
Notre Dame Journal of Formal Logic
Volume 58, Number 2, 2017

Dunn–Priest Quotients of Many-Valued Structures

Thomas Macaulay Ferguson

Abstract J. Michael Dunn’s Theorem in 3-Valued Model Theory and Graham
Priest’s Collapsing Lemma provide the means of constructing first-order, three-
valued structures from classical models while preserving some control over the
theories of the ensuing models. The present article introduces a general con-
struction that we call a Dunn–Priest quotient, providing a more general means of
constructing models for arbitrary many-valued, first-order logical systems from
models of any second system. This technique not only counts Dunn’s and Priest’s
techniques as special cases, but also provides a generalized Collapsing Lemma
for Priest’s more recent plurivalent semantics in general. We examine when and
how much control may be exerted over the resulting theories in particular cases.
Finally, we expand the utility of the construction by showing that taking Dunn–
Priest quotients of a family of structures commutes with taking an ultraproduct
of that family, increasing the versatility of the tool.

1 Introduction

J. Michael Dunn and Graham Priest have each introduced related methods of
constructing 3-valued, nonclassical structures from classical, bivalent structures.
Dunn’s technique (see [6]) introduces a method for generating models appropriate
to Kleene’s 3-valued K3 introduced in [10], while Priest’s (see [13]) introduces a
method for generating models appropriate to his own LP.

Besides merely providing a method of constructing new K3- or LP-models, the
techniques also afford a level of control over the theories of the ensuing structures.
Dunn’s technique ensures that for no formula ' true in the original structure will its
negation be true in the resulting K3-model. This control over the theory underwrites
Dunn’s corollaries in [6] such as the nontriviality of relevant arithmetic. Priest, sim-
ilarly, presents a means to ensure that the theory of the initial structure is a subset of

Received April 25, 2014; accepted July 30, 2014
First published online February 21, 2017
2010 Mathematics Subject Classification: Primary 03C90; Secondary 03C20
Keywords: many-valued logic, model theory, Dunn–Priest techniques
© 2017 by University of Notre Dame 10.1215/00294527-3838853

221

http://www.nd.edu/~ndjfl/
http://www.ams.org/mathscinet/msc/msc2010.html
http://www.nd.edu
http://dx.doi.org/10.1215/00294527-3838853


222 Thomas Macaulay Ferguson

the theory of the ensuing LP-model. Priest [15], [16] often made use of this tech-
nique in describing inconsistent models of true arithmetic.

These techniques, however, are limited to the cases in which one wishes to con-
struct either a K3- or LP-model from a classical one. The utility of these methods
can be enhanced by having a more general method available by which one can, for
any arbitrary many-valued logics L0 and L1, construct L1-models from L0-models
with some control over the resulting L1-model’s theory. The aim of this article is to
provide precisely this tool.

Where M is an L0-model, we introduce a general method of constructing a corre-
sponding L1-model M� by taking a quotient of M modulo some congruence relation
� and interpreting it with respect to a function h. This latter structure will be called
a Dunn–Priest quotient along h of M modulo �. In particular, the selection of h can
ensure the desired control over the theory of M� by, for example, ensuring that the
formulae in the theory of M remain in the theory of M�.

This article is organized as follows. First we will outline the essential elements
of many-valued model theory and introduce a general account of Dunn–Priest quo-
tients. Then we will examine the correspondence between certain conditions on these
quotients and the preservation theorems which hold for them. The Dunn and Priest
results will be put into context and the proofs rehearsed against this general back-
drop. Further applications will be introduced, for example, an instance for construct-
ing paraconsistent models from Dmitri Bochvar’s logic of nonsense and the general
case of plurivalent quantification in the sense of Priest [17]. The final section will be
devoted to showing an interesting relationship between Dunn–Priest quotients and
the taking of ultraproducts of families of models, namely, that Dunn–Priest quotients
and ultraproduct quotients commute.

2 Definitions and Preliminaries

To begin, we will first review some of the notational conventions observed in this
article before offering a précis of many-valued model theory.

The notation peculiar to this article is as follows.

Definition 2.1 The positive power set of a set X , denoted by }C.X/, is the set of
all nonempty subsets of X , that is, }.X/ X ¹¿º.

Definition 2.2 We denote the image of a set X under a function f by f ŒX�.

One slightly esoteric convention that will be employed in this article is the following.

Definition 2.3 The Hilbert epsilon notation �x:ˆ.x/ denotes some arbitrary
object of which ˆ is true.

This notation enables us to succinctly describe a choice function, for example, with
respect to a family of sets ¹Xi j i 2 I º. A choice function mapping each set Xi 2 X
to some element of Xi can be described as f W Xi 7! �x:x 2 Xi .

Definition 2.4 For a family of sets X D ¹Xi j i 2 I º indexed by a set I , let
SI .X/ denote the set of choice functions, that is, the set ¹g j g W Xi 7! �x:x 2 Xi º.

Definition 2.5 The threaded image Thread.X/ of a family of sets X D ¹Xi j

i 2 I º is the set ¹gŒX� j g 2 SI .X/º, that is, all sets choosing precisely one element
from each set Xi .
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Finally, we will use definite description operators as follows.

Definition 2.6 The Russell definite description operator �x:ˆ.x/ denotes the
unique object of which ˆ is true.

Importantly, when �x:ˆ.x/ fails to denote an object, either because ˆ.x/ is true of
no object or because it is true of multiple objects, any formula ‰. �x:ˆ.x// is false.

It is necessary to describe a few essential definitions and observations for many-
valued model theory in general before proceeding. First, we pin down what sorts of
semantical presentations of logic with which we are concerned.

Definition 2.7 A logical system is an ordered 4-tuple hV ;D ;S; I i, where
� V is a nonempty set of truth values,
� D � V is a nonempty set of designated values,
� S is a set of n-ary connective symbols ˇ and quantifier symbols Q,
� I maps S to interpretations where

� I maps each n-ary ˇ to a function f ˇ W V n ! V ;
� I maps each quantifier Q to a function f Q W }C.V / ! V .

Note that the present interpretation of quantifier conforms to Walter Carnielli’s dis-
tribution quantifiers as introduced in [4], in which quantifiers are functions taking
“distributions” of values as arguments. More general definitions of quantifier are
possible, but Carnielli’s approach is elegant while remaining very general. We will
thus settle for this account of quantifiers.

Some syntactical preliminaries are in order in defining a language.

Definition 2.8 A signature � is a 3-tuple hC;F;Ri, where
� C is a set of constant symbols,
� F is a set of n-ary function symbols,
� R is a set of m-ary relation symbols.

Definition 2.9 Let Var be a set of variable symbols. The set Tm� of terms of �
is the smallest set such that

� Var � Tm� ;
� C � Tm� ;
� if f 2 F is n-ary and t0; : : : ; tn�1 2 Tm� , then f .t0; : : : ; tn�1/.

