the object
language. Tarski does not quite say that these two classes are to be disjoint, but it is
natural to read him that way, and that is plainly how he conceives the matter in his
discussion of the calculus of classes (see [31, Section 3]).

Tarski was of course aware that syntax can be interpreted in arithmetic (at least
after reading Gödel); his famous theorem on the indefinability of truth depends upon
that fact. But the central purpose of [31] is not “limitative” but positive. Tarski’s
primary goal in that paper is to show that there is a consistent notion of truth that is
adequate for the metamathematical purposes for which truth was then already being
deployed. Doing that simply does not require Gödel numbering or any similar tech-
nique. The idea of separating syntax from the object theory is thus old, even if the
application I propose to make of it is somewhat new.

Let L be the object language, that is, the language for which we want to give a
truth-theory. Let S be a disjoint language in which to formalize syntax. The most
natural choice for S would be the language of concatenation (see [3], [11], [28]). But
so as not to make things too unfamiliar, we may take S to be a copy of the language
of arithmetic, written in a different font, perhaps. Our theory of syntax can then be
taken to be Q, or I†1, or whatever we wish.

To formulate a semantics for L, we of course need to be able to talk about the
things L talks about. In particular, if we are going to have the usual Tarski-style
clauses for the primitive expressions of L, we need to have the expressive resources
of L available. So the obvious choice for the language of our semantic theory would
be S [ L plus whatever semantic machinery we want, and that is what we shall
use. Because of complications we need not consider, however, we shall regard the
semantic theory as many-sorted. Variables ranging over the domain of S will be
italic; those ranging over the domain of L will be upright.

We also need a theory of sequences or, better, of assignments of objects to vari-
ables. There is no hope of coding sequences of objects from the domain of L as
objects in S , at least not in general.39 The details of that theory do not matter here,
either. What is important is that assignments live in a third sort. Variables ranging
over them will be Greek letters.40

A truth-theory for L will then be more or less the familiar one, with some adjust-
ments to take account of the present framework. For example, these axioms will be
common to all theories, independent of L:

(v) var.vi / ! Den˛.v; val.˛; i//,
(^) Sat˛.pA ^ Bq/ � Sat˛.A/ ^ Sat˛.B/,
(8) Sat˛.p8viA.vi /q/ � 8ˇŒˇ

i
� ˛ ! Satˇ .pA.vi /q/�.

The other axioms of the theory will depend upon what L is, and it could be anything.
If L is the language of set theory, then the only other axiom will be

(2) Sat˛.pt 2 uq/ � 9x9yŒDen˛.t; x/ ^ Den˛.u; y/ ^ x 2 y�.
In the case of the language of arithmetic, we will have axioms like
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(0) Den˛.‘0’; x/ � x D 0,
(C) Den˛.pt C uq; x/ � 9y9zŒDen� .t; y/ ^ Den� .u; z/ ^ x D y C z�.

Note that the used expressions 2, 0, and C are expressions of L, not of S .
As for notation, we have the following.41

Definition Let T be an arithmetical theory. Then
� TT�

LŒT � is the semantics for L we have just described;
� TTLŒT � is TT�

LŒT � with the induction axioms in T extended to permit
semantic vocabulary and reference to assignments.42

So the induction axioms of TT�
LŒT � are “purely syntactic.” (TT stands for Tarskian

truth.)
Our earlier results transfer smoothly to this framework, though often in improved

forms, and there are new results available as well. I shall state most of these without
proof. Many of the proofs are similar to ones already given; the rest are more com-
plex than it makes sense to present here. Full proofs are presented elsewhere (see
[18, Section 4]).

First, we get an analogue of Lemma 2.12.

Lemma 4.1 For each formula A.v0; : : : ; vn/ of L, TT�
LŒQ� proves the corre-

sponding Sat-sentence
Sat�

�
pA.v0; : : : ; vn/q

�
� A

�
val.�; 0/; : : : ; val.�; n/

�
:

But now the situation is improved: TT�
LŒQ� is as weak as it is possible for it to be.43

Proposition 4.2 TT�
LŒQ� is interpretable in Q.

Proof Since no theory stated in L is so far in evidence, we can give L the com-
pletely trivial interpretation in a one-element domain. A semantic theory for L, so
interpreted, is then easily constructed.44

If we develop our truth-theory in the usual way, where syntax and the object theory
are intertwined, then the weakest materially adequate truth-theory for the language
of arithmetic is CT�ŒQseq�, and it follows from Theorem 2.6 that CT�ŒQseq� is not
interpretable in Q.

As said, no object theory is yet in play here. To add one, we simply add it. Thus,
for example, if T is a theory in L, then TT�

LŒQ� C T is a semantic theory for the
language of L, with Q as the syntactic theory, plus the object theory T . Then we get
the following analogues of our earlier results.

Proposition 4.3 For each axiomA of T , TT�
LŒQ�CT proves T.pAq/ (cf. Propo-

sition 2.10).

Corollary 4.4 If T is finitely axiomatized, then TT�
LŒQ�C T proves the obvious,

disjunctive formalization of “all axioms of T are true” (cf. Proposition 2.9).

Theorem 4.5 TT�
LŒQ� plus “all axioms of T are true” interprets Q C Con.T /

(cf. Theorem 2.8).

Corollary 4.6 Let T be a finitely axiomatized theory in L. Then TT�
LŒQ� C T

interprets Q C Con.T / and so is not interpretable in T (cf. Theorem 2.5 and Corol-
lary 2.7).

