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A Diamond Principle Consistent with AD

Daniel Cunningham

Abstract We present a diamond principle ˙R concerning all subsets of ‚, the
supremum of the ordinals that are the surjective image of R. We prove that ˙R
holds in Steel’s core model K.R/, a canonical inner model for determinacy.

1 Introduction

Jensen [5, p. 293] formulated his diamond principle ˙� and proved that this princi-
ple holds in L, the class of constructible sets. The assertion ˙� is a combinatorial
property about all subsets of a regular cardinal � > !.

Definition 1.1 Let � be a regular uncountable cardinal. Then ˙� is the statement
that there is a sequence hA˛ W ˛ 2 �i such that A˛ � ˛ for ˛ 2 �, and for all A � �,
the set

¹˛ 2 �W A \ ˛ D A˛º

is stationary in �.

When � D !1, the diamond principle ˙!1
is denoted by ˙. Clearly ˙ implies that

the set of reals R can be well-ordered in order type !1, as every subset of ! must
appear among the A˛’s. Consequently, the principle ˙ is inconsistent with the axiom
of determinacy (AD).

Remark 1.2 The combinatorial principles ˙ and ˙� both hold in L (see Devlin
[3]) and in the Steel core model K (see Steel [11] and Schimmerling [9]). For any
real x, the inner models LŒx� and KŒx� are defined by allowing sets to be constructed
relative to the real x (see [3] and Hauser [4]). One can show that ˙ and ˙� hold in
LŒx� and KŒx� as well.
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Given a regular uncountable cardinal �, we see that ˙� also implies that there is a
well-ordering of R. Of course, any diamond principle that induces a well-ordering
of the reals is inconsistent with AD.

Let ‚ be the supremum of the ordinals which are the surjective image of R. In
this article we introduce a combinatorial principle ˙R which generalizes ˙‚. In
addition, we prove that ˙R holds in K.R/, an inner model where one can assume
AD.

Many of our proofs apply forcing arguments which can be easily understood by
anyone who is familiar with the basics of forcing as presented, say, in Kunen [7].
Moreover, our proofs require no consequences of the axiom of choice (AC) that are
not available in K.R/.

Recall that to prove the Löwenheim–Skolem theorem, one applies AC to show
that every countable satisfiable theory has a countable model. We now identify a
weaker form of this theorem that can be proved in ZF. Let

V
‰ be the conjunction

of a finite set ‰ of sentences of set theory. If
V

‰ has a transitive model (e.g., V˛),
then Barwise [1, Theorem 8.10] proves in ZF that

V
‰ has a transitive model in L.

Therefore, a version of the Löwenheim–Skolem theorem is provable without AC,
namely,

ZF ` .“‰ has a transitive model” H) “‰ has a countable transitive model”/:

Hence, if a sentence ' is true in every countable transitive model of a given finite
fragment of ZF, then it follows (using the reflection principle) that ' holds. Since
this semantical argument can be formalized in ZF, it thus follows that ZF ` '.

Does a forcing argument yield a proof in ZF? There will be times when we want
to prove that a certain statement ' holds in V , the universe of sets. To do this, we may
implement the following forcing argument: We naively presume that V is a countable
transitive model of ZF and then construct a generic extension V ŒG�. After working
in V ŒG�, we will conclude that ' holds in V . Such a forcing argument shows that
there exists a proof of ' in ZF because it will allow us to conclude that ' is true in
every countable transitive model of a particular finite fragment of ZF. To see this, let
‰ be a finite set of axioms in ZF so that whenever V is a countable transitive model
of ‰, we can be assured that V and V ŒG� will satisfy the specific axioms of ZF that
we used in our forcing argument. Hence, ' must be true in V and thus, as noted in
the previous paragraph, ZF ` '.

2 A Brief Overview of K.R/

We summarize the fundamental notions which will be assumed in the remaining
sections of the article. Let ! be the set of all natural numbers. Then R D !! is the
set of all functions from ! to !. We call R the set of reals.

Steel [10] defines a countably iterable R-premouse which we will denote as M.
Each premouse M is a model of V D L. EE;R/, where EE is a fine extender sequence
over R. The inner model K.R/ is then defined to be the “union” of these R-premice.
(Readers are directed to [10, Sections 1, 2] for more details on the definition of
K.R/.) Since K.R/ has a fine structure similar to that of L.R/, we have the following
lemma.