Definition 2.10 The set Var.t/ of variables in a term t is recursively defined:
� Var.t/ D ¹tº when t 2 Var;
� Var.t/ D ¿ when t 2 C;
� Var.f .t0; : : : ; tn�1// D VarŒ¹t0; : : : ; tn�1º�.

Definition 2.11 The set TmC l
� of closed terms of � is the set of terms t 2 Tm�

such that Var.t/ D ¿.

Definition 2.12 The language L� is the smallest set such that
� if R 2 R is n-ary and t0; : : : ; tn�1 2 Tm� , then R.t0; : : : ; tn�1/ 2 L� ;
� if ˇ 2 S is n-ary and '0; : : : ; 'n�1 2 L� , then ˇ.'0; : : : ; 'n�1/ 2 L� ;
� if Q 2 S is a quantifier and x 2 Var, then Qx' 2 L� .

Definition 2.13 For ' 2 L� and t; t 0 2 Tm� , the uniform substitution '.t 0=t/ is
the formula arrived at by substituting all instances of t 0 in ' with t .
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Definition 2.14 For ' 2 L� , Et 2 Tm<!
� a string of each instance of closed terms

in '—possibly with repetitions—in the order in which they appear in ', and Et 0 a
string of closed terms of equal arity to Et , the scattered substitution '.Et 0�Et / is the
formula arrived at by substituting the appearance of the term ti with t 0i in the order
in which each ti appears.

Definition 2.15 The set Var.'/ of open variables of a formula ' is defined recur-
sively as follows.

� For a formula R.t0; : : : ; tn�1/, VarŒ¹t0; : : : ; tn�1º�.
� For a formula ˇ.'0; : : : ; 'n�1/, Var.ˇ.'0; : : : ; 'n�1// D VarŒ¹'0; : : : ;

'n�1º�.
� For a formula Qx', Var.Qx'/ D Var.'/ X ¹xº.

Definition 2.16 The set L 0
� of sentences of � is the set ¹' 2 L� j Var.'/ D ¿º.

Of course, we are primarily concerned with models that are suitable for evaluation
by some logical system or other. The definition of a model relative to a particular
logical system L is as follows.

Definition 2.17 With respect to a logical system L D hV ;D ;S; I i, an L-model
M is a 4-tuple hM;CM;FM;RMi, where

� M is a set of elements,
� for each c 2 C, cM 2 M ,
� for each n-ary f 2 F, f M W M n ! M ,
� for each n-ary R 2 R, RM W M n ! V .

Definition 2.18 For an L-model M, the corresponding Henkin model M.M/ is
the 4-tuple hM;CM [ ¹a j a 2 M º;FM;RMi, where a is a new constant such that
aM.M/ D a for all elements of M .

Definition 2.19 For an L-model M, the valuation function vM W L 0
� ! V is

defined so that for all n-ary connectives and quantifiers we have the following.
� For atomic sentences  D R.t0; : : : ; tn�1/, vM. / D RM.tM0 ; : : : ; tMn�1/.
� For sentences  D ˇ.'0; : : : ; 'n�1/, vM. / D f ˇ

L .vM.'0/; : : : ;

vM.'n�1//.
� For sentences  D Qx', vM. / D f Q

L .¹vM.M/.'.a=x// j a 2 M º/.

The classical notion of truth in a model can likewise be generalized as follows.

Definition 2.20 A sentence ' is designated in an L-model M—M �L '—if
vM.'/ 2 DL.

Definition 2.21 Two L-models M0 and M1 are isomorphic—M0 Š M1—if
there exists a bijection g W M0 ! M1 such that for all n-ary f 2 F and R 2 R and
n-tuples a0; : : : ; an�1 2 M0,

� f M1.g.a0/; : : : ; g.an�1// D g.f M0.a0; : : : ; an�1//,
� RM1.g.a0/; : : : ; g.an�1// D RM0.a0; : : : ; an�1/.

To pin down the importance of isomorphism between models, we introduce a gen-
eralization of the elementary diagram of classical model theory with the following
observation.



Dunn–Priest Quotients 225

Observation 2.22 The value of every sentence of a structure M is determined
solely by the set ¹hR.Ea/; vM.M/.R.Ea//i j R 2 R and Ea 2 M<!º, that is, the values
that M.M/ assigns to atomic sentences.

Proof Noting that interpretations of connectives and quantifiers are deterministic
functions of the values of formulae of lesser complexity, a simple induction on the
complexity of formulae establishes this.

Corollary 2.23 If M Š M0, then for all sentences ', vM.'/ D vM0.'/.

Proof The set ¹hR.Ea/; vM.M/.R.Ea//i j R 2 R and Ea 2 M<!º is entirely deter-
mined by the interpretations of constants, function symbols, and relation symbols.
Hence, two isomorphic structures will evaluate all atomic formulae identically. By
Observation 2.22, for any sentence ', M and M0 will evaluate ' identically as
well.

3 Dunn–Priest Quotients

We now turn our attention to generalizing the Dunn–Priest constructions.
Let L0 D hV0;D0;S0; I0i and L1 D hV1;D1;S1; I1i be two logical systems

sharing connectives and quantifiers, that is, such that S0 D S1. Also, recall the
definition of a threaded image Thread.X/ of a family of sets X from Definition 2.5.

Definition 3.1 Let h be a function such that h W }C.V0/ ! V1. Then we call
h a Dunn–Priest map if it enjoys the following two properties with respect to all
nonempty sets Xi � V0, families X D ¹Xi j i 2 I º of nonempty subsets of V0,
n-ary connectives ˇ, and quantifiers Q:

� Property 1: h.f ˇ

L0
ŒX0 � � � � �Xn�1�/ D f ˇ

L1
.h.X0/; : : : ; h.Xn�1//;

� Property 2: h.f Q
L0
ŒThread.X/�/ D f Q

L1
.hŒX�/.

Definition 3.2 Let � be an equivalence relation on the domain of a model M.
Then the �-spectrum vOut

M .'/ of a sentence ' in a model M is recursively defined:
� vOut

M .R.t0; : : : ; tn�1// D ¹vM.M/.R.t0; : : : ; tn�1/.Ea � Et // j 8i 2 !, ai �

t
M.M/
i º;

� vOut
M .ˇ.'0; : : : ; 'n�1// D f ˇ

L0
ŒvOut

M .'0/ � � � � � vOut
M .'n�1/�;

� vOut
M .Qx'/ D f Q

L0
ŒThread.¹vOut

M .'.a WD x// j a 2 M º/�.