Now, however, we can also prove a converse of Corollary 4.6.
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Theorem 4.7 Let T be a finitely axiomatized theory in L. Then TT�
LŒQ�C T is

interpretable in Q C Con.T /.

Thus, we get a precise characterization of just how strong TT�
LŒQ�C T is.

Corollary 4.8 Let T be a finitely axiomatized theory in L. Then TT�
LŒQ�C T is

mutually interpretable with Q C Con.T /.

As said, then, compositional truth-theories have significant logical power, even when
the syntax is as weak as possible, and even when we do not extend induction. If
we start with a finitely axiomatized theory T and add an absolutely minimal but
still compositional theory of truth for the language of T —and add it in a way that
is guaranteed not to “infect” T itself—then the result is a theory that is logically
stronger than T in the sense that it is not interpretable in T .

Perhaps the nicest way to formulate this point is due to Visser: A compositional
theory of truth is like an operator that “up-Gödels” any finitely axiomatized theory
you hand it. What is up-Gödeling? It is the operation that maps a finitely axioma-
tized theory T to the one that Pudlák’s form of the second incompleteness theorem
guarantees will always be stronger than it is: Q C Con.T /. And so, if you think of
TT�

LŒQ� C .�/ as an operator on theories, then what it does, when handed a finitely
axiomatized theory T , is precisely to up-Gödel it. It hands you back a theory that is
mutually interpretable with QCCon.T /. So it is not just that TT�

LŒQ�CT is always
stronger than T (when T is finitely axiomatized). It is stronger in the very specific,
and very important, way that is revealed by the second incompleteness theorem.

Our specific interest here, however, is in the objection raised in Section 3.2: that
Corollary 2.7 applies only to finitely axiomatized theories and does not apply to PA.
I said in Section 3.3 that, once we had disentangled the syntax from the object theory,
it would be possible to see that this is due not to PA’s role as syntax, but to its role as
object theory. We have done the disentangling now. Let us see what difference it has
made.

First, note that we do get the same phenomenon as before when PA is the object
theory.

Proposition 4.9 TT�
LŒQ�C PA is interpretable in PA (cf. Theorem 3.2).

Proof Let U be a finite fragment of TT�
LŒQ� C PA. Then U is a subtheory of

TT�
LŒQ�CI†n, for some n, and so is interpretable in QCCon.I†n/, by Theorem 4.7.

But Q C Con.I†n/ is a subtheory of PA, since PA is reflexive, so U is interpretable
in PA.

That establishes local interpretability, and Orey’s compactness theorem does the
rest.

That is essentially the same as the proof of Theorem 3.9, and the proof can easily be
extended to the case of reflexive theories generally. So, for example, we also have the
following.

Proposition 4.10 TT�
LŒQ� C RCl.I†1/ is interpretable in RCl.I†1/ (cf. Corol-

lary 3.10).

By contrast, Theorem 4.7 extends smoothly to the case of PA as syntactic theory and,
indeed, to any theory that contains Q.45
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Corollary 4.11 Let T be a finitely axiomatized theory in L, and suppose that
S � Q. Then TT�

LŒS �C T is not interpretable in T . Hence, TT�
LŒPA�C T is not

interpretable in T .

Proof We know from Theorem 4.7 that TT�
LŒQ�CT is not interpretable in T . But

if S � Q, then TT�
LŒS �C T contains TT�

LŒQ�C T and so is not interpretable in T ,
either.

Why does it make such a difference whether PA is our syntax or our object theory?
The reason, ultimately, is pretty simple. The basic result is Theorem 4.5: TT�

LŒQ�C
“all axioms of T are true” interprets Q C Con.T /. But if we do not know that all
axioms of T are true—in particular, if we only know that each of them is—then we
cannot even prove that all one-line proofs have true conclusions, as noted earlier. So
we will be able to prove that TT�

LŒQ�C T interprets Q C Con.T / if, but only if, we
can prove in TT�

LŒQ�C T that all axioms of T are true. This is trivial if T is finitely
axiomatized. But if it is not even finitely axiomatizable, then there is no evident way
for TT�

LŒQ� C T (or even TT�
LŒPA� C T ) to prove that all axioms of T are true,

rather than just that each of them is.
One can see this from the fact that Proposition 4.9 continues to hold not just as

the syntactic theory is strengthened. . .

Proposition 4.12

(i) TT�
LŒI†n�C PA is interpretable in PA.

(ii) TT�
LŒPA�C PA is interpretable in PA.

. . . but even when we add semantic induction:

Proposition 4.13 ([18, Corollary 4.18]) TTLŒPA�C PA is interpretable in PA.

And this is despite the fact that we have the following.

Theorem 4.14 ([18, Theorem 4.11]) TTLŒI†1�C T.T / proves Con.T /. In par-
ticular, if T is finitely axiomatized, then TTLŒI†1�C T ` Con.T /.

So the reason TTLŒPA� C PA not only does not prove Con.PA/ but cannot even
interpret Q C Con.PA/ is simply that it has no way to prove that all of PA’s axioms
are true, rather than just that each of them is. And the same goes for any other
reflexive theory you wish to consider.

