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Forking and Dividing in Henson Graphs

Gabriel Conant

Abstract For n � 3, define Tn to be the theory of the generic Kn-free graph,
where Kn is the complete graph on n vertices. We prove a graph-theoretic char-
acterization of dividing in Tn and use it to show that forking and dividing are the
same for complete types. We then give an example of a forking and nondividing
formula. Altogether, Tn provides a counterexample to a question of Chernikov
and Kaplan.

1 Introduction

Classification in model theory, beginning with stability theory, is strongly fueled by
the study of abstract notions of independence, the frontrunners of which are forking
and dividing. These notions have proved useful in the abstract treatment of inde-
pendence and dimension in the stable setting and initiated a quest to understand
when they are useful in the unstable context. For example, significant success has
been achieved in the class of simple theories (see Kim and Pillay [7]). Meaningful
results have also been found for NIP theories and, more generally, NTP2 theories,
which include both simple and NIP. A notable example is the following result from
Chernikov and Kaplan [3].

Theorem (Chernikov and Kaplan) Suppose that M is a sufficiently saturated mon-
ster model of an NTP2 theory. Given C � M, the following are equivalent.

(i) A partial type forks over C if and only if it divides over C .
(ii) C is an extension base for nonforking; that is, if �. Nx/ is a partial type with

parameters from C , then �. Nx/ does not fork over C .

In general, if condition (i) holds for a set C , then condition (ii) does as well. In
fact, condition (ii) should be thought of as the minimal requirement for nonforking
to be meaningful for types over C . In particular, if C is not an extension base for
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nonforking, then there are types with no nonforking extensions. There are few known
examples where condition (ii) fails and, in most of them, this happens due to some
kind of circular ordering (see, e.g., Tent and Ziegler [10, Exercise 7.1.6]). A priori,
condition (i) is harder to achieve and, even before the theorem above, was known to
hold for all sets in certain well-behaved classes of theories (e.g., simple theories [7]).
This leads to the natural question, which is asked in [3], of whether the above theorem
extends to classes of theories other than NTP2 (e.g., NSOP). In this paper, we give
an example of an NSOP theory in which condition (ii) holds for all sets (in a rather
strong way), while condition (i) fails in general.

We will consider the theory of a well-known structure: the generic Kn-free graph,
also known as the Henson graph. Our main goal is to characterize forking and divid-
ing in this theory, which is known to be TP2 and NSOP (in fact, NSOP4). We will
first show that dividing independence has a meaningful graph-theoretic interpreta-
tion, which reflects the combinatorics of the structure in a precise way. We will then
show that, despite the complexity of the theory, forking and dividing are the same for
complete types, which implies every set is an extension base for nonforking. On the
other hand, we will show that there are formulas which fork, but do not divide.

2 Model-Theoretic Preliminaries

This section contains definitions and basic facts concerning forking and dividing. We
first specify some conventions that will be maintained throughout the paper. If T is
a complete first-order theory and M is a monster model of T , we write C � M to
mean that C is a “small” subset of M; that is, C � M and M is jC jC-saturated.
We use the letters a; b; c; : : : to denote singletons, and Na; Nb; Nc; : : : to denote tuples (of
possibly infinite length). We let j Naj denote the length of a tuple. Given C � M, we
will abuse notation and write Na 2 C to mean that Na is a tuple of elements from C .
We will also frequently identify tuples with their sets of coordinates; for example,
Na \ Nb denotes the set of elements occurring as coordinates of both Na and Nb. When
working with subsets of M, we omit the union symbol (e.g., AB denotes A [ B).

Definition 2.1 Suppose that C � M, �. Nx; Ny/ is a partial type with parameters
from C , and Nb 2 M.

(1) The type �. Nx; Nb/ divides over C if there is a C -indiscernible sequence
. Nbl /l<! , with Nb0 D Nb, such that

S
l<! �. Nx; Nbl / is inconsistent.

(2) The type �. Nx; Nb/ forks over C if there is some D � NbC such that, for any
p 2 Sn.D/, if p extends �. Nx; Nb/, then p divides over C .

A formula '. Nx; Nb/ forks (divides) over C if ¹'. Nx; Nb/º forks (divides) over C .

The following basic facts can be found in [10, Chapter 7].