Especially important is to note the use of the scattered substitution in the case of
R.t0; : : : ; tn�1/. If we were to define this in terms of uniform substitution, we would
get undesirable consequences. For example, the possibility of inconsistent identity
in Priest’s Collapsing Lemma relies on a sentence c D c being interpreted by each
instance of c. Were one to define vOut

M .c D c/ in terms of the truth values of uniform
substitutions, no such substitution could turn out false. All equations true in a model
would remain precisely true in the collapsed structure.

This provides us with sufficient machinery to define a Dunn–Priest quotient. Let
M be a model for L0, let h be a Dunn–Priest map from L0 to L1, and let � be a
congruence relation on M, so that JaK is the congruence class of a modulo �.

Definition 3.3 The Dunn–Priest quotient of M along h modulo �, denoted by
M�, is the L1-model hM�;CM�

;FM�

;RM�

i, where
� M� D ¹JaK j a 2 M º,
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� cM�

D JcMK,
� f M�

.Ja0K; : : : ; Jan�1K/ D Jf .a0; : : : ; an�1/K,
� RM�

.Ja0K; : : : ; Jan�1K/ D h.vOut
M.M/

.R.a0; : : : ; an�1///.

We finally prove two lemmas concerning the relationship between vM, vM� , and
vOut

M . Let h be a Dunn–Priest map from L0 to L1, and let M be an L0-model.

Lemma 3.4 For all sentences ', vM.'/ 2 vOut
M .'/.

Proof We prove this by a pair of inductions on the complexity of formulae. Ini-
tially, we assume that M is a Henkin model, that is, that M.M/ D M; once this is
established, we can repeat the induction for non-Henkin models M.

As a basis step, in which ' is an atomic sentence R.t0; : : : ; tn�1/, the reflexivity
of � entails that tMi � tMi . Hence, RM.tM0 ; : : : ; tMn�1/ 2 RMŒ¹RM.a0; : : : ; an�1/ j

for all i < n, ai � tMi º�, which is just to say that vM.R.t0; : : : ; tn�1// 2 vOut
M .R.t0;

: : : ; tn�1//. As the induction hypothesis, assume that for all sentences  of lesser
complexity than ', vM. / 2 vOut

M . /.
If ' is a sentence ˇ.'0; : : : ; 'n�1/, then by the induction hypothesis, for all

i < n, vM.'i / 2 vOut
M .'i /. Hence, .vM.'0/; : : : ; vM.'n�1// 2 vOut

M .'0/ � � � � �

vOut
M .'n�1/. Hence, f ˇ

L0
.vM.'0/; : : : ; vM.'n�1// 2 f ˇ

L0
ŒvOut

M .'0/ � � � � �

vOut
M .'n�1/�, entailing that vM.ˇ.'0; : : : ; 'n�1// 2 vOut

M .ˇ.'0; : : : ; 'n�1//.
If ' is a quantified sentence Qx , then vM.'/ D f Q

L0
.¹vM.M/. .a WD x// j

a 2 M º/. Now, by the induction hypothesis, for each a 2 M , vM.M/. .a WD x// 2

vOut
M.M/

. .a WD x//. So ¹vM.M/. .a WD x// j a 2 M º 2 Thread.¹vOut
M.M/

. .a WD

x// j a 2 M º/. Hence, f Q
L0
.¹vM.M/. .a WD x// j a 2 M º/ 2

f Q
L0
ŒThread.¹vOut

M.M/
. .a WD x// j a 2 M º/�, that is, vM.Qx / 2 vOut

M .Qx /.

Lemma 3.5 For all sentences ', vM�.'/ D h.vOut
M .'//.

Proof We prove this by induction on the complexity of sentences. As a basis, note
that this is precisely how we have defined the interpretation of predicate symbols R
in the quotient M�.

As the induction hypothesis, suppose that this holds for all formulae of lesser
complexity than '. Then, in the case of connectives ˇ, we observe that

vM�

�
ˇ.'0; : : : ; 'n�1/

�
D f Q

L1

�
vM�.'0/; : : : ; vM�.'n�1/

�
D f ˇ

L1

�
h
�
vOut

M .'0/
�
; : : : ; h

�
vOut

M .'n�1/
��

D h
�
f ˇ

L0

�
vOut

M .'0/ � � � � � vOut
M .'n�1/

��
D h

�
vOut

M

�
ˇ.'0; : : : ; 'n�1/

��
:

In the case of quantifiers Q, the following equivalences establish the result:

vM�.Qx / D f Q
L1

�®
vM�

�
 .a WD x/

�
j a 2 M�

¯�
D f Q

L1

�®
h
�
vOut

M

�
 .a WD x/

��
j a 2 M�

¯�
D h

�
f Q

L0

�
Thread

�®
vOut

M

�
 .a WD x/

�
j a 2 M

¯���
:

We are now prepared to prove the primary theorem concerning Dunn–Priest quo-
tients, that is, sufficient conditions for preservation between models.
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Theorem 3.6 Let X0 � V0 and X1 � V1 be nonempty sets. If h is a Dunn–Priest
map with the property that,

for all X � V0; if X \ X0 ¤ ¿; then h.X/ 2 X1;

then for all L0-models M, if vM.'/ 2 X0, then vM�.'/ 2 X1.

Proof Suppose that vM.'/ 2 X0. Then vOut
M .'/ \ X0 ¤ ¿. Hence, by

hypothesis, h.vOut
M .'// 2 X1. However, by Lemma 3.5, for all formulae ',

vM�.'/ D h.vOut
M .'//, whence vM�.'/ 2 X1.

4 Some Examples

In this section, we will examine a few examples. The theorems of Dunn and Priest
will be demonstrated by appeal to Theorem 3.6 and a similar, novel result—the
preservation of nonsensical formulae in quotients of models of Bochvar’s †0—will
be demonstrated by the same method. Finally, we will proceed to look at the interac-
tion of the foregoing observations and the more recent work of Priest on plurivalent
semantics.

4.1 The Dunn–Priest results As mentioned in Section 3, Dunn’s Theorem in
3-Valued Model Theory of [6] and Priest’s Collapsing Lemma of [13] are spe-
cial cases of the above technique. In this section, we show how these results fall out
of the foregoing observations.

We will introduce the relevant logical systems before proceeding to the proofs of
the results themselves. Fix a set S D ¹:;^;8º common to classical logic (CL), the
strong Kleene logic K3 of [10], and the paraconsistent logic of paradox LP, intro-
duced by Priest [12].

Classical logic, according to our scheme, may be represented as follows.

Definition 4.1 Classical logic is the 4-tuple hVCL;DCL;S; ICLi, where
� VCL D ¹t; fº,
� DCL D ¹tº.