There is an odd irony to this situation. Deflationists frequently claim that the
truth-predicate is a “device of infinite conjunction.” Its function, allegedly, is to
allow us to formulate such generalizations as “All axioms of PA are true.” But very
little effort has been made to tell us precisely what that is supposed to mean. What
exactly is the relationship between this generalization and the infinite conjunction of
PA’s axioms? The only serious attempt known to me to answer this question is due to
Halbach [14], who shows that, in certain circumstances, adding such a generalization
to a theory is exactly equivalent to adding all of its instances. What we have seen,
however, is that, considered as additions to, say, TTLŒI†1�, there is all the difference
in the world between the axioms of PA and the generalization stating that all of them
are true. The latter is a lot stronger than the former.46

That is not to say, of course, that there is not some other way of explaining what it
means to “use the truth predicate merely as a device of generalization.” But I do not
know what that would be.
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That, then, addresses the objection raised in Section 3.2. The other objection,
recall, was based upon the observation that DSŒI†1� contains PA. But that sort of
result does not transfer to the present framework, as we shall now see.

Definition Let U be an arithmetical theory, taken as our theory of syntax. 47

� DDTLŒU� is the theory of truth for the language of T that is similar to
TTLŒU� but, instead of containing a compositional theory of truth contains
just the T-sentences for L—though it also extends the induction scheme to
permit the presence of the truth-predicate.

� DDSLŒU� is the theory of truth for the language of T that is similar to
DDTLŒU� but adds the Sat-sentences for L (and extends the induction
scheme).

The sorts of results concerning disquotational theories of truth proven earlier transfer
to the disentangled setting.

Proposition 4.15

(i) DDTLŒI†n� is interpretable in I†n.
(ii) DDTLŒI†n�C T is locally interpretable in I†n C T .
(iii) DDTAŒI†n�C I†m is locally interpretable in I†max.m;n/.

Proof The proof of (i) is similar to that of Proposition 4.2. The proof of (ii) simply
mimics that of Theorem 2.4.

For (iii), DDTAŒI†n� C I†m is locally interpretable in I†n C I†m, where these
two theories are formulated in disjoint copies of the language of arithmetic. But
I†n C I†m will obviously be interpretable in I†max.m;n/.

So we also get an analogue of Theorem 2.3.

Corollary 4.16 DDTAŒPA�C PA is interpretable in PA.

Proof Any finite fragment of this theory is contained in one or another of the
DDTAŒI†n�C I†m. So each finite fragment is interpretable in I†n, for some n, and
so is also interpretable in PA. That establishes local interpretability, and now we
invoke Orey’s compactness theorem.

Unfortunately, the sorts of techniques used in these proofs do not seem to allow us to
prove that DDSLŒI†n�C T is locally interpretable in I†n C T ,48 and I do not know
exactly how strong DDSLŒI†n�C T is. But for no n andm does DDSAŒI†n�C I†m

contain PA. On the contrary, it follows from Theorem 5.2, to be mentioned below,
that, DDSAŒI†n� C I†m is interpretable in I†n C Con.I†m/. So, in particular,
DDSAŒI†1�C I†1 is no stronger than I†1 C Con.I†1/, which is a proper subtheory
of I†2 that does not even interpret I†2.49 So there is no danger that DDSLŒI†1�C T

is going to be vastly stronger than T , as DSŒI†1� is vastly stronger than I†1.
Moreover, the kind of argument that was used to show that DSŒI†1� contains

PA—or, more generally, to extract information about the object theory from the the-
ory of truth—is simply unavailable in the disentangled setting. The reason is that the
induction that is available in the syntactic theory is over syntactic objects: expres-
sions. We can formalize proofs by induction on the complexity of expressions, and
object-language expressions may occur in the induction axioms used in those proofs.
But the converse is not true: The induction scheme (or other axiom scheme, such as
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separation) present in the object theory has not been extended, so it is difficult to see
how the theory of truth could “infect” the object theory.

In particular, if we look at the instance of induction on which the proof of Theo-
rem 3.1 was based:

9�
�
�

0
� � ^ val.�; 0/ D 0 ^ Sat�

�
pA.v0; v1/q

��
^

8v0

®
9�

�
�

0
� � ^ val.�; 0/ D v0 ^ Sat�

�
pA.v0; v1/q

��
!

9�
�
�

0
� � ^ val.�; 0/ D Sv0 ^ Sat�

�
pA.Sv0; v1/q

��¯
!

8v09�
�
�

0
� � ^ val.�; 0/ D v0 ^ Sat�

�
pA.v0; v1/q

��
;

we see that, in the disentangled setting, it is not even well formed. In the second
line, for example, the variable v0 that is bound by the universal quantifier must
come from the syntactic language: it ranges over expressions. But val.�; 0/, the
value that � assigns to the first variable, is in the domain of the object language. So
val.�; 0/ D v0 makes no sense, and the same is true of the second conjunct on every
other line.

Admittedly, then, several issues remain concerning exactly what adding the Sat-
sentences to a given theory, even in a disentangled way, gives us, in terms of logical
strength, at least in the case when we extend induction. If we do not extend induc-
tion, then the same sorts of results as we had earlier are available in the disentangled
setting, too. (That is, we have analogues of Theorem 2.1 and Theorem 2.2.) And it
seems likely that DDSAŒI†1�C I†1 will prove to be weaker than TTAŒI†1�C I†1,
since it is difficult to see how DDSAŒI†1�C I†1 could possibly prove Con.I†1/. At
the very least, the sort of proof that is available in TTAŒI†1�C I†1 will not available
in DDSAŒI†1�C I†1, since DDSAŒI†1�C I†1 is not even going to be able to prove,
say, that modus ponens is valid. To do that, you need to be able to reason about con-
ditionals generally, and DDSAŒI†1� C I†1 has no resources for doing so. We will
be able to prove of each instance of modus ponens that is it valid, but not that all of
them are.