Lemma 2.1 Assume V D K.R/, and let S be a set. Then there is a surjection
f W � � R ! S for some ordinal �.
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Definition 2.2 We let Q D .Q; �/ be such that Q D ¹s 2 nR W n 2 !º and for
s; t 2 Q, define s � t if and only if dom.s/ � dom.t/ and t D s � dom.t/.

We will write s 2 Q to mean that s 2 Q. We let 1 denote the largest element in the
partial order Q. Let K.R/Q represent the class of Q-names in K.R/, that is,

K.R/Q D
®
� 2 K.R/ W (� is a Q-name)K.R/

¯
:

For each element a 2 K.R/, we define the Q-name La by the following recursion:
La D ¹h Lb; 1i W b 2 aº. By fusing the results of Cunningham [2] and [4], we have the
following theorem.

Theorem 2.3 Let G be Q-generic over K.R/. Then
(1) K.R/ŒG� ˆ ZFC,
(2) ‚K.R/ D !

K.R/ŒG�
1 .

In addition, the following statements are true in K.R/ŒG�:
(1) RK.R/ and G can be “canonically” coded by a single real x;
(2) V D KŒx�.

3 The Closed Unbounded Filter on ‚

We will investigate, within K.R/, the closed unbounded filter on ‚. First, we recall
the classic definitions and results concerning such filters on � whenever � is a regular
uncountable cardinal.

(1) A set X � � contains its limit points less than � when the following holds:
for each limit ordinal ˛ < �, if sup.X \ ˛/ D ˛, then ˛ 2 X .

(2) A set C � � is closed unbounded in � if C is an unbounded subset of �

containing all its limit points less than �. (This notion of a closed unbounded
set is absolute.)

(3) A set S � � is stationary in � if S \C ¤ ¿ whenever C is closed unbounded
in �.

(4) The closed unbounded filter on � is the set

F D ¹X � � W C � X for some closed unbounded subset C of �º:

(5) (ZF C AC) The closed unbounded filter F on � is �-complete; that is, for any
� < � and ¹X˛ W ˛ < �º � F we have that

T
˛<� X˛ 2 F . Moreover, F is

a normal filter; namely, F is closed under diagonal intersections.
In K.R/ one can prove that ‚ is a regular cardinal. When assuming AD, one can

also show that ‚ is a regular limit cardinal in K.R/. Let F be the closed unbounded
filter on ‚, that is,

F D ¹X � ‚ W C � X for some C that is closed unbounded in ‚º:

We will soon show that in K.R/ one does not need AC to prove that F is a
‚-complete normal filter and that F is R-complete.

Theorem 3.1 Assume V D K.R/. Suppose that Cx is closed unbounded in ‚ for
each x 2 R. Then

T
x2R Cx is also closed unbounded in ‚.

Proof Assume V D K.R/. Let hCx W x 2 Ri be a sequence where each Cx is
closed unbounded in ‚, and let I D

T
x2R Cx . We will prove that I is also closed
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unbounded in ‚ through the use of a forcing argument. Let G be Q-generic over
K.R/. Thus, by absoluteness,

K.R/ŒG� ˆ .Cx is closed unbounded in !1/

for each x 2 RK.R/, the set of reals in the ground model. Since RK.R/ is countable
in K.R/ŒG�, it follows that

K.R/ŒG� ˆ .I is closed unbounded in !1/:

Again, by absoluteness, we conclude that

K.R/ ˆ .I is closed unbounded in ‚/:

This completes the proof.

Corollary 3.2 Assume V D K.R/. Suppose that Bx � ‚ for each x 2 R. IfS
x2R Bx is stationary in ‚, then for some x 2 R the set Bx is also stationary in ‚.

Proof Assume A D
S

x2R Bx is stationary in ‚. Suppose, for a contradiction,
that each Bx is not stationary. Let C be the set of all closed unbounded subsets of ‚.
Lemma 2.1 implies (by minimizing an ordinal) that there is a function F WR�R ! C

so that for each x 2 R there is a y 2 R such that F.x; y/ \ Bx D ¿. By Theo-
rem 3.1, C D

T
hx;yi2R�R F.x; y/ is closed unbounded in ‚. Since A \ C D ¿,

this contradicts the fact that A is stationary.