Proposition 2.2 Let C � M.
(a) If a complete type forks (divides) over C , then it contains some formula that

forks (divides) over C .
(b) If �. Nx/ is a consistent type over C , then �. Nx/ does not divide over C .
(c) A partial type �. Nx; Nb/ forks over C if and only if there are finitely many

formulas '1. Nx; Nb1/; : : : ; 'm. Nx; Nbm/ such that �. Nx; Nb/ `
Wm

iD1 'i . Nx; Nbi / and,
for all 1 � i � m, 'i . Nx; Nbi / divides over C .
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Nondividing and nonforking are used to define the following ternary relations on
small subsets of M:

(1) A j^
d

C
B if and only if tp.A=BC / does not divide over C ;

(2) A j^
f

C
B if and only if tp.A=BC / does not fork over C .

These relations were originally defined to abstractly capture notions of indepen-
dence and dimension in stable theories and have been found to still be meaningful in
more complicated theories as well. In particular, we will consider the interpretation
of these notions in the unstable theories of certain ultrahomogeneous graphs.

3 Graphs

Throughout the paper, all graphs are undirected and without loops or multiple edges.
We say a graph G is complete if any two distinct points are connected by an edge and
G is independent if no two points are connected by an edge. Recall that a countable
graph G is ultrahomogeneous if any graph isomorphism between finite subsets of G

extends to an automorphism of G.
The canonical example of an ultrahomogeneous graph is the countable random

graph, which contains (an isomorphic copy of) any finite graph as an induced sub-
graph. We let G denote the random graph. Henson [5] introduced another family of
ultrahomogeneous graphs: the generic Kn-free graphs, where n � 3 and Kn is the
complete graph on n vertices. These countable graphs are often called the Henson
graphs. For a particular n � 3, there is a unique such graph up to isomorphism.

Definition 3.1 Fix n � 3, and let Kn be the complete graph on n vertices. The
generic Kn-free graph, denoted Hn, is the unique countable Kn-free graph such that

(i) any finite Kn-free graph is isomorphic to an induced subgraph of Hn,
(ii) any graph isomorphism between finite subsets of Hn extends to an automor-

phism of Hn.

The graphs G and Hn, for some n � 3, can be directly constructed as the Fraïssé
limits of the classes of, respectively, all finite graphs and all finite Kn-free graphs.

We study graphs as structures in the language L D ¹Rº, where R is interpreted
as the binary edge relation. We set T0 D Th.G / and, for n � 3, Tn D Th.Hn/.

The following is a well-known fact and informative exercise (see, e.g., Hodges [6,
Chapter 7] or [10, Exercise 4.4.3]).

Fact 3.2 For any n 2 ¹0º [ ¹3; 4; : : :º, Tn is an @0-categorical theory with quan-
tifier elimination.

Fix n � 3, and fix Hn ˆ Tn, a sufficiently saturated monster model of Tn. As
Hn is a graph, we can embed it in a larger monster model G ˆ T0. Note that Hn

is a substructure (induced subgraph) of G, but not an elementary substructure. Let
�.Hn/ D sup¹� W Hn is �-saturatedº.

For the rest of the paper, n � 3, Hn, and G are fixed. By saturation, we have the
following fact.

Proposition 3.3 Suppose that C � Hn and X � G are such that X is Kn-free,
C � X , and jX j � �.Hn/. Then there is a graph embedding f W X �! Hn such
that f jC D idC .
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The remainder of this section is devoted to specifying notation and conventions con-
cerning the language L. First, we consider types.

Definition/Convention 3.4 Suppose that C � G, with jC j < �.Hn/.
(1) We only consider partial types �. Nx/ such that j Nxj � �.Hn/. Further-

more, we will assume types are “symmetrically closed.” For example,
R.xi ; xj / 2 �. Nx/ if and only if R.xj ; xi / 2 �. Nx/.

(2) An R-type over C is a collection �. Nx/ of atomic and negated atomic
L-formulas, none of which is of the form xi D c, where c 2 C .

(3) Suppose that �. Nx/ is an R-type over C . An optimal solution of �. Nx/ is a
tuple Na ˆ �. Nx/ such that
(i) ai ¤ aj for all i ¤ j and ai … C for all i ,
(ii) R.ai ; aj / if and only if R.xi ; xj / 2 �. Nx/,
(iii) given c 2 C , R.ai ; c/ if and only if R.xi ; c/ 2 �. Nx/.

We will frequently use the following fact, which says that we can always find optimal
solutions of R-types.

Proposition 3.5 Suppose that C � Hn, and �. Nx/ is an R-type over C .
(a) �. Nx/ is consistent with T0 if and only if it has an optimal solution in G.
(b) �. Nx/ is consistent with Tn if and only if it has an optimal solution in Hn.