5 Objections (II)

All of that said, there is another worry one might have about the framework we are
now using.

As we have seen, if T is finitely axiomatized, then TTLŒI†1�CT proves Con.T /.
It is important to understand, however, that the particular sentence Con.T / that is
being proved is a sentence of the syntactic language S . If our syntax were stated
as a theory of concatenation, then the consistency statement would be formulated
using concatenation and other syntactic notions defined in terms of it. Of course,
in the sorts of cases in which we are primarily interested, there will also be a
sentence of the object language L that expresses the claim that T is consistent.
(There will be many such sentences, in fact.) So we need to distinguish the sentence
ConS .T / of the syntactic language that I have said can be proven in TTLŒI†1�C T

from the sentence ConL.T / of the object language about which I have so far
said nothing.

And, indeed, the object language sentence ConL.T / cannot be proven in
TTLŒI†1� C T . This follows from a much more general observation, due to
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Halbach, that even TTLŒPA� C T is a conservative extension of T (see [23, Sec-
tion 3.2]). The thought, then, is that this shows that there is something unnatural
about the framework that results from our disentangling the syntactic theory from
the object theory. Recall, for example, the following quote from Field:

. . . [T]he way in which we “learn more about the natural numbers by invoking
truth” is that in having that notion we can rigorously formulate a more powerful
arithmetical theory than we could rigorously formulate before. There is nothing
very special about truth here: using any other notion not expressible in the origi-
nal language we can get new instances of induction, and in many cases these lead
to nonconservative extensions. ([9, p. 536])

Disentangling the syntax from the object theory might have seemed like a good idea,
but if we do so, then we never get nonconservative extensions! Disentangling thus
seems to cost us the ability to use truth to learn more about the natural numbers in
the way we thought we could. So maybe we should reconsider.

I understand why one might have such a reaction. To be honest, when Halbach
first mentioned his observation to me, I was both surprised and puzzled. On further
reflection, however, it has come to seem to me that the situation here is exactly as it
should be. There is nothing to stop us from using truth to learn more about arithmetic.
The interesting questions are (i) what we need to add to TTLŒI†1�C T if we are to
do so, and (ii) why we should need to add it.

Halbach’s original proof of his observation was a straightforward generalization
of an earlier model-theoretic proof, due to Craig and Vaught [4, p. 298, Lemma 2.7],
that TT�

LŒQ�CT is a conservative extension of T . But, if we limit attention to finitely
axiomatized theories, then there is an easier proof that is, in the present context, more
illuminating.50

Proposition 5.1 If T is a finitely axiomatized, consistent theory in L, then
TTLŒPA�C T is a conservative extension of T .

Proof Let A be any nontheorem of T . So T C :A is consistent, and it is finitely
axiomatized. So, if TTLŒPA�C T proved A, then so would TTLŒPA�C ŒT C :A�,
which would then be inconsistent. But TTLŒPA� C ŒT C :A� is not inconsis-
tent since, by Theorem 5.2, to be mentioned shortly, it is locally interpretable in
PA C Con.T C :A/, which is not just consistent but true.

The case of ConL.T / is just a special case of this more general result. By
the second incompleteness theorem, T C :ConL.T / is consistent if T is, and
it is finitely axiomatized if T is, as well. So it follows from Theorem 4.14
that TTLŒPA� C ŒT C :ConL.T /� proves ConS .T C :ConL.T //. But now
it is clear that it had better be ConS .T C :ConL.T // that we are proving,
and not ConL.T C :ConL.T //. If TTLŒPA� C ŒT C :ConL.T /� proved
ConL.T C :ConL.T //, then, since ConL.T / trivially follows from
ConL.T C :ConL.T //, TTLŒPA� C ŒT C :ConL.T /� would prove ConL.T /

and so would be inconsistent. Which, again, it is not.
From a model-theoretic point of view, then, what is happening is that the

only information we have about the structure of the L-related part of models of
TTLŒPA� C T is what is provided by the object theory T . The truth-theory for
L—the TTLŒPA� part—does not constrain the structure of the part of the model for
the object language at all. In particular, there is nothing in the theory of truth that
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requires the domain of L to be in any way “standard” or, to be more precise, to be
standard relative to the syntax.

A model of TTLŒPA�C T consists, more or less, of a model of PA, considered as
our syntax, and a model of T , considered as our object theory, plus some semantic
pieces that connect these two parts. It is easy to see that, if L is the language of
arithmetic, then the domain of the syntactic language has to be isomorphic to an
initial segment of the domain of the object language. This is because we can prove
in TTLŒPA� C T that every numeral denotes a number—a member of the domain
of the object language—and because the numbers so denoted will be isomorphic to
the numerals that denote them.51 But the converse need not be true. We have no
way to prove that every number is denoted by a numeral. So it is perfectly possible
for the domain of the object language not to be an initial segment of that of the
syntactic language. In particular, the model of the syntactic part of the theory could
be standard, and the model of the arithmetical part could be nonstandard. As a result,
it is perfectly possible for ConS .T / to be true in the model, even though ConL.T /

is false in the model.
And that, it seems to me, is absolutely as it should be. A theory of truth for

the language of arithmetic should not tell us anything specific about the domain over
which the object-language variables range. It should simply take the domain as given,
much as it takes the interpretation of the primitives of the object language as given:
“0” denotes 0, whatever that is; < is true of hx; yi just in case x < y, whatever that
means; and the variables range over, well, whatever it is they range over. When we
do model theory, we do not take the interpretations of the primitives as given. We
may take “0” to refer to ;; we may take < to be true of hx; yi just in case some
complicated condition obtains; and we may take the domain to be whatever we like,
sets for the language of arithmetic or numbers for the language of set theory. But we
are not doing model theory. We are doing semantics.52