Theorem 3.3 Assume V D K.R/. The closed unbounded filter F on ‚ is both
‚-complete and closed under diagonal intersection.

Proof Let � < ‚, and let ¹X˛ W ˛ < �º � F . We will prove, without AC, thatT
˛<� X˛ 2 F . Let C be the set of all closed unbounded subsets of ‚. Since we are

working in K.R/, Lemma 2.1 implies that there is a function ˆW ��R ! C such that,
for each ˛ < �, there is an x 2 R such that ˆ.˛; x/ � X˛ . By Theorem 3.1, each
set C˛ D

T
x2R ˆ.˛; x/ is closed unbounded in ‚. Since C˛ � X˛ for each ˛ < �,

it now follows that
T

˛<� C˛ �
T

˛<� X˛ , where
T

˛<� C˛ is closed unbounded in
‚. Hence,

T
˛<� X˛ 2 F . A similar argument will show that the filter F is closed

under diagonal intersections.

Theorem 3.4 Assume V D K.R/. The closed unbounded filter F on ‚ is
R-complete; that is, for any ¹Ax W x 2 Rº � F we have that

T
x2R Ax 2 F .

Proof Let ¹Ax W x 2 Rº � F . We will prove, again without AC, thatT
x2R Ax 2 F . Let C be the set of all closed unbounded subsets of ‚. Since we are

working in K.R/, Lemma 2.1 yields a function ˆWR ! C such that for each x 2 R
there is a y 2 R such that ˆ.y/ � Ax . By Theorem 3.1, the set C D

T
y2R ˆ.y/ is

closed unbounded in ‚. Since C �
T

x2R Ax , we have
T

x2R Ax 2 F .

We now show that Q-forcing over K.R/ preserves stationary sets (see Kanamori [6,
Lemma 10.14]).

Theorem 3.5 Let G be Q-generic over K.R/. Suppose that

K.R/ŒG� ˆ “C is closed unbounded in !1.”

Then there is a D 2 K.R/ such that D � C and

K.R/ ˆ “D is closed unbounded in ‚.”
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Proof Let p 2 G be such that

p 
 “ PC is closed unbounded in !1,”

where PC is a Q-name for C . For each ˛ 2 ‚, define

X˛ D
®
� 2 ‚ W .9q � p/Œq 
 “ L� is the least element in PC n . L̨ C 1/”

¯
:

Since there is a mapping from R onto Q, it follows that each X˛ is bounded in ‚.
Let f .˛/ D sup.X˛/ < ‚, for each ˛ 2 ‚. Now define

D D
®
ˇ 2 ‚ W .8˛ < ˇ/

�
f .˛/ < ˇ

�¯
:

Since D is the diagonal intersection of the sequence hY˛ W ˛ < ‚i, where

Y˛ D
®
ˇ 2 ‚ W f .˛/ < ˇ

¯
;

we conclude that D is closed unbounded in ‚.
To show that D � C , it is sufficient to prove that p 
 LD � PC . Suppose that

p ± LD � PC . Thus, for some q � p and ˇ 2 D, we have that q 
 Ľ … PC . Let
H be Q-generic over K.R/ so that q 2 H . Thus, in K.R/ŒH� we have that PCH is
closed unbounded in !1 and ˇ … PCH . Let ˛ D sup. PCH \ ˇ/. Since ˇ … PCH , we
conclude that ˛ < ˇ and PCH \ .˛; ˇ� D ¿, where .˛; ˇ� D ¹
 W ˛ < 
 � ˇº.
Since ˇ 2 D and ˛ < ˇ, we have .?/ f .˛/ < ˇ. Because PCH is unbounded, there
is a least � such that � 2 PCH n .˛ C 1/. It follows that � 2 X˛ and � > ˇ. Hence,
ˇ < � � sup.X˛/ D f .˛/. Therefore, ˇ < f .˛/ which contradicts .?/.

Corollary 3.6 Let G be Q-generic over K.R/. Suppose that

K.R/ ˆ “S is stationary in ‚.”

Then K.R/ŒG� ˆ “S is stationary in !1.”