This is a straightforward exercise, which we leave to the reader. The idea is that a
type cannot prove that an edge exists in a graph, without explicitly saying so. More-
over, removing extra edges to “optimize” the solution of a consistent type is always
possible and, in the case of Tn, will not conflict with the requirement that the solution
be Kn-free.

Next, we specify notation and conventions concerning L-formulas.

Definition/Convention 3.6 Suppose that C � G.
(1) Let L0.C / be the collection of conjunctions of atomic and negated atomic

L-formulas, with parameters from C , such that no conjunct is of the form
x D c, where x is a variable and c 2 C . When we write '. Nx; Ny/ 2 L0.C /,
we will assume further that no conjunct of '. Nx; Ny/ is of the form xi D xj

or yi D yj , for some i ¤ j . When we write '. Nx; Nb/, we assume that Nb is a
tuple of pairwise distinct coordinates.

(2) Given '. Nx/ 2 L0.C / and �. Nx/, an atomic or negated atomic formula, we
write “'. Nx/ B �. Nx/” if �. Nx/ is a conjunct of '. Nx/.

(3) We will assume that L0.C /-formulas are “symmetrically closed.” For exam-
ple '. Nx/ B R.x; c/ if and only if '. Nx/ B R.c; x/.

(4) Let LR.C / be the collection of formulas '. Nx; Ny/ 2 L0.C / such that no
conjunct is of the form xi D yj .

The main result of this paper will be a characterization of forking and dividing in
Tn. We will make use of the following characterization of dividing in T0, which is a
standard exercise (see, e.g., [10, Exercise 7.3.14]).

Fact 3.7 Fix C � G and '. Nx; Ny/ 2 L0.C /. Suppose that Nb 2 GnC is such that
'. Nx; Nb/ is consistent. Then '. Nx; Nb/ divides over C (with respect to T0) if and only if
'. Nx; Nb/ B xi D b for some b 2 Nb. Consequently, if A; B; C � G, then A j^

d

C
B if

and only if A \ B � C .
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The theory T0 is a standard example of a simple theory, and so the previous fact
also gives a characterization of forking. On the other hand, Tn is nonsimple. Indeed,
the Henson graph is a canonical example where j^

f fails amalgamation over models
(see [7]). A direct proof of this (for n D 3) can be found in Hart [4, Example 2.11(4)].
The precise classification of Tn is well known and summarized by the following fact.

Fact 3.8 The theory Tn is TP2, SOP3, and NSOP4.

See Chernikov [2] and Shelah [9] for definitions of these properties. The proof of
TP2 can be found in [2] for n D 3. The properties SOP3 and NSOP4 are demon-
strated in [9] for n D 3. The generalizations of these arguments to n � 3 are fairly
straightforward. Moreover, NSOP4 for all n � 3 also follows from a more general
result in Patel [8].

4 Dividing in Tn

The goal of this section is to find a graph-theoretic characterization of dividing inde-
pendence in Tn. Therefore, unless otherwise stated, when we say that a partial type
divides or is consistent, we mean with respect to Tn.

We first define a graph-theoretic binary relation, denoted Kn.B=C /, on pairs
.B; C / of disjoint graphs.

Definition 4.1

(1) Given A; B � G, we write R.A; B/ if R.a; b/ holds for all a 2 A and b 2 B .
(2) Suppose that B; C � G are disjoint. We say B is Kn-bound to C , written

Kn.B=C /, if there is B0 � BC such that
(i) jB0j D n and B0 \ C ¤ ; ¤ B0 \ B ,
(ii) B0 \ C is complete and R.B0 \ B; B0 \ C /.
We say B0 witnesses Kn.B=C /. Note that B0 is “almost isomorphic” to Kn,
in the sense that the only possible missing edges are between points in B0\B .

(3) Suppose that '. Nx; Ny/ 2 LR.C / and Nb 2 HnnC such that '. Nx; Nb/ is consis-
tent. We say Nb is '-Kn-bound to C , written K

'
n . Nb=C /, if there is B � Nb,

with 0 < jBj < n such that
(i) :Kn.B=C /,
(ii) Kn.B= NaC / for all Na 2 Hn such that Na ˆ '. Nx; Nb/.
We say B witnesses K

'
n . Nb=C /.

The main result of this section (Theorem 4.4) will show that K
'
n is the graph-

theoretic interpretation of dividing. In particular, for '. Nx; Ny/ 2 LR.C / and
Nb 2 HnnC with '. Nx; Nb/ consistent, we will show that '. Nx; Nb/ divides over C

if and only if K
'
n . Nb=C /. The reverse direction of the proof of this will use the

following recipe for constructing indiscernible sequences.