The function ICL interprets connectives : and ^ and the quantifier 8:
f :

CL f ^
CL t f

t f t t f
f t f f f

f 8
CL.X/ D

´
t if f … X;

f if f 2 X:

Definition 4.2 The strong Kleene logic K3 is the 4-tuple hVK3
;DK3

;S; IK3
i,

where
� VK3

D ¹t;n; fº,
� DK3

D ¹tº.
The function IK3

interprets connectives : and ^ and the quantifier 8:

f :
K3

f ^
K3

t n f

t f t t n f
n n n n n f
f t f f f f

f 8
K3
.X/ D

8̂<̂
:

t if n … X and f … X;

n if n 2 X and f … X;

f if f 2 X:

Definition 4.3 The paraconsistent logic LP is the 4-tuple hVLP;DLP;S; ILPi,
where
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� VLP D ¹t;b; fº,
� DLP D ¹t;bº.

The function ILP interprets connectives : and ^ and the quantifier 8:
f :

LP f ^
LP t b f

t f t t b f
b b b b b f
f t f f f f

f 8
LP.X/ D

8̂<̂
:

t if b … X and f … X;

b if b 2 X and f … X;

f if f 2 X:

The apparatus introduced in Section 3 provides a direct way to prove Dunn’s The-
orem in 3-Valued Model Theory. First, we define the particular Dunn–Priest map
employed in Dunn’s theorem.

Definition 4.4 The Dunn map from CL to K3 is the Dunn–Priest map hD , where

hD.X/ D

8̂<̂
:

t if X D ¹tº;

n if X D ¹t; fº;

f if X D ¹fº:

Observation 4.5 The Dunn–Priest map hD satisfies Properties 1 and 2.

Proof In the case of negation, first consider the case in which X is a singleton.
Without loss of generality, let X D ¹tº. Then h.f :

CLŒX�/ D f and f :
K3
.h.X// D f .

If X D ¹t; fº, then f :
CLŒX� D X and h.X/ D n. But f :

K3
.hŒX�/ D n.

In the case of conjunction, we can examine three cases.
� Suppose that either t … X0 or t … X1. Then f ^

CLŒX0 � X1� D ¹fº and
h.f :

CLŒX0 � X1�/ D f . But in this case, either h.X0/ or h.X1/ is equal to f ,
whence f ^

K3
.h.X0/; h.X1// D f .

� If X0 D X1 D ¹tº, then h.f ^
CLŒX0 �X1�/ D t, as is f :

K3
.h.X0/; h.X1//.

� Otherwise, t is a member of both X0 and X1 and at least one of these
sets counts f as a member as well. Then f ^

CLŒX0 � X1� D ¹t; fº, whence
h.f ^

CLŒX0 � X1�/ D n. But one of h.X0/ and h.X1/ is n and neither is f ,
whence f ^

K3
.h.X0/; h.X1// D n.

Finally, to examine the case of the universal quantifier, let X denote the family
X0; : : : ; Xm�1. There are again three cases.

� Suppose that ¹fº 2 X. Then for all X 0 2 Thread.X/ it follows that f 2 X 0,
whence h.f 8

CLŒThread.X/�/ D f . But f 2 hŒX�, whence f 8
K3
.hŒX�/ D f .

� Suppose that ¹fº … X but ¹t; fº 2 X. Then either Thread.X/ D ¹¹tº; ¹t; fºº

or ¹¹tº; ¹fºº; in both cases, f 8
CLŒThread.X/� D ¹t; fº, whence we con-

clude that h.f 8
CLŒThread.X/�/ D n. But n 2 hŒX� and f … hŒX�, whence

f 8
K3
.hŒX�/ D n.

� Finally, suppose that X D ¹¹tºº. Then Thread.X/ D ¹¹tºº, whence
f 8

CLŒThread.X/� D ¹tº and h.f 8
CLŒThread.X/�/ D t. But hŒX� D ¹tº, and we

thus conclude that f 8
K3
.hŒX�/ D t.

Observation 4.6 The Dunn–Priest map hD has the property that if X \ ¹tº ¤ ¿,
then h.X/ 2 ¹t;nº.

Proof It may be confirmed by examining the definition of hD that whenever t 2 X ,
either h.X/ D t or h.X/ D n.
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Corollary 4.7 If M �CL ', then M� ²K3
:'.

Proof Suppose that M �CL '. Then vM.'/ D t, whence t 2 vOut
M .'/. Then

h.vOut
M / 2 ¹t;nº, whence vM�.'/ 2 ¹t;nº by Lemma 3.5. But were M� �K3

:'

to hold, then vM�.'/ D f . Hence, M� ²K3
:'.

Priest’s collapsing lemma follows just as easily from the above observations.

Definition 4.8 The Priest map from CL to LP is the Dunn–Priest map hP , where

hP .X/ D

8̂<̂
:

t if X D ¹tº;

b if X D ¹t; fº;

f if X D ¹fº:

Observation 4.9 The Dunn–Priest map hP satisfies Properties 1 and 2.

Proof Note that Observation 4.15 makes no use of which values are designated and
that hP is essentially hD with b replacing n.1 Hence, substituting b for n suffices to
prove the observation.

Observation 4.10 The Dunn–Priest map hP has the property that if X \ DCL ¤

¿, then h.X/ 2 DLP.

Proof Inspection confirms that if t 2 X , then either h.X/ D t or h.X/ D b.

Corollary 4.11 If M �CL ', then M� �LP '.

Proof If M �CL ', then vM.'/ D t. By Theorem 3.6, Observation 4.10 entails
that vM�.'/ 2 DLP, whence M� �LP '.

4.2 Maps between the logics of Bochvar/Kleene and Deutsch/Oller A further exam-
ple can be drawn from the realm of logics of nonsense. In particular, a novel preser-
vation theorem analogous to those of Dunn and Priest can be established for quotients
of structures taken along a map between a logic of nonsense and a paraconsistent
containment logic. In the first case, we consider the internal logic of nonsense †0

of Dmitri Bochvar introduced in [2] (translated as [3]), also independently described
by Kleene in [10]. The target will be the paraconsistent containment logic Sfde
described first by Harry Deutsch in [5] and later independently discovered by Carlos
Oller in [11], in which the system was called AL.

We will begin by introducing natural first-order extensions of these systems.
Retain the interpretation found in Section 4.1 of S as the set ¹:;^;8º.

Definition 4.12 The internal first-order nonsense logic†0 is semantically defined
as the 4-tuple hV†0

;D†0
;S; I†0

i, where
� V†0

D ¹t;n; fº,
� D†0

D ¹tº.
The function I†0

interprets connectives : and ^ and the quantifier 8:

f :
†0

f ^
†0

t n f

t f t t n f
n n n n n n
f t f f n f

f 8
†0
.X/ D

8̂<̂
:

t if n … X and f … X;

n if n 2 X;

f if n … X and f 2 X:
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Bochvar’s intended interpretation of †0 is that n is a “nonsense” value afforded to
formulae regarded as meaningless or nonsense.

Oller’s paraconsistent containment logic is the following.