4 Diamond Principles in K.R/

Any sequence of the form hA˛;x W h˛; xi 2 ‚ � Ri will be referred to as an
R-sequence. The following principle ˙R asserts the existence of an R-sequence
with some special combinatorial properties concerning all the subsets of ‚.

Definition 4.1 The diamond principle ˙R is the statement: there is a sequence
hA˛;x W h˛; xi 2 ‚ � Ri such that A˛;x � ˛ for each h˛; xi 2 ‚ � R and for every
A � ‚ there exists an x 2 R so that the set

¹˛ 2 ‚ W A \ ˛ D A˛;xº

is stationary in ‚. We will call hA˛;x W h˛; xi 2 ‚ � Ri a ˙R-sequence.

We will now show that ˙R holds in K.R/.

Theorem 4.2 Assume V D K.R/. Then there is a ˙R-sequence.

Proof Let ‚ D ‚K.R/, and let Q be as in Definition 2.2. Theorem 2.3 states that
‚ D !

K.R/ŒG�
1 for any G which is Q-generic over K.R/.

Claim 1 We have that K.R/ ˆ 1 
 “there is a ˙-sequence.”

Proof of Claim 1 Let G be Q-generic over K.R/. By Theorem 2.3, we have that
K.R/ŒG� D KŒx� for a real x. It follows (see Remark 1.2) that there is a ˙-sequence
in K.R/ŒG�.
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Let L‚ be a canonical name for ‚. Let p 2 Q and ı 2 K.R/Q be such that

p 

�
ı is a ˙-sequence ^ dom.ı/ D L‚

�
: (4.1)

In K.R/, let ˛ 7! �˛ be a mapping from ‚ to K.R/Q so that for each ˛ 2 ‚

.�˛/G D .ıG/˛ whenever G is Q-generic over K.R/ and p 2 G. (4.2)

Now define the sequence D D hA˛;q W ˛ 2 ‚ ^ q � pi, where

A˛;q D ¹� 2 ‚ W q 
 L� 2 �˛º

for ˛ 2 ‚ and q 2 Q such that q � p. From (4.1) and (4.2) we conclude that
A˛;q � ˛ for all ˛ 2 ‚ and q � p. Clearly, D 2 K.R/ and D can be viewed as
an R-sequence. We will prove that D is a ˙R-sequence in K.R/. Let A � ‚ be an
element in K.R/.

Claim 2 There is a q � p such that ¹˛ 2 ‚ W q 
 LA \ L̨ D �˛º is stationary
in ‚.

Proof of Claim 2 Suppose, for a contradiction, that for each q � p the set

¹˛ 2 ‚ W q 
 LA \ L̨ D �˛º

is not stationary in ‚. Let C be the set of all closed unbounded subsets of ‚.
Lemma 2.1 implies that there is a function ‰WQ � R ! C in K.R/ such that, for all
q � p, there is an x 2 R such that

‰.q; x/ \ ¹˛ 2 ‚ W q 
 LA \ L̨ D �˛º D ¿:

Let I D
T

hq;xi2Q�R ‰.q; x/. By Theorem 3.1, I is closed unbounded in ‚.
Now let G be Q-generic over K.R/ so that p 2 G. Thus, .!1 D L‚G/K.R/ŒG�.

So, in K.R/ŒG� we have that A is a subset of !1 and I is closed unbounded in !1.
By (4.1) we conclude that ıG D hA˛ W ˛ < !1i is a ˙-sequence in K.R/ŒG�.
Therefore, the set

¹˛ < !1W A \ ˛ D A˛º

is stationary in K.R/ŒG�, and hence, there is a ˇ 2 I such that A \ ˇ D Aˇ . So,
in K.R/, there is a q � p such that q 
 LA \ Ľ D �ˇ . Let x 2 R be such that
‰.q; x/ \ ¹˛ 2 ‚ W q 
 LA \ L̨ D �˛º D ¿. Since ˇ 2 I , we have that ˇ 2 ‰.q; x/.
This contradiction shows that such a q must exist.

Let q � p be such that S D ¹˛ 2 ‚ W q 
 LA \ L̨ D �˛º is stationary.

Claim 3 We have that A \ ˛ D A˛;q for all ˛ 2 S .

