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Normal Numbers and Limit Computable Cantor Series

Achilles Beros and Konstantinos Beros

Abstract Given any oracle, A, we construct a basic sequence Q, computable
in the jump of A, such that no A-computable real is Q-distribution-normal.
A corollary to this is that there is a �0

nC1 basic sequence with respect to which
no �0

n real is distribution-normal. As a special case, there is a limit computable
sequence relative to which no computable real is distribution-normal.

1 Introduction

The effective theory of the reals has been an active area of research for many years.
Out of this field have come a number of effective formalizations of the intuitive
concept of randomness, for example, Martin-Löf randomness. There are, however,
a number of classical formalizations of randomness which derive from ergodic the-
ory. In the present article, we explore one of these classical notions, but in an effec-
tive context.

Given b 2 !, b � 2, a real number x is said to be b-normal if the num-
bers x; bx; b2x; : : : are uniformly distributed modulo 1. That is, for each interval
I � Œ0; 1� of length ", one has

lim
n!1

j¹k 2 ! W .0 � k < n/ ^ .bkx.mod 1/ 2 I /ºj

n
D ":

Historically, number theorists have developed several methods for algorithmically
producing b-normal numbers. One of the best known of these methods is the Cham-
pernowne construction [6]. Let b<! denote the set of finite sequences of elements of
the set ¹0; 1; : : : ; b � 1º. If pi 2 b<! is the base-b expansion of i 2 !, then the real
number with base-b expansion

0:p0 p1 p2 : : :
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is b-normal. For instance, the nonnegative integers are 0, 1, 10, 11, 100, : : : in base 2,
and the real with binary expansion

0:0 1 10 11 100 101 110 111 : : :

is 2-normal. In essence, the Champernowne construction shows that, for each b,
there is a computable real number which is b-normal.

One may generalize the notion of base-b expansions of real numbers to that of
so-called Cantor series expansions [5]. Given a sequence Q D .qn/n2! of posi-
tive integers, with each qn � 2, and a real number x 2 .0; 1/, there exist integers
a0; a1; : : : such that 0 � an < qn, for each n, and

x D

1X
nD0

an

q0q1 : : : qn

:

This expansion is known as the Cantor series expansion of x, with respect to Q.
The sequence Q is known as a basic sequence, that is, a sequence of bases.
Over the years, there has been some study of Cantor series expansions under dif-
ferent assumptions on the basic sequence .qn/n2! (see, e.g., Erdös and Rényi
[7], [8]).

There is a corresponding generalization of b-normality in the context of Can-
tor series. Specifically, if Q D .qn/n2! is a sequence of positive integers, with
each qn � 2, then x 2 .0; 1/ is said to be Q-distribution-normal if and only if
the sequence x; q0x; q0q1x; q0q1q2x; : : : is uniformly distributed modulo 1. Thus,
b-normality is equivalent to Q-distribution-normality for Q D .qn/n2! , with each
qn D b.

It is an active area of research in modern number theory to try to find construc-
tions analogous to the Champernowne construction in the context of Cantor series
and other expansions of real numbers (e.g., continued fractions, Lüroth expansions,
etc.). Examples of these lines of inquiry can be found in Altomare and Mance [2],
Adler, Keane, and Smorodinsky [1], Madritsch [10], and Madritsch, Thuswaldner,
and Tichy [11]. There has also been work on relating the various classical notions
of normality with recursion-theoretic and descriptive set-theoretic measures of com-
plexity (see, e.g., Ki and Linton [9], Becher, Heiber, and Slaman [3], [4]).

To obtain algorithmic constructions of normal numbers in the context of Cantor
series, one often places conditions on the sequence .qn/n2! that guarantee rapid
divergence to infinity, for example, that

P
n 1=qn < 1.

In the present article, we provide a group of results which serve as a counterpoint
to such attempts to algorithmically produce normal numbers. The following theorem
is our main result.

Theorem 1.1 There is a �0
2 basic sequence Q (consisting of powers of 2) such

that no computable real number is Q-distribution-normal.

2 Preliminaries

As we are presenting Theorem 1.1 in the context of basic sequences consisting
of powers of 2 (although it could just as easily be done with an arbitrary b), we
introduce some notation for working with binary expansions of real numbers in
Œ0; 1�.
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Notation

(1) Let 2! denote the set of infinite binary sequences.
(2) If ˛ 2 2! and n 2 !, we define ˛ � n D .˛.0/; ˛.1/; : : : ; ˛.n � 1//.
(3) If ˛ 2 2! , let x˛ denote the real number

P
n2!

˛.n/

2nC1 .
(4) If n 2 ! and ˛ 2 2! , we will write n˛ for .˛.n/; ˛.n C 1/; : : :/; that is, n˛

is the n-bit left shift of ˛.

Suppose that Q D .qn/n2! with each qn D 2sn , for some integers sn � 1. If ˛ 2 2!

and ˛ does not end with an infinite string of 1’s, then, for each n and p D s0C� � �Csn,
we have q0 � : : : � qnx˛.mod1/ D xp˛ .

The following is our key computability-theoretic definition.

Definition 2.1 We say that x 2 Œ0; 1� is �0
n if and only if there is an ˛ 2 2! such

that ¹n 2 ! W ˛.n/ D 1º is a �0
n subset of ! and x D x˛ .

Recall that a subset A � ! is �0
n if and only if A is computable in 0.n/ (the n-fold

jump of ;). Our definition of �0
n for x 2 Œ0; 1� is equivalent to the standard definition

of �0
n (see Nies [12, Section 1.8]).

Next, we require an enumeration that includes all computable reals. To avoid
the extra complexity inherent in dealing with partial functions, we define a slightly
modified universal Turing machine.