Definition 4.13 The paraconsistent containment logic Sfde is semantically
defined as the 4-tuple hVSfde ;DSfde ;S; ISfdei, where

� VSfde D ¹t;b;n; fº,
� DSfde D ¹t;bº.

The function ISfde interprets connectives : and ^ and the quantifier 8:
f :

Sfde f ^
Sfde t b n f

t f t t b n f
b b b b b n f
n n n n n n n
f t f f f n f

f 8
Sfde.X/ D

8̂̂̂<̂
ˆ̂:

t if b … X , n … X , and f … X;

b if b 2 X , n … X , and f … X;

n if n 2 X;

f if n … X and f 2 X:

We are now able to define a construction by which one can build Sfde-models from
†0-models while retaining control over the ensuing theories. We first introduce the
map along which the quotients will be taken.

Definition 4.14 The Dunn–Priest map hB W }C.V†0
/ ! VSfde is defined so that

hB.X/ D

8̂̂̂<̂
ˆ̂:

n if n 2 X;

b if X D ¹t; fº;

t if X D ¹tº;

f if X D ¹fº:

The map can be shown to have the necessary properties.

Lemma 4.15 The Dunn–Priest map hB enjoys Properties 1 and 2

Proof The lemma can be proved by examining two cases: those in which the value
n is found in one of the sets X and those in which it is not.

In the first case, the “infectiousness” of nonsense values ensures that Properties 1
and 2 hold. In the case of negation, both f :

Sfde.hB.X// D n and h.f :
†0
ŒX�/ D n.

Likewise, if either X0 or X1 contains n, then both f ^
Sfde.hB.X0/; hB.X1/ and

h.f ^
†0
ŒX0X1�// each have the value of n. In the case of the quantifier, if n appears

in some set X 2 X, then n will appear in some element of Thread.X/ and n will
appear in hŒX�. The former entails that h.f 8

†0
ŒThread.X/�/ D n, while the latter

entails that f 8
Sfde.hŒX�/ D n.

In the latter case, note that Sfde restricted to the truth values ¹t; f;bº is essentially
LP. In these cases, Lemma 4.9 entails that Properties 1 and 2 hold.

As these cases exhaust the possibilities, we conclude that hB enjoys these proper-
ties.

Lemma 4.16 For all X � V†0
, if X \ ¹nº ¤ ¿, then h.X/ 2 ¹nº.
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Proof This can be confirmed by examining the extension of hB .

Theorem 4.17 For a †0-model M and a Dunn–Priest quotient along hB M�,
nonsensical formulae remain nonsensical; that is,

if M ²†0
' and M ²†0

:'; then M� ²Sfde ' and M� ²Sfde :':

Proof By Theorem 3.6, Lemmas 4.15 and 4.16 jointly entail that if n 2 vOut
M .'/,

then h.vOut
M .'// D n. By Lemma 3.5, however, this entails that whenever

vM.'/ D n, also vM�.'/ D n.
Hence, if M ²†0

' and M ²†0
:', then vM.'/ D n. By the above reasoning,

this entails that vM�.'/ D n, whence M� ²Sfde ' and M� ²Sfde :'.

This type of preservation theorem is thus not peculiar to the Dunn–Priest results.

4.3 Plurivalent semantics In [17], Priest introduces a technique for constructing new
logical systems from an arbitrary many-valued logic L, in which a formula is not
necessarily assigned a single truth value, but may be assigned a set of truth values,
motivating the term plurivalent semantics. The technique follows from taking the
positive power set of truth values of a logic L—}C.VL/—and considering this set
itself as the set of truth values. On this set, a general scheme is employed to define
the new system’s designated values and its interpretations of the connectives and
quantifiers of L. In the resulting system, for an element X 2 }C.VL/ that a formula
' is assigned, the value X can alternately be read as “X is the set of truth values
assigned to '” (this is the “plurivalent” reading) or “X is the truth value assigned
to '” (the “univalent” reading). As [17] shows, a plurivalent system can be read
without loss of generality as a univalent system. For the sake of elegance, we will
opt to consider a corresponding plurivalent semantics as a univalent system.

Where L is a logical system hV ;D ;S; I i, Priest defines the elements of the cor-
responding plurivalent system, denoted by bL,2 as the system whose truth values
are nonempty subsets of V and whose designated values bD are determined by the
scheme:

� For all X 2 bV , X 2 bD if and only if there exists a v 2 X such that v 2 D .
To determine the corresponding interpretations of an n-ary connective ˇ, Priest
defines the value of f ˇbL .X0; : : : ; Xn�1/ piecemeal by the scheme:

� For all v 2 V and X0; : : : ; Xn�1 2 bV , v 2 f ˇbL .X0; : : : ; Xn�1/ if and only if
there are v0 2 X0; : : : ; vn�1 2 Xn�1 such that v D f ˇ

L .v0; : : : ; vn�1/.
In the present notation, this is to say that f ˇbL .X0; : : : ; Xn�1/ D f ˇ

L ŒX0�� � ��Xn�1�.
Although [17] considers only propositional logics, Priest’s approach suggests a

very natural way of extending plurivalent semantics to the case of distribution quan-
tifiers:

� For all v 2 D and nonempty sets ¹X0; : : : ; Xn�1º � bV , v 2 f QbL .¹X0; : : : ;

Xn�1º/ if and only if there exist v0 2 X0; : : : ; vn�1 2 Xn�1 such that
v D f Q

L .¹v0; : : : ; vn�1º/.
Again, this easily can be made to conform to the notation of the present article in that
f QbL .¹X0; : : : ; Xn�1º/ D f Q

L ŒThread.¹X0; : : : ; Xn�1º/�.
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With this latter observation, the relatedness of plurivalent semantics to the general
Dunn–Priest quotient technique becomes very clear. In this section, we will observe
that the identity map serves as a Dunn–Priest map between any L and bL, with the
upshot that a general Collapsing Lemma holds in all such instances.

To begin, we are able to extend the material in [17] to define a version of Priest’s
plurivalent semantics suited to deal with quantifiers.

Definition 4.18 With respect to a logical system L D hV ;D ;S; I i, the corre-
sponding plurivalent semantics bL is hbV ; bD ;S;bI i, where

� bV D }C.V /,
� bD D ¹X 2 bV j X \ D ¤ ¿º,
� for connectives ˇ and quantifiers Q,

� f ˇbL .X0; : : : ; Xn�1/ D f ˇ

L ŒX0 � � � � �Xn�1�,
� f QbL .X/ D f Q

L ŒThread.X/�.

Comparing the above definition to Properties 1 and 2 of Definition 3.1 reveals an
immediate symmetry between the two.

Let Id denote the identity function, that is, a function such that Id.x/ D x. Then
between a system and its corresponding plurivalent semantics, Id itself always serves
as a Dunn–Priest map between the two.