Proof of Claim 3 Let ˛ 2 S . Recall that A˛;q D ¹� 2 ‚ W q 
 L� 2 �˛º. Since
˛ 2 S , we have that q 
 LA \ L̨ D �˛ . An elementary forcing argument will now
show that A \ ˛ D A˛;q .

Since S � ¹˛ 2 ‚ W A \ ˛ D A˛;qº and S is stationary, we conclude that

¹˛ 2 ‚ W A \ ˛ D A˛;qº

is stationary in ‚. Therefore, D is a ˙R-sequence in K.R/.

Our next theorem shows that the consistency of ZF C AD implies the consistency of
ZF C AD C ˙R.
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Theorem 4.3 Assume V D L.R/. Then ˙R.

Proof The proof of Theorem 4.2 can easily be adapted to establish the result.

There are a number of generalizations of ˙. We now identify one such generaliza-
tion.

Definition 4.4 Let S � !1. Then ˙.S/ is the statement that there is a sequence
hA˛ W ˛ 2 Si such that A˛ � ˛ for ˛ 2 S and, for all A � !1, the set

¹˛ 2 S W A \ ˛ D A˛º

is stationary in !1.

The diamond principle ˙.S/ holds in L and K when S is stationary in !1. Consider
the following generalization of ˙R.

Definition 4.5 Let S � ‚. The diamond principle ˙R.S/ is the statement: there
exists a sequence hA˛;x W h˛; xi 2 S � Ri such that A˛;x � ˛ for h˛; xi 2 S � R
and, for every A � ‚, there is an x 2 R so that

¹˛ 2 S W A \ ˛ D A˛;xº

is stationary in ‚. Such a sequence will be called a ˙R.S/-sequence.

The proof of Theorem 4.2 can be modified, using Corollary 3.6, to establish our next
theorem.

Theorem 4.6 Assume V D K.R/. If S is stationary in ‚, then a ˙R.S/-sequence
exists.

In the statement ˙R.S/ of Definition 4.5, let us replace ‚ with � and call this
new statement ˙�;R.S/. The proofs of Corollary 3.6 and Theorem 4.2 can also be
extended to prove the following theorem.

Theorem 4.7 Assume V D K.R/. Let � � ‚ be a regular cardinal, and let S be
stationary in �. Then there is a ˙�;R.S/-sequence.

We now note that ˙R yields another combinatorial principle which is the analogue
of ˙0 (see [3, p. 127]).

Definition 4.8 Let ˙0
R be the assertion: there exists a sequence hA˛ W ˛ 2 ‚i

such that
(1) A˛ � P .˛/ for each ˛ 2 ‚;
(2) for every ˛ 2 ‚ there is a surjection of R onto A˛;
(3) for every A � ‚ the set ¹˛ 2 ‚ W A \ ˛ 2 A˛º is stationary in ‚.

Clearly, ˙R implies ˙0
R. Thus, Theorem 4.2 implies the following result.

Theorem 4.9 Assume V D K.R/. Then ˙0
R holds.

When � is an ordinal and S � �, let ˙0
�;R.S/ be the appropriate generalization of

Definition 4.8. Theorem 4.7 clearly implies that K.R/ also satisfies ˙0
�;R.S/ when

S � � is stationary and � � ‚ is regular.
We will present a generalization of ˙0

R. Before doing this, we recall Jensen’s
principle ˙�.
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Definition 4.10 Let ˙� be the statement: there exists a sequence hA˛ W ˛ 2 !1i

such that
(1) A˛ � P .˛/ for each ˛ 2 !1;
(2) for every ˛ 2 !1 there is a surjection of ! onto A˛;
(3) for every A � !1 there is closed unbounded C � !1 such that A \ ˛ 2 A˛

for all ˛ 2 C .
Such a sequence will be called a ˙�-sequence.

The following generalization of ˙0
R corresponds to Jensen’s principle ˙�.

Definition 4.11 Let ˙�
R be the assertion: there exists a sequence hA˛ W ˛ 2 ‚i

such that
(1) A˛ � P .˛/ for each ˛ 2 ‚;
(2) for every ˛ 2 ‚ there is a surjection of R onto A˛;
(3) for every A � ‚ there is closed unbounded C � ‚ such that A \ ˛ 2 A˛

for all ˛ 2 C .
We will call hA˛ W ˛ 2 ‚i a ˙�

R-sequence.