Construction 4.2 Fix C � Hn and Nb 2 HnnC such that Nb has pairwise distinct
coordinates. Given B � Nb, we construct an induced subgraph �.C Nb; B/ of G as
follows.

The vertex set of �.C Nb; B/ is C [
S

l<!
Nbl , where Nb0 D Nb and, for all 0 < l < !,

j Nbl j D j Nbj and Nbl is disjoint from C [
S

m<l
Nbm. We define edges in �.C Nb; B/ so

that
(1) Nbl �C

Nb for all l < !,
(2) given i < j � j Nbj, if bi ; bj 2 B , then R.bl

i ; bm
j / for all l < m < !.
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We let I.C Nb; B/ denote the infinite sequence . Nbl /l<! . Note that I.C Nb; B/ is
C -indiscernible. If the graph �.C Nb; B/ is Kn-free, then, after possibly replacing
�.C Nb; B/ by some isomorphic copy, we may assume that �.C Nb; B/ is an induced
subgraph of Hn. In this case, I.C Nb; B/ is a C -indiscernible sequence in Hn.

Lemma 4.3 Fix C � Hn and '. Nx; Ny/ 2 LR.C /. Suppose that Nb 2 HnnC is such
that '. Nx; Nb/ is consistent and K

'
n . Nb=C /, witnessed by B � Nb.

(a) �.C Nb; B/ is Kn-free, and so I.C Nb; B/ is a C -indiscernible sequence in Hn.
(b) If I.C Nb; B/ D . Nbl /l<! , then ¹'. Nx; Nbl / W l < !º is .n � 1/-inconsistent with

Tn.

Proof Part (a). Suppose that Kn Š W � �.C Nb; B/. Then W \
S

I.C Nb;

B/ ¤ ;, since C is Kn-free. Say W \
S

I.C Nb; B/ D ¹b
l1

i1
; : : : ; b

lr

ir
º with

l1 � � � � � lr . Note that, by construction of �.C Nb; B/, is ¤ it for all 1 � s < t � r .
Define V D .W \ C / [ ¹bi1 ; : : : ; bir º. If l1 D lr , then, since Nbl1 �C

Nb, it follows
that V Š Kn, which is a contradiction. Therefore l1 < lr . By construction of
�.C Nb; B/, it follows that bi1 ; bir 2 B . If 1 � s � r , then we have either l1 < ls
or ls < lr , and in either case it follows that bis 2 B . Therefore r � jBj � n � 1;
in particular C \ W ¤ ;. But then V witnesses Kn.B=C /, which contradicts the
definition of K

'
n . Nb=C /.

Part (b). By indiscernibility of I.C Nb; B/, it suffices to show that the R-type
�. Nx/ D ¹'. Nx; Nbl / W l < n � 1º is unsatisfiable in Hn. So suppose, toward a con-
tradiction, that �. Nx/ is satisfiable, and let Na 2 Hn be an optimal solution. Then
Na ˆ '. Nx; Nb/, so, by assumption, there is D � BC Na witnessing Kn.B=C Na/. By
definition, D \ B ¤ ;. Suppose that D \ B D ¹bi0 ; : : : ; bik º, with i0 < � � � < ik .
Note that k < n � 1. Let B0 D ¹b0

i0
; : : : ; bk

ik
º. We make the following observations.

(1) D \ C Na is complete, since D witnesses Kn.B=C Na/.
(2) B0 is complete, by construction of �.C Nb; B/.
(3) R.B0; D \ C /, since R.D \ B; D \ C /, and I.C Nb; B/ is C -indiscernible.
(4) R.B0; D \ Na/: if aj 2 D \ Na and bt

it
2 B0, then, since R.D \ B; D \ Na/

and Na is an optimal solution of �. Nx/, we have
R.aj ; bit / )

�
'. Nx; Nb/ B R.xj ; bit /

�
)

�
'. Nx; Nbt / B R.xj ; bt

it
/
�

) R.aj ; bt
it

/:

These observations imply .D \ C Na/B0 Š Kn, which is a contradiction.

Theorem 4.4 Fix C � Hn, '. Nx; Ny/ 2 LR.C /, and Nb 2 HnnC such that '. Nx; Nb/

is consistent. Then '. Nx; Nb/ divides over C if and only if K
'
n . Nb=C /.