Observation 4.19 For all logical systems L and corresponding bL, Id is a Dunn–
Priest map from L to bL.

Proof When h D Id, we may merely drop instances of “h” from the definitions
of Properties 1 and 2. This immediately can be seen to yield the definitions of the
connectives of bL as outlined in Definition 4.18.

This effectively yields a generalized Collapsing Lemma in the case of plurivalent
logics as follows.

Observation 4.20 For all L-models M and Dunn–Priest quotients M� along Id,
if M �L ', then M� �bL '.

Proof Priest’s definition of bD demands that X 2 bD whenever there exists a v 2 X

such that v 2 D . But this is just to say that,

for all X � V ; if X \ D ¤ ¿; then Id.X/ 2 bD :
By Theorem 3.6, if vM.'/ 2 D , then vM�.'/ 2 bD , that is, that M �L ' entails that
M� �bL '.

Just as Priest’s plurivalent semantics opens the door to construct LP-like systems
from, for example, Gödel–Dummett logic, so does the above observation permit con-
structions along the lines of the Collapsing Lemma to the models in such systems.

5 Dunn–Priest Quotients and Ultraproducts

The goal of the foregoing sections has been to provide a versatile technique for pro-
ducing new models from old in a controlled fashion. The versatility of the technique
can be extended—and the amount of control increased—if the Dunn–Priest quotient
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can be deployed in parallel with other, similar techniques. One such construction—
which will be seen to play well with Dunn–Priest quotients—is the ultraproduct.

Classically, ultraproducts are an extremely elegant and powerful tool in mathemat-
ics in general and logic in particular. They provide a means of building nonstandard
models with some particularly compelling applications in models of Peano arith-
metic, nonstandard analysis, and set theory. In mathematical logic, ultraproducts
provide a particularly elegant and algebraic technique for proving the compactness
of a first-order logic; for example, in [8] I modified the proof of Malcev to prove all
finitely valued, nondeterministic logics with first-order quantifiers to be compact. In
short, access to ultraproducts is a very valuable tool.

In [7], I examined a particular case of commutativity with respect to the Dunn
and Priest constructions. Namely, it was shown with respect to a family ¹Mi º of
classical structures each yielding alternatively a K3- or LP-model by means of a
congruence relation �i , that a further congruence relation �I=U can be naturally
defined so that the ultraproduct of, for example, the Priest collapses of Mi was
isomorphic to the Priest collapse of the ultraproduct modulo �I=U , symbolically,Q

i2I M
�i

i =U Š Œ
Q

i2I Mi=U ��I=U .
This is essentially the claim that the order in which one takes a Dunn–Priest quo-

tient and an ultraproduct quotient is immaterial. Not surprisingly, an analogous result
holds generally for Dunn–Priest quotients generating L1-models from L0-models. In
this section, we will outline general definitions relevant to the theory of ultraproducts
before proving that this holds for arbitrary Dunn–Priest quotients and many-valued
logics.

We must work with a bit less generality than we did in Section 3 when considering
ultraproducts. Consider this definition.

Definition 5.1 A first-order logical system L D hVL;DL;S; ILi is finite when
jVLj 2 N.

As will be made clear in the remainder of the paper: that ultraproducts of L-models
are themselves models in the sense of Definition 2.17 relies on the finitude of VL. We
thus restrict our attention in this section to finite logical systems.

5.1 Ultraproducts Initially, we define an intermediate construction from which
ultraproducts are drawn.

Definition 5.2 With respect to a family of models ¹Mi j i 2 I º, the product
premodel

Q
i2I Mi is a tuple h

Q
i2I Mi ;C

Q
i2I Mi ;F

Q
i2I Mi ;R

Q
i2I Mi i, where

�
Q

i2I Mi D ¹f j f W i 7! �a:a 2 Mi º,
� c

Q
i2I Mi D f W i 7! cMi ,

� f
Q

i2I Mi .a0; : : : ; an�1/ D f W i 7! f Mi .a0.i/; : : : ; an�1.i//,
� R

Q
i2I Mi .a0; : : : ; an�1/ D f W i 7! RMi .a0.i/; : : : ; an�1.i//.

Importantly, note that the product is not in general a model as defined in Definition
2.17. The interpretation of, for example, a unary relation symbol R is not a func-
tion mapping elements of

Q
i2I Mi to truth values, but rather is a function mapping

a 2
Q

i2I Mi to further functions mapping each i 2 I to the truth value to which
RMi maps a.i/. Classically, product structures are treated as models by adopting
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the convention that

R
Q

i2I Mi .a/ D

´
t if, for all i 2 I , RMi .a.i// D t;

f otherwise:

In the many-valued case, however, there is no reason to privilege any one convention
over the other. This will be overcome by taking a particular type of quotient of the
product premodel.

Ultraproducts are defined as quotients of a product premodel
Q

i2I Mi modulo
an equivalence relation induced by an ultrafilter U � }.I /. Recall the definition of
an ultrafilter.

Definition 5.3 An ultrafilter on a set }.I / is a subset U � I such that:
� I 2 U ;
� ¿ … U ;
� if X; Y 2 U are sets, then X \ Y 2 U ;
� if X 2 U and X � Y � I , then Y 2 U .

In the sequel, we will employ a few notational conventions that will be prudent to
introduce here.

Definition 5.4 With respect to a product premodel
Q

i2I Mi , and ultrafilter
U � }.I /, and truth value v 2 V ,

� k'kv D ¹i 2 I j vMi
.'/ D vº.

When discussing a metalanguage statement ˆ, we will also employ the unquali-
fied notation

� kˆk D ¹i 2 I j ˆ is true º.

For example, ka.i/ D b.i/k is the set of indices of those models Mi in which a.i/
and b.i/ pick out the same element of Mi .

With respect to a product premodel
Q

i2I Mi , an ultrafilter U � }.I / induces a
congruence relation �U between elements of

Q
i2I Mi .

Definition 5.5 With respect to a product premodel
Q

i2I Mi and ultrafilter
U � }.I /,

a �U b if


a.i/ D b.i/



 2 U :

The equivalence class of an element a 2
Q

i2I Mi modulo �U will be denoted
by JaKU .

Definition 5.6 An ultraproduct
Q

i2I Mi=U is a model where
�

Q
i2I Mi=U D ¹JaKU j a 2

Q
i2I Mi º,

� c
Q

i2I Mi =U D JcKU ,
� f

Q
i2I Mi =U .Ja0KU ; : : : ; Jan�1KU / D Jf

Q
i2I Mi .a0; : : : ; an�1/KU ,

� R
Q

i2I Mi =U .Ja0KU ; : : : ; Jan�1KU / D

�v:kRMi .a0.i/; : : : ; an�1.i// D

vk 2 U .