Similarly, a theory of truth for the language of arithmetic should not, all by itself,
allow us to prove that every number is denoted by a numeral, let alone allow us
to prove new purely arithmetical theorems. The following is no doubt a plausible
argument: 0 is denoted by a numeral; if n is denoted by a numeral, then n C 1 is
denoted by a numeral; so every number is denoted by a numeral. But to make this
argument, we need to use “extended” induction over the natural numbers, which
is something to which we were not previously committed and to which we cannot
be committed simply because we have decided to theorize semantically about the
language of arithmetic. To put the point more generally, the mere fact that we have
a theory of truth for some language L cannot, all by itself, force us to accept new
principles concerning whatever it is that L talks about, that is, to add new axioms to
whatever theory stated in L we might antecedently have accepted. In that sense, then,
Field is absolutely right. The way we can use truth to learn more about the natural
numbers is indeed to use it to “formulate a more powerful arithmetical theory” (see
[9, p. 536, my emphasis]). And that is something we can do if we wish. If we want,
we can extend whatever induction axioms we accept to permit semantic vocabulary.
My point, again, is simply that we cannot be committed to doing so simply because
we have a theory of truth for the language of arithmetic, even a fully compositional
one. That theory is a semantic theory, one about expressions and truth. It is not, in its
own right, an arithmetical theory, one about numbers, and simply having it cannot
force us to accept new instances of induction.
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Does that mean that Field wins? No, because, once the syntax has been disen-
tangled from the object theory, it becomes clear that the issue should never have
concerned conservativity over the object theory.53 Surely one would not expect our
theory about the language we use to talk about physical reality, say, to entail new
substantive facts about physical reality when added to whatever physical theory we
happen to accept. And the same is true for arithmetic and the language we use to talk
about it. Everyone, deflationist or otherwise, should therefore agree that a semantics
for the language we use to talk about some subject matter should be conservative over
our theory of that subject matter.54 The right question to ask is therefore not whether
a semantic theory for a given language L is conservative over theories stated in L,
but whether it is conservative over a purely syntactic theory for L. The right question
is not what we can learn about numbers by using the notion of truth, but what we can
learn about expressions by using the notion of truth.

With that change, however, the entire dialectic that has surrounded the issue of
conservativity transfers smoothly. We can learn a lot about expressions if we have
access to semantic notions. If we have a fully compositional theory of truth for a
language L, for example, then we can use induction on the complexity of expressions
to prove the consistency of any finitely axiomatized theory in L that we are prepared
to accept and, more generally, to prove the consistency of any theory all of whose
axioms we regard as true. The statement that a theory is (deductively) consistent is a
purely syntactic statement. Semantics is therefore not conservative over syntax.

Of course, someone might respond:
. . . [T]he way in which we “learn more about [expressions] by invoking truth”
is that in having that notion we can rigorously formulate a more powerful [syn-
tactic] theory than we could rigorously formulate before. There is nothing very
special about truth here. . . . [9, adapted from p. 536]

But, as before, it is not enough simply to have truth and some extra induction:
DDTAŒPA� does not allow us to prove Con.T /, even if we add “all axioms of T

are true.” The compositional principles are also needed for such a proof. So we
may want to know which of these is doing more of the work: Is it the extension of
induction that is responsible for the increase in strength? Or is it the compositional
principles? The answer to that question emerges from the mathematical facts sum-
marized in Table 1. Adding a compositional theory of truth for a language L to some
finitely axiomatized theory stated in L adds significant logical strength, whether or

Table 1 The mathematical facts (U D I†n;PA).

Base: U C T No New Induction Extend Induction
Add the T-sentences DDTLŒU�C T

Locally Locally
interpretable interpretable

Add the Sat-sentences DDSLŒU�C T

Locally Unclear
interpretable

Add a fully TT�
LŒU�C T TTLŒU�C T

compositional Not interpretable Not interpretable,
truth-theory and stronger still
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not we extend the induction axioms, whereas adding a noncompositional theory adds
little if any logical strength, even if we do extend the induction axioms.

Now, to be sure, there is a special case in which the object theory is itself a theory
of syntax and the object language is the language of that very theory of syntax. In
that case, one might think, we have no choice but to entangle syntax with the object
theory, so that we collapse back into the more familiar framework used in Section 2,
in which case the objections discussed in Sections 3.1 and 3.2 are restored. But,
first of all, while this sort of case—in which self-reference is not only possible but
natural—is important, it seems to me obvious that it is a special case. And even
in this special case, it is still important to distinguish the role played by our theory
of syntax qua theory of syntax from the role it plays qua object theory, for all the
reasons given in Section 3.3. That is what disentangling allows us to do.

For some, the disentangled framework may still feel unnatural somehow. If so,
then consider the fact that, if we do disentangle the syntactic theory from the object
theory, we not only get improved results like the ones discussed in Section 4 but
results like the following.