Proof .(/: Suppose that B � Nb witnesses K
'
n . Nb=C /. By Lemma 4.3,

�.C Nb; B/ � Hn and ¹'. Nx; Nbl / W l < !º is .n � 1/-inconsistent. So '. Nx; Nb/

divides over C .
.)/: Suppose that '. Nx; Nb/ divides over C . Then there is a C -indiscernible

sequence . Nbl /l<! , with Nb0 D Nb, such that �. Nx/ WD ¹'. Nx; Nbl / W l < !º is incon-
sistent.

Let F D C [
S

l<!
Nbl . Consider F as a subgraph of G, and note that . Nbl /l<!

is still C -indiscernible in G. Since '. Nx; Ny/ 2 LR.C / and '. Nx; Nb/ is still consistent
with respect to T0, it follows from Fact 3.7 that '. Nx; Nb/ does not divide over C with
respect to T0. Therefore, there is an optimal realization Nd 2 G of �. Nx/. If F Nd is
Kn-free, then F Nd embeds in Hn over F , which is a contradiction. Therefore there is
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Kn Š W � F Nd . Note that W \ Nd ¤ ; since F is Kn-free. To ease notation, we
assume that W \ Nd D .d1; : : : ; dm/.

Suppose, toward a contradiction, that W \ F � C . Let Na 2 Hn be a solution to
'. Nx; Nb/, and set A D ¹a1; : : : ; amº. Since Nd is an optimal realization of �. Nx/, we
can make the following observations.

(1) If 1 � i ¤ j � m, then R.di ; dj / ) .'. Nx; Nb/ B R.xi ; xj // ) R.ai ; aj /.
(2) If 1 � i � m and c 2 W \ F , then R.di ; c/ ) .'. Nx; Nb/ B R.xi ; c// )

R.ai ; c/.
Altogether, Kn Š .W \F /A, which is a contradiction. Therefore W \

S
l<!

Nbl ¤ ;.
Let W \

S
l<!

Nbl D ¹b
l1

j1
; : : : ; b

lk

jk
º, and note that 1 � k � n � 1. Note also

that s 7! js is injective. Indeed, if s ¤ t and js D jt , then R.b
ls

js
; b

lt

js
/, and so

¹bl
js

W l < !º is an infinite complete graph by indiscernibility, which is a contradic-
tion. Therefore, to ease notation, we can assume W \

S
l<!

Nbl D ¹b
l1

1 ; : : : ; b
lk

k
º.

Let B D ¹b1; : : : ; bkº.

Claim 1 :Kn.B=C /.

Proof Suppose that X � BC witnesses Kn.B=C /. Set B0 D ¹b
ls
s W bs 2 B \Xº.

By indiscernibility, .X \ C /B0 witnesses Kn.B0=C /. Note also that B0 � W and
W is complete. Altogether, .X \ C /B0 Š Kn, which is a contradiction. aclaim

Claim 2 If Na 2 Hn is a solution of '. Nx; Nb/, then Kn.B=C Na/.

Proof Fix Na ˆ '. Nx; Nb/, and let A D ¹a1; : : : ; amº. We show .W \ C /AB wit-
nesses Kn.B=C Na/, which means verifying all of the necessary relations. Recall
that Nd is an optimal solution to �. Nx/. Arguing as in (1) and (2) above, we have that
.W \C /A is complete. By indiscernibility, we have R.B; W \C /, and so it remains
to show R.B; A/. For this, if ai 2 A and bs 2 B , then, since di ; b

ls
s 2 W , we have

R.di ; bls
s / )

�
'. Nx; Nbls / B R.xi ; bls

s /
�

)
�
'. Nx; Nb/ B R.xi ; bs/

�
) R.ai ; bs/: aclaim

By Claims 1 and 2, we have K
'
n . Nb=C /, as desired.

We can now give the full characterization of nondividing formulas in Tn and the
ternary relation j^

d on subsets of Hn, which gives the analogy of Fact 3.7 for Tn.

Theorem 4.5

(a) Suppose that C � Hn, '. Nx; Ny/ 2 L0.C /, and Nb 2 HnnC are such
that '. Nx; Nb/ is consistent. Then '. Nx; Nb/ divides over C if and only if
'. Nx; Nb/ B xi D b for some b 2 Nb, or '. Nx; Ny/ 2 LR.C / and K

'
n . Nb=C /.

(b) Suppose that A; B; C � Hn. Then A j^
d

C
B if and only if

(i) A \ B � C , and
(ii) for all Nb 2 BnC , if Kn. Nb=AC /, then Kn. Nb=C /.