This final clause is the reason that we must restrict ourselves to finite logical systems.
If the finite sequence v0; : : : ; vn�1 enumerates VL for some logical system L, then
the family ¹k'kv0

; : : : ; k'kvn�1
º is a finite partition of I . Properties of ultrafilters

ensure that in this case, for precisely one j < n is k'kvj
2 U . We are thus safe in

employing a definite description.
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But if VL is infinite, one lacks this guarantee. For example, suppose that with
respect to a sentence ', for each element v0 of an infinite set V 0 of truth values there
exists a model M such that vM.'/ D v0. For each v0 2 V 0, let Mv0 be a model
witnessing this, that is, such that vMv0 .'/ D v0, and let V 0 itself index these models.
Then let U be a nonprincipal ultrafilter on }.V 0/, and consider the ultraproductQ

v02V 0 Mv0=U . For no v00 2 V 0 is k'kv00 2 U , whence the clause for relation
symbols in Definition 5.6 would be ill defined.

We introduce an important type of quotient. Let ¹Mi º be a family of L0-models
indexed by a set I , and for each i 2 I , let �i be a congruence relation on Mi .

Then with respect to an ultrafilter U � }.I /, we can define a further congruence
relation �I=U on

Q
i2I Mi=U by the following definition:

JaKU �I=U JbKU if there are a0
2 JaKU ; b

0
2 JbKU

such that


a0.i/ �i bI .i/



 2 U :

That the definition induces a congruence relation is nontrivial, however. We prove
this as follows.

Observation 5.7 We have that �I=U is a congruence relation.

Proof Reflexivity and symmetry are nearly immediate. Every element a 2 JaKU

bears �i to itself in each Mi ; hence, ka.i/ �i a.i/k D I and ka.i/ �i a.i/k is sub-
sequently a member of U . Likewise, inasmuch as ka.i/ �i b.i/k D kb.i/ �i a.i/k,
any a; b 2

Q
i2I Mi witnessing that JaKU �I=U JbKU will also serve to witness

that JbKU �I=U JaKU .
For transitivity, let JaKU �I=U JbKU and JbKU �I=U JcKU , with a; b;

c 2 …i2IMi witnessing these facts. Then ka.i/ �i b.i/k and kb.i/ �i c.i/k are
both members of U . As U is closed under finite intersections, ka.i/ �i b.i/k \

kb.i/ �i c.i/k 2 U . But at each Mi whose index is counted as a member of
this set, a.i/ �i c.i/ holds by the transitivity of �i . Hence, by upward closure,
ka.i/ �i c.i/k 2 U , whence JaKU �I=U JcKU .

Suppose that, for all j < n, Jaj KU �I=U Jbj KU , and let a0; : : : ; an�1; b0; : : : ;

bn�1 witness these facts. We now may show that f
Q

i2I Mi .Ja0KU ; : : : ; Jan�1KU / D

f
Q

i2I Mi .Jb0KU ; : : : ; Jbn�1KU /.
By hypothesis, for all j < n, kaj .i/ �i bj .i/k 2 U . That U is closed under

finite intersections entails that the set
T

j <nkaj .i/ �i bj .i/k 2 U . Consider an
arbitrary i 2

T
j <nkaj .i/ �i bj .i/k; at Mi , by virtue of the fact that �i is a con-

gruence relation, kf Mi .a0.i/; : : : ; an�1.i// D f Mi .b0.i/; : : : ; bn�1.i//k extends
this set, whence it is a member of U . Let a and b denote some element of

Q
i2I Mi

such that a.i/ D f Mi .a0.i/; : : : ; an�1.i// for all i 2 I , and mutatis mutandis for b.
Then a 2 f

Q
i2I Mi .Ja0KU ; : : : ; Jan�1KU /, b 2 f

Q
i2I Mi .Jb0KU ; : : : ;

Jbn�1KU /, and ka.i/ �i b.i/k 2 U . But this is just to say that f
Q

i2I Mi .Ja0KU ;

: : : ; Jan�1KU / D f
Q

i2I Mi .Jb0KU ; : : : ; Jbn�1KU /.

Lemma 5.8 Let a and b be elements of
Q

i2I Mi . Then
JaKI �U JbKI iff JaKU �I=U JbKU :

Proof For left-to-right, suppose that JaKI �U JbKI . This means that the set
kJaKI .i/ D JbKI .i/k 2 U . Now consider an arbitrary model M

�i

i at which
JaKI .i/ D JbKI .i/. This is just to say that, for all a0 2 Mi , a0 �i a.i/ iff a0 �i b.i/,
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entailing that kJaKI .i/ D JbKI .i/k � ka.i/ �i b.i/k. By upward closure of U , it
follows that ka.i/ �i b.i/k 2 U . But this is precisely to say that JaKU �I=U JbKU .

For right-to-left, we prove the contrapositive. Suppose that JaKI �U JbKI fails.
Then kJaKI .i/ D JbKI .i/k … U . By the maximality of U , kJaKI .i/ ¤ JbKI .i/k 2

U . Now consider models Mi at which JaKI .i/ ¤ JbKI .i/; either there exists an
a0 2 Mi such that a0 �i a.i/ although a0 œi b.i/ or there exists an a0 such that
a0 �i b.i/ although a0 œi a.i/. The transitivity of �i implies that a.i/ œi b.i/.
Hence, kJaKI .i/ ¤ JbKI .i/k � ka.i/ œi b.i/k. Hence, ka.i/ œi b.i/k 2 U ,
ka.i/ �i b.i/k … U , and, consequently, that JaKU �I=U JbKU fails.

In the sequel, let g be a map from
Q

i2I M
�i

i =U to Œ
Q

i2I Mi=U ��I=U defined by

g W JJaKI KU 7! JJaKU KI=U :

We are able to prove some essential features of g.

Lemma 5.9 The function g is a bijection.

Proof We show that g is both an injection and a surjection. That g is a surjection
is immediate.

To show that g is injective, suppose for contradiction that g is not an injec-
tion, and let JJaKI KU and JJbKI KU be distinct elements of

Q
i2I M

�i

i =U such that
g.JJaKI KU / D g.JJbKI KU /. But that g maps each to the same element implies that
JaKU �I=U JbKU . By Lemma 5.8, this entails that JaKI �U JbKI . This, however,
is just to say that JJaKI KU D JJbKI KU , contradicting the assumed distinctness of
these elements.

Lemma 5.10 For all n-ary f and elements a0; : : : ; an�1 2
Q

i2I Mi ,
f Œ

Q
i2I Mi =U �

�I=U
.g.JJa0KI KU /; : : : ; g.JJan�1KI KU // D g.f

Q
i2I M

�i
i

=U
�

.JJa0KI KU ; : : : ; JJan�1KI KU //.