In Definition 4.11, if we replace ‚ with !1 and R with !, then we obtain ˙�. The
following lemma identifies two useful equivalences.

Lemma 4.12 Let hA˛ W ˛ 2 !1i and hA˛ W ˛ 2 ‚i be sequences. Then
(1) hA˛ W ˛ 2 !1i is a ˙�-sequence if and only if hA˛ W ˛ 2 Si is a

˙0.S/-sequence for all stationary S � !1.
(2) hA˛ W ˛ 2 ‚i is a ˙�

R-sequence if and only if hA˛ W ˛ 2 Si is a
˙0

R.S/-sequence for all stationary S � ‚.

In our next theorem we will prove that K.R/ ˆ ˙�
R. First we observe that,

under AC, the principle ˙� can be restated as follows. There is a sequence
hA˛;n W h˛; ni 2 !1 � !i such that

(1) A˛;n � ˛ for each ˛ 2 !1 and n 2 !;
(2) for every A � !1 there is closed unbounded C � !1 so that for all ˛ 2 C

there exists n 2 ! such that A \ ˛ D A˛;n.
We shall call such a sequence a ��-sequence.

Theorem 4.13 Assume V D K.R/. Then ˙�
R is true.

Proof Let ‚ D ‚K.R/, and let Q be as in Definition 2.2. Theorem 2.3 states that
‚ D !

K.R/ŒG�
1 for any G which is Q-generic over K.R/.

Claim 1 We have that K.R/ ˆ 1 
 “there is a ��-sequence.”

Proof of Claim 1 Let G be Q-generic over K.R/. By Theorem 2.3, we have that
K.R/ŒG� D KŒx� for some real x. Since K.R/ŒG� ˆ AC, it follows (see Remark 1.2)
that there is a ��-sequence in K.R/ŒG�.

Let L‚ and L! be canonical names for ‚ and !, respectively. Let p 2 Q and
ı 2 K.R/Q be such that

p 

�
ı is a ��-sequence ^ dom.ı/ D L‚ � L!

�
: (4.3)
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In K.R/, let h˛; ni 7! �˛;n be a mapping from ‚ � ! to K.R/Q so that for each
˛ 2 ‚ and n 2 !,

.�˛;n/G D .ıG/˛;n whenever G is Q-generic over K.R/ and p 2 G. (4.4)
Now for each ˛ 2 ‚, n 2 !, and q � p, define the set

B˛;n;q D ¹� 2 ‚ W q 
 L� 2 �˛;nº:

From (4.3) and (4.4), we conclude that B˛;n;q � ˛ whenever ˛ 2 ‚, n 2 !, and
q � p. For each ˛ 2 ‚, let A˛ D ¹B˛;n;q W n 2 ! and q � pº. Clearly,
hA˛ W ˛ 2 ‚i 2 K.R/. Using Lemma 4.12, we now prove that hA˛ W ˛ 2 ‚i

is a ˙�
R-sequence in K.R/. Suppose that S � ‚ is stationary in K.R/. Let G be

Q-generic over K.R/ so that p 2 G. For each ˛ 2 ‚, define

TG
˛ D

®
.�˛;n/G W n 2 !

¯
:

Consider the sequence hTG
˛ W ˛ 2 ‚i. Since ‚ D !

K.R/ŒG�
1 and p 2 G, it follows

from (4.3) and (4.4) that hTG
˛ W ˛ 2 ‚i is a ˙�-sequence in K.R/ŒG�. Corollary 3.6

implies that K.R/ŒG� ˆ “S � !1 is stationary.” Thus, by Lemma 4.12(1), we have
that hTG

˛ W ˛ 2 Si is a ˙0.S/-sequence in K.R/ŒG�. So, for every such generic G, we
have that hTG

˛ W ˛ 2 Si is a ˙0.S/-sequence in K.R/ŒG�. The proof of Theorem 4.2
can now be modified to show that hA˛ W ˛ 2 Si is a ˙0

R.S/-sequence in K.R/.
Therefore, by Lemma 4.12(2), we conclude that hA˛ W ˛ 2 ‚i is a ˙�

R-sequence in
K.R/.

The above proof of Theorem 4.13 easily generalizes to show that K.R/ satisfies the
corresponding principle ˙�

�;R when � � ‚ is regular.