Proof Part (a) follows immediately from Theorem 4.4.
Part (b). .)/: If (i) fails, then we clearly have A 6 j^

d

C
B . Suppose that (ii) fails,

and fix Nb 2 BnC such that :Kn. Nb=C / and Kn. Nb=AC /. Fix W � AC Nb witness-
ing Kn. Nb=AC /. Without loss of generality, let W \ A D ¹a1; : : : ; amº, and let
W \ Nb D .b1; : : : ; bk/ DW Nb�. Let Nx D .x1; : : : ; xm/ and Ny D .y1; : : : ; yk/,
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and define an LR.C /-formula '. Nx; Ny/ expressing that .W \ C / Nx is complete and
R..W \ C / Nx; Ny/. Then K

'
n . Nb�=C / and '. Nx; Nb�/ 2 tp.A=BC /. Therefore A 6 j^

d

C
B

by Theorem 4.4.
.(/: Suppose that A 6 j^

d

C
B . Then there is some '. Nx; Ny/ 2 L0.C / and Nb 2 BnC

such that '. Nx; Nb/ divides over C and '. Nx; Nb/ 2 tp.A=BC /. If '. Nx; Ny/ B xi D yj for
some i; j , then ai D bj 2 .A \ B/nC , and (i) fails. Otherwise, '. Nx; Ny/ 2 LR.C /

and so, by Theorem 4.4, we may fix Nb� � Nb witnessing K
'
n . Nb=C /. By definition, we

have :Kn. Nb�=C / and Kn. Nb�=AC /, and so (ii) fails.

The theorem translates the model-theoretic notion of dividing to the graph-theoretic
notion K

'
n . Nb=C /. Although the definition of K

'
n . Nb=C / implies that we must check

all solutions of ', it suffices to check an optimal one.

Corollary 4.6 Fix C � Hn, '. Nx; Ny/ 2 LR.C /, and Nb 2 HnnC such that '. Nx; Nb/

is consistent. Let Na be an optimal solution. Then '. Nx; Nb/ divides over C if and only
if there is B � Nb such that :Kn.B=C / and Kn.B=C Na/.

Proof By Theorem 4.4, we need to show K
'
n . Nb=C / if and only if there is B � Nb

such that :Kn.B=C / and Kn.B=C Na/. The forward direction is trivial.
Conversely, suppose that B � Nb is such that :Kn.B=C / and Kn.B=C Na/. Let Nd

be any solution to '. Nx; Nb/. We want to show Kn.B=C Nd/. Let B0 � BC Na witness
Kn.B=C Na/. Define B1 D B0 \ BC and D D ¹di W ai 2 B0 \ Naº. Since Na is
optimal, arguments similar to those in Lemma 4.3 and Theorem 4.4 show that B1D

witnesses Kn.B=C Nd/.

We end this section by giving some examples and traits of dividing formulas in Tn.

Corollary 4.7 Suppose that C � Hn and b1; : : : ; bn�1 2 HnnC are pairwise
distinct. Then the formula

'.x; Nb/ WD

n�1̂

iD1

R.x; bi /

divides over C if and only if :Kn. Nb=C /.

Proof First, if '.x; Nb/ is inconsistent, then Nb Š Kn�1, and so :Kn. Nb=C /. So we
may assume that '. Nx; Nb/ is consistent.

.)/: If '.x; Nb/ divides over C , then, by Theorem 4.4, there is some B � Nb such
that :Kn.B=C / and Kn.B=Ca/ for any a ˆ '.x; Nb/. Let a ˆ '.x; Nb/ such that
:R.a; c/ for all c 2 C . Let X � CBa witness Kn.B=Ca/. Then :Kn.B=C /

implies a 2 X , and so X \ C D ; by choice of a. Therefore X � Ba � Nba,
jX j D n, and j Nbj D n � 1. It follows that B D Nb, and so :Kn. Nb=C /.

.(/: Note that if a realizes '.x; Nb/, then Kn. Nb=a/. So if :Kn. Nb=C /, then Nb

itself witnesses K
'
n . Nb=C /. By Theorem 4.4, '.x; Nb/ divides over C .

Corollary 4.8 Fix C � Hn and '. Nx; Ny/ 2 LR.C /. Suppose that Nb 2 HnnC is
such that '. Nx; Nb/ is consistent and divides over C . Define R' to be the set®

b 2 C Nb W '. Nx; Nb/ B R.xi ; b/ for some i
¯

[
®
xi W '. Nx; Nb/ B R.xi ; b/ for some b 2 C Nb

¯
:

Then jR' j � n and j Nb \ R' j > 1.
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Proof By assumption, we have K
'
n . Nb=C /. If Na is an optimal solution of '. Nx; Nb/,

then there is some X � C Nb Na witnessing Kn. Nb=C Na/. Note that X \ Na ¤ ; since
:Kn. Nb=C /. Set B D .X \ C Nb/ [ ¹xi W ai 2 Xº. Then jBj � n and B � R' since
Na is optimal. Finally, j Nb \ Bj D j Nb \ X j > 1 since otherwise X Š Kn.