Proof First, note that f Œ
Q

i2I Mi =U �
�I=U

.JJa0KU KI=U ; : : : ; JJan�1KU KI=U / is,
by the definition of a Dunn–Priest quotient, Jf

Q
i2I Mi =U .Ja0KU ; : : : ;

Jan�1KU /KI=U . By the interpretation of f in an ultraproduct, this is equal to
JJf

Q
i2I Mi .a0; : : : ; an�1/KU KI=U .

Likewise, f
Q

i2I M
�i
i

=U .JJa0KI KU ; : : : ; JJan�1KI KU / is by definition
Jf

Q
i2I M

�i
i .Ja0KI ; : : : ; Jan�1KI /KU . As each �i is a congruence relation, this

is just the object JJf
Q

i2I Mi .a0; : : : ; an�1/KI KU .
Then, for each aj , g.JJaj KI KU / D JJaj KU KI=U . So we infer that

f Œ
Q

i2I Mi =U �
�I=U

.g.JJa0KI KU /; : : : ; g.JJan�1KI KU // is identical to the element
f Œ

Q
i2I Mi =U �

�I=U
.JJa0KU KI=U ; : : : ; JJan�1KU KI=U /, which by the above obser-

vation is just JJf
Q

i2I Mi .a0; : : : ; an�1/KU KI=U .
This is equal to g.JJf

Q
i2I Mi .a0; : : : ; an�1/KI KU /, which by the above reason-

ing is precisely g.f
Q

i2I M
�i
i

=U .JJa0KI KU ; : : : ; JJan�1KI KU //.

Lemma 5.11 For all n-ary R and elements a0; : : : ; an�1 2
Q

i2I Mi ,
RŒ

Q
i2I Mi =U �

�I=U
.g.JJa0KI KU /; : : : ; g.JJan�1KI KU // D R

Q
i2I M

�i
i

=U
�

.JJa0KI KU ; : : : ; JJan�1KI KU /.
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Proof RŒ
Q

i2I Mi =U �
�I=U

.g.JJa0KI KU /; : : : ; g.JJan�1KI KU // is defined as
RŒ

Q
i2I Mi =U �

�I=U
.JJa0KU KI=U ; : : : ; JJan�1KU KI=U /. This is by definition of

�I=U h.vOutQ
i2I Mi =U .

Q
i2I Mi =U /

.R.Ja0K
U
; : : : ; Jan�1K

U
///.

Now, as vOutQ
i2I Mi =U .

Q
i2I Mi =U /

.R.Ja0K
U
; : : : ; Jan�1K

U
// is the set ¹v j kv 2

vOut
Mi .Mi /

.R.a0.i/; : : : ; an�1.i///k 2 U º, this reduces to the unique element
h.¹v j kv 2 vOut

Mi .Mi /
.R.a0.i/; : : : ; an�1.i///k 2 U º/.

But this is just the element �v:kh.vOut
Mi .Mi /

.R.a0.i/; : : : ; an�1.i//// D vk 2 U ,

which by definition is �v:kRM
�i
i .Ja0KI .i/; : : : ; Jan�1KI .i// D vk 2 U . By the

definition of an ultraproduct, this is R
Q

i2I M
�i
i

=U .JJa0KI KU ; : : : ; JJan�1KI KU /, as
expected.

We now proceed to the main result of the section.

Theorem 5.12 Let
Q

i2I Mi be a product of L0-models, for each i 2 I , let �i be
a congruence relation inducing a Dunn–Priest quotient M

�i

i , and let U � }.I / be
an ultrafilter. Then Y

i2I

M
�i

i =U Š

hY
i2I

Mi=U
i�I=U

:

Proof The candidate isomorphism is the function g previously defined. By
Lemma 5.9, g is bijective. By Lemma 5.10, g preserves the behavior of functions.
By Lemma 5.11, g also preserves the behavior of relation symbols.

Definition 2.21 suggests that this is precisely what it means to be an isomor-
phism between

Q
i2I M

�i

i =U and Œ
Q

i2I Mi=U ��I=U . Hence, g witnesses thatQ
i2I M

�i

i =U Š Œ
Q

i2I Mi=U ��I=U .

By this observation, we are free to consider Dunn–Priest quotients of ultraproducts
or ultraproducts of such quotients as equivalent.

6 Conclusions

The theorems of Dunn and Priest have been very versatile tools. Generalizing this
construction to arbitrary many-valued logics increases the utility of the construction,
and its well-behavior with respect to ultraproducts, in particular, ensures that it can
be deployed in nonclassical mathematics unproblematically.

An interesting question is what further applications can be found for Dunn–Priest
quotients and when suitable maps exist. Clearly, there is no a priori prohibition on
a Dunn–Priest map running from a logical system to itself. In, for example, a fuzzy
logic for which the interval Œ0; 1� serves as set of truth values, it seems that a map
from}C.Œ0; 1�/ ! Œ0; 1� determined by some topological properties of subsets of the
interval might give something like a “derivative” of a model. Are such constructions
possible and, if so, useful? When can a Dunn–Priest map successfully map a logical
system to itself?

There is also an interpretative matter. In particular cases, for example, inconsis-
tent models of arithmetic, there are some independent interpretations concerning a
particular quotient; Priest [14] uses a “greatest number” theme to motivate certain
Dunn–Priest quotients of the standard model of arithmetic. But in general, there is
no a priori unifying interpretation of Dunn–Priest quotients in general.
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The set VFDE of four truth values in the Dunn–Belnap logic FDE are inter-
preted in, for example, Belnap [1] as epistemic accounts of the data—possibly
contradictory—received by a computer from multiple sources. In [18], Shramko and
Wansing considered complications of this picture, by considering networks of such
computers. A network in which a number of “Belnap computers” report to a central
system is captured by a 16-valued logic corresponding to the logic of the power set
of VFDE. This appears to give rise to a reading of Dunn–Priest quotients such that the
“collapsed” model represents collective disagreement between agents concerning
some atomic formulae. Can anything more be made of this interpretation?

Finally, Priest [17] describes “general plurivalence” as a further generalization of
the notion of plurivalent semantics by considering not only the positive power set
of a set of truth values V , but the entire power set, so that ¿ must be interpreted
as a distinct value. As our treatment of many-valued model theory has treated all
interpretations of n-ary predicates as total functions from M n to V , this value will
never be yielded in a quotient. Given the natural relationship between plurivalence
and Dunn–Priest quotients, it is a reasonable question to ask whether such a value can
be represented or generated in a Dunn–Priest quotient, perhaps by allowing partial
functions as interpretations of predicate symbols.
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Notes

1. Dunn’s proof of the nontriviality of relevant arithmetic relies on a similar observation.

2. We borrow the notation of [9], Lloyd Humberstone’s companion piece to [17]. Priest
uses the decoration “ PM ” to denote the plurivalent system corresponding to a matrix M .
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