5 A Second Proof of ˙R

Throughout this article, ZF has been our ambient theory. We now present a different
proof of Theorem 4.2 assuming that K.R/ ˆ AD. The proof applies the coding
lemma, an important result in descriptive set theory due to Moschovakis [8].

Since ˙R implies ˙0
R, the following lemma shows that the principles ˙0

R and ˙R
are equivalent in K.R/. The proof of this lemma does not use AD.

Lemma 5.1 Assume V D K.R/. Then ˙0
R implies ˙R.

Proof Assuming V D K.R/ and ˙0
R, we will prove ˙R. Let hA˛ W ˛ 2 ‚i be a

˙0
R-sequence. So,
(1) A˛ � P .˛/ for each ˛ 2 ‚;
(2) for every ˛ 2 ‚ there is a surjection of R onto A˛;
(3) for every A � ‚ the set ¹˛ 2 ‚ W A \ ˛ 2 A˛º is stationary in ‚.

Without loss of generality, we will assume that ¿ 2 A˛ for each ˛ 2 ‚. Lemma 2.1
implies there is a set ¹g˛;x W h˛; xi 2 ‚ � Rº such that

(1) g˛;x WR ! A˛ for each ˛ < ‚ and x 2 R;
(2) for each ˛ 2 ‚ there is an x 2 R so that g˛;x is a surjection.

For each ˛ 2 ‚, define f˛WR ! A˛ by f˛.z/ D g˛;z0
.z1/, where z0.n/ D z.2n/

and z1.n/ D z.2n C 1/ for all n 2 !. Clearly, f˛ is a surjection for each ˛ 2 ‚.
Consider the sequence F D hf˛.z/ W h˛; zi 2 ‚ � Ri. We will prove that F is
a ˙R-sequence. Obviously, f˛.z/ � ˛ for each ˛ 2 ‚ and z 2 R. Let A � ‚.
By (3) we have that ¹˛ 2 ‚ W A \ ˛ 2 A˛º is stationary in ‚. Hence, the set
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X D ¹˛ 2 ‚ W .9z 2 R/ŒA \ ˛ 2 f˛.z/�º is stationary in ‚. For each z 2 R, let
Yz D ¹˛ 2 ‚ W A \ ˛ D f˛.z/º. Since X D

S
z2R Yz is stationary, Corollary 3.2

implies that there is a z 2 R so that Yz D ¹˛ 2 ‚ W A\˛ D f˛.z/º is stationary.

Theorem 5.2 Assume V D K.R/ and AD. Then ˙R holds.

Proof Assume V D K.R/ and AD. We will first prove ˙0
R. For each ˛ 2 ‚,

let A˛ D P .˛/. We will show that hA˛ W ˛ 2 ‚i is a ˙0
R-sequence. Clearly,

for each ˛ 2 ‚, A˛ � P .˛/ and, by the coding lemma (see [8, Lemma 7D.5]),
there is a surjection of R onto A˛ . Moreover, for each A � ‚ we have that
¹˛ 2 ‚ W A \ ˛ 2 A˛º D ‚. Since ‚ is stationary in ‚, Lemma 5.1 now implies
˙R.

The proof of Theorem 5.2 also shows, within K.R/, that AD (trivially) implies ˙�
R

and ˙C
R . The principle ˙C

R is a generalization of ˙�
R (and Jensen’s principle ˙C)

which states: there is a sequence hA˛ W ˛ 2 ‚i such that

(1) A˛ � P .˛/ for each ˛ 2 ‚;
(2) for every ˛ 2 ‚ there is a surjection of R onto A˛;
(3) for every A � ‚ there is closed unbounded D � ‚ such that A \ ˛ 2 A˛

and D \ ˛ 2 A˛ for all ˛ 2 D.

Our proof of Theorem 5.2 relies heavily on the definition of ‚ and on the axiom of
determinacy. Thus, it cannot be generalized to provide an alternate proof concerning
our results on cardinals greater than ‚. For example, the above proof cannot be
adapted to prove Theorem 4.7. Furthermore, the forcing argument used to prove
Theorem 4.2 shows that K.R/ ˆ ˙R whether or not AD holds in K.R/. Perhaps
such a forcing argument can be used to show that other principles, which hold in K,
have analogues in K.R/.
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