Corollary 4.8 says that if a formula from LR.C / divides, then it needs to mention
edges between at least n vertices (and more than one parameter). This is not surpris-
ing since no consistent formula from LR.C / will divide in T0, and so dividing in Tn

should come from the creation of a graph that is too close to Kn.

5 Forking for Complete Types

In this section, we use our characterization of j^
d in Tn to show that forking and

dividing are the same for complete types. The proof takes two steps, the first of which
is full existence for the following ternary relation on graphs. We take the following
definition from Adler [1].

Definition 5.1 Given A; B; C � Hn, define edge independence by

A j^
R

C
B , A \ B � C and there is no edge from AnC to BnC :

In other words, A j^
R

C
B asserts that ABC is isomorphic to the free amalgamation

of AC and BC over C . It is easy to see that the free amalgamation of two Kn-free
graphs (over some common induced subgraph) is still Kn-free. Therefore, we have
the following fact, the details of which are left to the reader.

Lemma 5.2 For all A; B; C � Hn, there is A0 �C A such that A0 j^
R

C
B .

Using this, we can prove that j^
d and j^

f coincide in Tn, which yields a full
characterization of forking and dividing for complete types.

Theorem 5.3 Suppose that A; B; C � Hn. Then A j^
f

C
B if and only if A j^

d

C
B

if and only if A \ B � C and, for all Nb 2 BnC , Kn. Nb=AC / implies Kn. Nb=C /.

Proof The second equivalence is by Theorem 4.5, and dividing implies forking in
any theory. Therefore we only need to show A j^

d

C
B implies A j^

f

C
B . Suppose

that A 6 j^
f

C
B . Then there is some D � HnnBC such that A0 6 j^

d

C
BD for any

A0 �BC A. By Lemma 5.2, let A0 �BC A such that A0 j^
R

BC
D. By assumption,

we have A0 6 j^
d

C
BD.

Case 1: A0 \ BD 6� C .
We have A0 \ BD � BC by assumption, so this means there is b 2 .A0 \ B/nC .

But A0 �BC A and so b 2 .A \ B/nC . Therefore A 6 j^
d

C
B , as desired.

Case 2: A0 \ BD � C .
Then, since A0 6 j^

d

C
BD, it follows from Theorem 4.5 that there is Nb 2 BDnC

such that :Kn. Nb=C / and Kn. Nb=A0C /. Let X � A0C Nb witness Kn. Nb=A0C /. Note
that X � A0BCD. Moreover, note also that if X \ .A0nBC / D ;, then X � BCD,
and so X witnesses Kn. Nb=C /, which is a contradiction.

Therefore X \.A0nBC / ¤ ;. Then we claim that X � A0BC . Indeed, otherwise
there is u 2 X \ .A0nBC / and v 2 X \ .DnA0BC /. Therefore u ¤ v, u 2 A0, and
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v 2 Nb, and so, since X witnesses Kn. Nb=A0C /, we have R.u; v/. But this contradicts
that there is no edge from A0nBC to DnBC .

So we have X � A0BC . Let Nb� D X \ Nb 2 BnC . Then :Kn. Nb=C /

implies :Kn. Nb�=C /, and X witnesses Kn. Nb�=A0C /. Therefore A0 6 j^
d

C
B . Since

A0 �BC A, we have A 6 j^
d

C
B , as desired.

It is a general fact that, if j^
d

D j^
f in some theory T , then all sets are extension

bases for nonforking. Indeed, if a partial type forks over C , then it can be extended
to a complete type that forks (and therefore divides) over C . Therefore, by Propo-
sition 2.2(b), no partial type forks over its own set of parameters. So we have the
following corollary.

Corollary 5.4 If C � Hn, then C is an extension base for nonforking.

6 A Forking and Nondividing Formula in Tn

We have shown that forking and dividing are the same for complete types in Tn. In
this section, we show that the same result cannot be obtained for partial types, by
demonstrating an example of a formula in Tn that forks, but does not divide.