Theorem 5.2 ([18, Section 4.5]) Suppose that T is finitely axiomatized. Then
(i) for all n � 1, TTLŒI†n�C T is mutually interpretable with I†n C Con.T /;
(ii) TTLŒPA�C T is mutually locally interpretable with PA C Con.T /.

I for one trust mathematical elegance much more than I trust intuitive judgments
about what seems natural, especially when those judgments have been shaped by
decades of doing things one particular way. And the elegance of the results just
mentioned, in my opinion, makes a very strong case for any framework that permits
them to be formulated and proved.

Even in the special case in which our syntactic theory and our object theory are
formulated in the same language, then, my response to the objections discussed in
Sections 3.1 and 3.2 is the same: what is responsible for the phenomena on which
they rest is the interaction of our syntactic theory with our object theory. We can
allow these theories to interact if we like, but the familiarity of the usual setting that
does not even distinguish them should not blind us to what we are doing. Even in
this case, we can still distinguish between the two roles a single theory might play
and investigate them formally, using the framework developed in Section 4. And
we ought to distinguish those roles, too, since it is only if we do so that certain
insights can be properly stated. Such facts do not lapse simply because we choose,
for different reasons, to work in a setting in which the questions to which the relevant
results provide answers cannot even be formulated.

6 Closing

I began this article by recalling the history of the debate over the conservativeness
argument against deflationary theories of truth, and we have just had reason to recall
that history again. Nonetheless, my purpose here has not been to revive that debate.
My purpose, rather, has been to argue that compositional theories of truth are non-
trivial, in the sense that they have significant logical strength. Although such theories
can only be used to prove consistency when we extend the induction axioms, they
allow us to interpret consistency statements even when we do not, and that is known
to be logically significant.
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For what it is worth, I do not myself take this result to show that Shapiro and Ket-
land were right and that Field was wrong. Shapiro and Ketland are to be applauded
for trying to find some concrete content in the gnomic pronouncements some defla-
tionists have made about truth’s “insubstantiality,” but I tend to agree with Halbach
[16, p. 188] that “. . . it is hard to see why the deflationist should be committed to
conservativeness at all.” Since it also seems hard to see why a deflationist should
be committed to the logical vacuity of whatever truth-theoretic principles she might
accept,55 I do not take the results proven here to “refute” deflationism. But they cer-
tainly do show that the compositional principles are not the trivialities they are often
taken to be.56

It thus becomes an important question what right deflationists have to such com-
positional principles and how they should understand the role the notion of truth
plays in them. Those questions, however, are ones I will have to discuss elsewhere
(see [20]).57

Notes

1. By a T-sentence, I of course mean one of the form: pAq is true if and only if A.

2. I shall omit quotes where they are not absolutely necessary, so as not to clutter the expo-
sition.

3. Field [10] has argued that the compositional principles follow from the T-scheme, if it is
understood in the right way. I criticize this claim elsewhere (see [20]).

4. Results not proven here are proven in a companion paper (see [18]).

5. Strictly, T 0 conservatively extends T if (i) whenever T ` A, then T 0 ` A, and (ii) when-
ever T 0 ` A and A is in the language of T , then T ` A.

6. In fact, there are several different notions of interpretation. We shall only need this one.

7. As well as proofs of the translations of the axioms, we also need proofs of ı.t�/, for each
atomic term t of LT , and of the closure condition

8x1 � � � xn

�
ı.x1/ ^ � � � ^ ı.xn/ ! ı

�
f �.x1; : : : ; xn/

��
for each primitive function-symbol f , of however many places. We also need (if this is
not already covered) a proof that the domain is nonempty: 9xı.x/. It is also convenient
to allow terms and function-symbols to be translated using descriptions, which can then
be eliminated as Russell taught. In that case, we need B to prove that the descriptions
are proper.

8. Facts concerning interpretability can generally be verified in the theory known as
I�0 C �1, which is itself interpretable in Q. Note that any theory this strong will be
subject to the second incompleteness theorem (see [35]).

9. As Feferman [7, Theorem 5.9] famously showed, if B is reflexive, in the sense to be
mentioned shortly, then there are ways B0 of specifying the same set of axioms so that
B0 will prove Con.B0/. We will ignore this complication here, however, and assume
that all our theories are specified in “nice” ways.
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10. The proof of this result was first published by Feferman [7, Theorem 6.9].

11. These are customarily abbreviated: 8x < t.� � � / and 9x < t.� � � /.

12. Q7 is then redundant and is typically omitted.

13. That I�0 is locally interpretable in Q was first proven by Nelson [25]. Wilkie proved
that it is globally interpretable in Q. The proof is discussed by both Hájek and Pudlák
[13, pp. 366–70] and by Burgess [2, Section 2.2].

14. Visser [33] gives lots of information about sequentiality.

15. What we would normally have, in the language of arithmetic, is a formula val.x; y; z/
meaning “z is the value x assigns to the yth variable,” rather than a functional expres-
sion as in the text. But these complications affect nothing that follows and clutter the
exposition, so I shall ignore them.

16. It appears to have been Wang [34] who first worked out the details of this sort of con-
struction.

17. More formally, the theories in which we are interested can be characterized in terms of
the relativized arithmetical hierarchy (see [13, pp. 81ff]).