Definition 2.2 Let ¹'eºe2! be the standard enumeration of all binary-valued par-
tial computable functions. For e; s 2 !, let 'e;s be 'e computed up to s computation
stages. We define an array of computable functions, ¹'�

e;sºe;s2! , as follows:

'�
e;s.n/ D

´
'e;s.n/ if 'e;s.n/ halts,
0 otherwise.

We define '�
e to be the pointwise limit of '�

e;s as s tends to 1.

The enumeration, ¹'�
e ºe2! , includes all computable reals, although it is obviously

not a computable enumeration, and also enumerates some noncomputable reals. We
will freely identify each '�

e;s with the infinite sequence it codes.
Following the notation introduced above, we let n'�

e;s denote the n-bit left shift of
the infinite sequence determined by '�

e;s; that is, if '�
e;s codes the sequence ˛, then

n'�
e;s codes the sequence .˛.n/; ˛.n C 1/; : : :/ 2 2! .
Note that every computable real in Œ0; 1� is of the form x'�

e
for some e 2 !.

3 Diagonalizing against Reals

To prove Theorem 1.1, we will construct a strictly increasing �0
2 function f W ! ! !

such that Q D .qn/n2! , with qn D 2f .nC1/�f .n/, is a basic sequence with the
property that no computable real is Q-distribution-normal.

As the desired function is to be �0
2, we will construct it as the limit of a com-

putable sequence of finite partial functions, ¹fsºs2! . For an arbitrary s, the function
fs is constructed in s C 1 stages. We present the construction of fs .

Stage 0: We define fs.0/ D 0 and end the stage. The domain of fs is cur-
rently Œ0; 1/ D Œ0; 30/.

Stage t C 1: We define

Ak D
®
p 2

�
fs.3t

� 1/; 1
�

W '�
t;sC1.p/ D k

¯
:
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Either jA0j � 2.3t / or jA1j � 2.3t /. Let k 2 ¹0; 1º be chosen such that there exist
p1 < � � � < p2.3t / in Ak , with p2.3t / as small as possible. Set fs.3t C i/ D piC1 for
0 � i � 2.3t / � 1 and end the stage. The domain of fs is currently Œ0; 3tC1/.

By the pigeonhole principle, the interval .fs.3t � 1/; 4.3t / C fs.3t � 1// must
either contain at least 2.3t /-many p such that '�

t;sC1.p/ D 0 or 2.3t /-many p such
that '�

t;sC1.p/ D 1. It follows that

fs.3tC1
� 1/ � 4.3t / C fs.3t

� 1/;

for each t � s. Hence,

fs.3tC1/ � 0 C 4 C 12 C � � � C 4.3t / D 2.3tC1
� 1/ (1)

for all s and t , with t � s. Note that this upper bound is independent of s.
Now that we have defined fs for s 2 !, we define f .x/ D lims!1 fs.x/. To

verify that we have constructed a function with the desired properties, we must prove
two claims. First, we must prove that f is well defined; in other words, for every
p 2 !, there exists m 2 ! such that for all s � m, fs.p/ D fm.p/. We fix p 2 !

and suppose that i 2 ! is such that p < 3i . Pick m 2 ! such that if s � m, then

'�
e � max

®
fa.3i / W a 2 !

¯
D '�

e;s � max
®
fa.3i / W a 2 !

¯
;

for all e � i . Note that the maxima above are finite by (1). Clearly fs.p/ D fm.p/

for all s � m, since fs.p/ depends only on the values of '�
e .`/, for e � i and

` � max
®
fa.3i / W a 2 !

¯
< 1:

Thus, f is well defined, and therefore, �0
2.

Let qn D 2f .nC1/�f .n/, and let Q D .qn/n2! . The second claim we must verify
is that no real number of the form x'�

e
is Q-distribution-normal. Fix a computable

sequence ˛, let e be such that ˛ D '�
e , and let i0 < i1 < i2 : : : be a sequence of

natural numbers such that '�
ik

D ˛ for all k 2 !. We consider a single value of k.
From the definition of fs it is clear that either

j¹p � 3ik W xf .p/˛ �
1
2
ºj

3ik
� 2=3 or

j¹p � 3ik W xf .p/˛ �
1
2
ºj

3ik
� 2=3:

Since this is true for all k 2 ! and '�
ik

D '�
e , we conclude that

lim
n!1

j¹p � n W xf .p/˛ �
1
2
ºj

n

either does not exist or is not 1
2
. Hence ˛ D x'�

e
is not Q-distribution-normal. As

every computable real occurs in the sequence ¹x'�
e
ºe2! , we have proved the desired

result.

4 Generalizations

Relativizing the proof of Theorem 1.1 to an arbitrary oracle, we obtain the following
theorem.

Corollary 4.1 Let A be any subset of the natural numbers. There is a basic
sequence Q, limit computable in A, such that no A-computable real is
Q-distribution-normal.
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By the relativized version of Shoenfield’s limit lemma, a set is limit computable in
A if and only if it is computable in A0, the jump of A. As a consequence, we obtain
a direct generalization of Theorem 1.1 for all the “�-classes” of the arithmetical
hierarchy.

Corollary 4.2 There is a �0
nC1 basic sequence Q such that no �0

n real is
Q-distribution-normal.

Proof Setting A D 0.n/, Corollary 4.1 guarantees the existence of a basic sequence
Q which is limit computable in 0.n/ and such that no real computable in 0.n/ is
Q-distribution-normal. If Q is such a sequence, then Q is computable in 0.nC1/.
Equivalently, Q is �0

nC1.
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