Lemma 6.1 Fix distinct points b1; b2; b3; b4 2 G such that Nb WD .b1; b2; b3; b4/ is
independent. Suppose that . Nbl /l<! is an indiscernible sequence in G, with Nb0 D Nb.
If

S
l<!

Nbl is K3-free, then there are i < j such that ¹bl
i ; bl

j W l < !º is independent.

Proof Let B D
S

l<!
Nbl , and assume that B is K3-free. Note that, for any i � 4

and l < m < !, we have :R.bl
i ; bm

i / by indiscernibility and the assumption that
B is K3-free. Moreover, for any i < j � 4 and l < !, we have :R.bl

i ; bl
j /

by indiscernibility and the assumption that Nb is independent. Therefore, to prove
the result, it suffices by indiscernibility to find i < j such that :R.b0

i ; b1
j / and

:R.b1
i ; b0

j /. Suppose, toward a contradiction, that there are no such i < j . Define
the function f W ¹.i; j / W 1 � i < j � 4º �! ¹0; 1º such that f .i; j / D 0 if and
only if R.b0

i ; b1
j /. In particular, for any i < j , if f .i; j / D 1, then R.b1

i ; b0
j /.

Claim For all i < j < k, f .i; j / D f .j; k/.

Proof Suppose not, and fix i < j < k with f .i; j / ¤ f .j; k/.
Case 1: f .i; j / D 1 and f .j; k/ D 0.

If f .i; k/ D 0, then, by indiscernibility, we have R.b1
i ; b0

j /, R.b0
j ; b2

k
/ and

R.b1
i ; b2

k
/. Then ¹b1

i ; b0
j ; b2

k
º Š K3, which is a contradiction. If f .i; k/ D 1,

then, by indiscernibility, we have R.b2
i ; b0

j /, R.b0
j ; b1

k
/ and R.b2

i ; b1
k
/. Then

¹b2
i ; b0

j ; b1
k
º Š K3, which is a contradiction.

Case 2: f .i; j / D 0 and f .j; k/ D 1.
Similar to Case 1, we see that f .i; k/ D 0 implies ¹b0

i ; b2
j ; b1

k
º Š K3, and

f .i; k/ D 1 implies ¹b1
i ; b2

j ; b0
k
º Š K3. aclaim

From the claim, we have f .1; 2/ D f .2; 3/ D f .3; 4/ D f .1; 3/. Then f .1; 2/ D 0

implies ¹b0
1 ; b1

2 ; b2
3º Š K3 and f .1; 2/ D 1 implies ¹b2

1 ; b1
2 ; b0

3º Š K3, which gives
the desired contradiction.
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Theorem 6.2 Fix C � Hn and Nb D .b1; b2; b3; b4/ 2 Hn such that C Š Kn�3, Nb

is independent, and R. Nb; C /. Let '.x; Nb/ WD
W

i<j R.x; bi bj C /. Then '.x; Nb/ forks
over C , but does not divide over C .

Proof For any i < j , we have jbi bj C j D n � 1, and so :Kn.bi ; bj =C /. More-
over, we clearly have that, for any a 2 Hn, R.a; bi bj C / implies Kn.bi ; bj =Ca/. By
Theorem 4.4, R.x; bi bj C / divides over C , and so '.x; Nb/ forks over C by Proposi-
tion 2.2(c).

Let . Nbl /l<! be C -indiscernible, with Nb0 D Nb. If there is some K3 Š W �S
l<!

Nbl , then Kn Š C W , since R. Nbl ; C / for all l < !. Therefore
S

l<!
Nbl is

K3-free and so, by Lemma 6.1, we obtain i < j such that B WD ¹bl
i ; bl

j W l < !º

is independent. Since jC j D n � 3, it follows that BC is Kn�1-free, and so there
is some a 2 Hn such that R.a; BC /. In particular, a ˆ ¹'.x; Nbl / W l < !º. By
Definition 2.1, '.x; Nb/ does not divide over C .

7 Final Remarks

We have shown that in the theory Tn (which is NSOP4 and TP2) all sets are extension
bases for nonforking, but forking and dividing are not always the same. However, this
only partially addresses the extent to which the results of [3] apply to theories with
TP2. In particular, forking is the same as dividing for complete types in Tn, which
means there is good behavior of nonforking beyond just the fact that all sets are
extension bases. This leads to the following amended version of the main question.

Question 7.1 Suppose that, in some complete first-order theory, all sets are exten-
sion bases for nonforking.

(1) Does NSOP3 imply forking and dividing are the same for partial types?
(2) For what classes of theories do we have j^

f
D j^

d ?
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