18. There are some interesting questions still open here. Enayat has asked, for example,
whether DT�ŒT � can ever be globally interpretable in T , if T is finitely axiomatized,
and the same sort of question arises for DTŒT �, as well. If not, then that would show that
even just adding the T-sentences to a finitely axiomatized theory always increased the
theory’s logical strength (though, as we shall see, not nearly as much as adding a fully
compositional theory). See endnote 31 for some related remarks.

19. I learned Theorem 2.5 from Visser, who tells me that he regards it as “folklore.”

20. This technique is originally due to Solovay. Burgess [2, Section 2.2] gives an accessible
treatment. A more complete treatment is presented in Hájek and Pudlák [13, pp. 366ff].
The basic idea is that, if A.x/ is inductive in some theory U—that is, if U ` A.0/ and
U ` A.x/ ! A.Sx/—then, from U’s point of view, the natural numbers might as well
just be the numbers that satisfy A.x/. Unsurprisingly, that is not quite right, but the
details can be made to work.

21. Note that, if T is infinitely axiomatized, we will have to choose some specification of its
axioms, both in order to formalize “all axioms of T are true” and to formalize Con.T /.
In Theorem 2.8, then, we are using the same specification both times.

22. This will also be true in many cases when T is just finitely axiomatizable. It is an
interesting exercise to prove this. But we will officially stick to the case of theories that
are actually finitely axiomatized.

23. Leigh and Nicolai [23, Section 3.1] give a detailed proof.

24. Since CT�ŒI†n� is itself finitely axiomatized, it is not locally interpretable in I†n.
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25. It will be slightly stronger if, as mentioned in endnote 18, DTŒI†n� turns out not to be
globally interpretable in I†n.

26. This result is relevant to Halbach’s claim that the “uniform disquotation scheme”—our
DSŒ��—is plausibly analytic, since DSŒPA� is a conservative extension of PA (see [15,
Section 2]). What we are about to see is that this result depends crucially upon the choice
of PA as base theory. Whether one takes conservativity to be required for analyticity
or regards it as merely indicative of it, the uniform disquotation scheme appears to be
logically quite strong, transforming I†1 into a theory containing PA. It is only in very
special cases that it gives us nothing we did not already have.

27. This result can surely be improved by bounding the quantifier 9� in the first displayed
formula in the proof. It is not clear to me just how good the bound can be made
to be, however—that will depend upon exactly how we code sequences—so I am not
sure whether we can show that DSŒI�0� contains PA. But it seems almost certain that
DSŒI�0 C�1� contains PA.

28. The crucial point here is that, except for Sat, everything here is primitive recursive and
so is �1 in I†1.

29. This is where an attempt to use truth and substitution to prove a similar result would
break down. Let num.x/ be the numeral for x. Then we can certainly consider the
formula

T.pA
�
num.z/; num.v1//q

�
and the induction axiom for it will be available in DTŒI†1�. But there is no T-sentence
for T.pA.num.z/; num.v1//q/, with variable z and v1. There are only T-sentences for
the various instances of this formula, and we can use only finitely many of them at a
time.

30. By the following calculation:

9�
�
�

0
� � ^ val.�; 0/ D z ^ Sat�

�
pA.v0; v1/q

��
9�

�
�

0
� � ^ val.�; 0/ D z ^ A

�
val.�; 0/; val.�; 1/

��
9�

�
�

0
� � ^ A

�
z; val.�; 1/

��
A

�
z; val.�; 1/

�
The last step uses the fact that, since � 0

� � , val.�; 1/ D val.�; 1/.

31. Visser has observed that DS�ŒT � is never globally interpretable in T , if T is finitely
axiomatized. Even the Sat-sentences by themselves, then, are not logically trivial.

32. Note that it follows from Theorem 3.2 that CT�ŒPA� does not prove that all axioms of
PA are true.

33. An objection along these lines was communicated to me by Burgess, whose student Noel
Swanson had made it in response to an earlier manuscript of mine that covered much of
the material we are discussing (see [19]). Thanks to both of them for the objection.

34. Something like this result has presumably been known for some time, though I do not
know of any previous statement of the result in this sort of form: as applied to axiomatic
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theories of truth. I present a detailed proof elsewhere (see [18, Section 3.4]). It may be
that this result is not the best possible and that it can be strengthened to T � I�0. It is
unclear, however, whether that is true, for reasons I discuss in the paper just cited. Note
that the remarks made in endnote 21 apply here, too.

35. Of course, this is true only so long as U is a subtheory of PA. In that respect, then, The-
orem 3.3 can be used to “pull apart” the roles played by the object theory and the base
theory, so long as T is an arithmetical theory that PA does not already prove consistent.
But that seriously limits the scope of the result, and Corollary 3.4 then has limited appli-
cation, since there are no finitely axiomatizable extensions of PA in the same language.

36. Wang [34, p. 260] credits Rosser with the observation that we do need to ask how CTŒPA�
manages to prove that all of PA’s axioms are true, and not just that each of them is, and
he gives the first detailed proof of that fact. I give a more modern presentation of this
result elsewhere (see [18, Section 3.4]).

37. It is, at present, unclear whether this result can be strengthened to give us a proper
converse of Theorem 2.5. It would be really nice if it could, since we could then conclude
that CT�ŒT � was mutually interpretable with Q C Con.T /. As we shall see below,
though, we do get this result in the disentangled setting.

38. One well known such theory is primitive recursive arithmetic, but its language is not
finite, and it is not clear how the results proven here apply to such theories.

39. Simply because L might be the language of set theory, and there are way too many sets
to code even finite sequences of them as numbers.

40. The missing details are provided elsewhere (see [18, Section 4.1]).

41. There are again questions about what exactly it means to extend the induction scheme,
in general. But we will limit our attention to cases where it is clear what it means.

42. Because our theory is many-sorted, quantifiers of any of the three types could now
appear in the induction axioms. That leads to the question what exactly we mean by a
†n-formula in the present setting. It turns out that we can ignore the differences between
types of quantifiers for our purposes. Thus, for example, 9x.Den� .t; x// counts as †1

for our purposes, and 8�9t9x.Den� .t; x// counts as …2.

43. This means, among other things, that there is a materially adequate, fully compositional
theory of truth for the language of ZFC that is interpretable in Q.

44. If L contains no terms other than variables, then we may not be able to specify a one-
element domain via a formula ı.x/ with just x free. In that case, we will have to use a
parameter, which means that TT�

L
ŒQ� will only be parametrically interpretable in Q.

45. If T is some finitely axiomatizable subtheory of PA, then this is of course a boring result.
There is no reason whatsoever to expect, say, TT�

L
ŒPA�C I†2 to be interpretable in I†2,

and in fact PA is not interpretable in any of its finitely axiomatizable subtheories (see [7,
Theorem 6.8]). But of course T need not be a subtheory of PA. It could, for example,
be Q C Con.PA/, and then Corollary 4.11 tells us that TT�

L
ŒPA� C .Q C Con.PA//

is not interpretable in Q C Con.PA/. It is one of the advantages of the present way of
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proceeding, however, that T need not even be formulated in the language of arithmetic.
We know that ZF ` Con.PA/. So let C be the finite set of axioms of ZF that are
used in that proof. Since C ` Con.PA/, it follows from results of Feferman’s that C

is not interpretable in PA. Yet it still follows from Corollary 4.11 that TT�
L
ŒQ� C C ,

and so TT�
L
ŒPA�C C , is not interpretable in C . Clearly, it is the theory of truth that is

responsible for the extra strength.

46. I have made a similar complaint elsewhere (see [17, Section 3]).

47. DDT stands for disentangled disquotational truth, DDS for disentangled disquotational
satisfaction.

48. It is true that DDSLŒI†n� is interpretable in I†n: we can give L a trivial interpretation
again. But we can do that for TTLŒI†n�, as well.

49. This is because I†2 is the same theory as I†1 plus reflection for †3 formulas (see
[1, p. 231, Theorem 7]). So I†2 proves Con.I†1 C Con.I†1//. Thanks to Volodya
Shavrukov for confirming my suspicion and for the reference.

50. The same proof works for subtheories of PA such as I†1, taken as the syntactic theory.

51. Note that this will be true even if there are nonstandard numerals.

52. I will not pursue the issue here, but if one wanted to formalize model-theoretic reasoning
in the sort of framework in which we are working, then what one would need to do is
add a third sort of language, that in which the model is to be described, and a “theory
of models” that allows to reason about their structure. The truth-theory would then no
longer be homophonic, but would interpret the object language by using the language
of the theory of models. What was the object theory then becomes part of our theory
about the structure of the model. Its role is simply to ensure that certain statements of
the object language come out true in that model.

53. A similar point is made by Leigh and Nicolai [23, Section 4.1].

54. Yes, there is a special case. We will get to it.

55. Field [9, p. 534] emphasizes that no deflationist has ever held that truth is “expressively”
insubstantial.

56. In my view (see [17, Section 4]), the T-sentences themselves are not trivialities, either,
but for quite different reasons.

57. This paper is one of many to emerge from an earlier manuscript, “The Strength of Truth
Theories” [19], that ultimately became unmanageable. Thanks to Volker Halbach and
Jeff Ketland for conversations early in the history of my work on this topic, and to Josh
Schechter for conversations later on, that helped greatly. Comments on the earlier man-
uscript from Cezary Cieśliński and Ali Enayat were also very helpful. Thanks also to
two anonymous referees for their remarks. Talks incorporating some of these ideas were
given at a conference on philosophical logic, organized by Delia Graff Fara and held at
Princeton University in April 2009; at the New England Logic and Language Colloquium
and at the Philosophy of Mathematics Seminar at Oxford University, both in May 2011;



The Logical Strength of Compositional Principles 31

and at a meeting of the Logic Group at the University of Connecticut, in April 2012.
Thanks to everyone present for their questions and comments, especially J. C. Beall,
John P. Burgess, Hartry Field, Daniel Isaacson, Graham Leigh, Carlo Nicolai, Charles
Parsons, Agustín Rayo, and Lionel Shapiro, as well as Volker and Josh, again. Special
thanks to my commentator at Princeton, Josh Dever, whose comments were insightful
and lucid, as well as helpful. I owe the greatest debt, however, to Albert Visser. Just as
my ideas were starting to come together, discussions with Albert transformed the direc-
tion of this project. It was from him that I learned of Theorem 2.8 and its attendant
corollaries, which led, of course, to the idea that we should focus on interpretability, not
on conservativity, which is pretty much the central idea of this paper. Albert has also
read many drafts along the way and provided extensive feedback. Obviously, he bears no
responsibility for what I have done with the idea, and I am not sure he would agree with
how I have developed it. Nonetheless, this paper would never have been written without
Albert’s assistance, for which I am extremely grateful.
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