
Notre Dame Journal of Formal Logic
Volume 58, Number 1, 2017

Inferentialism and Quantification

Owen Griffiths

Abstract Logical inferentialists contend that the meanings of the logical con-
stants are given by their inference rules. Not just any rules are acceptable, how-
ever: inferentialists should demand that inference rules must reflect reasoning
in natural language. By this standard, I argue, the inferentialist treatment of
quantification fails. In particular, the inference rules for the universal quantifier
contain free variables, which find no answer in natural language. I consider the
most plausible natural language correlate to free variables—the use of variables
in the language of informal mathematics—and argue that it lends inferentialism
no support.

1 Introduction

Logical inferentialists contend that the meanings of the logical constants are given
by their inference rules.1 Not just any rules are acceptable, however: inferentialists
generally place constraints on admissible rules. I will focus on the constraint of
answerability, which demands that the deductive system within which these rules are
articulated must reflect reasoning in natural language. By this standard, I argue, the
inferentialist treatment of quantification fails. In particular, the inference rules for the
universal quantifier contain free variables, which find no answer in natural language.
I consider the most plausible natural language correlate to free variables—the use of
variables in the language of informal mathematics—and argue that it lends inferen-
tialism no support.

2 Inferentialism and Answerability

Logical inferentialists should accept what Steinberger [8, p. 335] calls the principle
of answerability:
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Principle of answerability Only such deductive systems are permissible as can
be seen to be suitably connected to our ordinary deductive inferential practices.

The inferential powers of a logical constant are represented by its introduction and
elimination rules, as articulated within a given deductive system. But not just any
inference rules whatsoever can succeed in conferring meaning on a logical constant.
As [8, p. 335] makes clear, “it is the practice represented, not the formalism as
such, that confers meanings.” The thought is that inferentialists are out to capture the
meaning-conferring aspects of our practice in their formalism, so it is reasonable to
demand that an inferentialist’s formalism does accurately represent these features of
practice.

It may be objected that the principle of answerability is too demanding, because
many of the usual logical connectives, for example, the material conditional, or
even conjunction, do not adequately capture the whole meaning of natural language
indicative conditionals and conjunctions. These are not, however, the expressions
that must match natural language, according to the principle of answerability. Rather,
these are the expressions whose meanings the logical inferentialist determines by
using their formalism. It is the deductive system within which the inference rules are
formulated that must be answerable to the meaning-conferring practices, since it is
the deductive system that represents what a speaker has to grasp to understand an
expression.

Steinberger discusses answerability in the context of a discussion of multiple-
conclusion systems, arguing that multiple-conclusion arguments do not occur in
natural language and so, given answerability, inferentialists should not make use of
multiple-conclusion logical systems.

I do not need to take a stance on multiple-conclusion systems, but will argue that
the inferentialist’s rules for the universal quantifier fail to satisfy the principle of
answerability. The meaning of the universal quantifier, they claim, is given by, for
example, the following pair of rules:2

A.y=x/

8xA
8I 8xA

�
A.t=x/

�
....

C
C

8E

In the 8I rule, A.y=x/ is the result of replacing every instance of x in A with y.
Intuitively, 8xA can be derived just when A.y=x/ has been derived for arbitrary y.
As is familiar, this arbitrariness is ensured by placing a variable restriction on the
rule: y must not occur free in any assumption that A.y=x/ depends on, nor in 8xA.
In this way, y is a free variable. In 8E, t is a term.

3 Informal Mathematics

If the inferentialist is to find natural language counterparts to free variables, the obvi-
ous place to look is the language of informal mathematics, where constructions such
as “consider a pair of integers x and y” or “consider an arbitrary triangle ABC ”
are common. If natural language counterexamples to free variables are to be found
anywhere, it seems they will be found in the language of informal mathematics. For
these examples to serve the inferentialist’s needs, however, their logical behavior
must match—to a reasonable degree—that of the free variables in the formalism.
I will now argue that this is not the case.
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First, we know from Kleene [3, Section 32] that there are two ways in which free
variables are used in informal mathematics, which he calls the generality interpreta-
tion and the conditional interpretation.3 Consider the following pair of equations:

(1) .x C y/2 D x2 C 2xy C y2;
(2) sin2 x C cos2 x D 1.

The claims made in (1) and (2) are true for any numerical substitution of the variables
x and y. The most natural interpretation of the variables is, therefore, the generality
interpretation, which means that for any value, the claim holds.

In contrast, consider the following equation:
(3) x2 C 2 D 3x.

In this case, (3) is not true for every numerical substitution of x. Rather, the variable
is functioning as what Rosser [7] and others call an unknown. Equation (3) is true for
some replacements of x but not all, and as such a conditional interpretation is more
appropriate: if x takes some value, then the claim holds.

On both the generality and conditional interpretations, the concept of logical truth
remains the same: for an open sentence A with x free, ˆ A means that every val-
uation of x satisfies A. The choice of interpretation makes a significant difference,
however, to the concept of logical consequence. On the generality interpretation,

(Generality): A ˆ B means that, if every valuation of x satisfies A, then every
valuation of x satisfies B .

On the conditional interpretation,
(Conditional): A ˆ B means that any valuation of x that satisfies A also satis-

fies B .
One important upshot of this distinction is that, by (Generality), A is logically equiv-
alent to 8xA. By (Conditional), however, 8xA ˆ A, but A 6ˆ 8xA. This is because
A may be satisfied by one value of x but not another. In this way, the conditional
interpretation is stronger than the generality interpretation. The inferentialist must
decide, therefore, whether it is the generality or the conditional interpretation of free
variables in informal mathematics that their formalism represents. I will take them
in turn.

First, the inferentialist could suggest that free variables on the conditional inter-
pretation are the most plausible natural language correlates to their formalism. This
does not seem like an attractive option, however, as on the conditional interpretation,
A does not entail 8xA. It is for this reason that open sentences are not logically
equivalent to their universally quantified counterparts on the conditional interpreta-
tion. But of course the proof theorist needs open sentences to imply their universally
quantified counterparts if they are to match the behavior of their formalism.

It seems, then, that the proof theorist’s best option is to appeal to the generality
interpretation of free variables.4 On the generality reading, A ˆ 8xA and 8xA ˆ A,
so the inferential powers do match the formalism. The problem, however, is that the
open sentences in the proof theorist’s rules are now implicitly general. If we asked
the proof theorist to explain the meaning of an open sentence, they would have to
do so with reference to that sentence’s universally closed counterpart, for this is pre-
cisely what the generality interpretation requires. But if we then asked the proof
theorist for the meaning of a universally quantified sentence, they would have to—by
their inferentialism—appeal to the inference rules for the universal quantifier. But,
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as we have seen, these inference rules involve open sentences. Thus, on the general-
ity interpretation, any explanation of meaning is circular: the universal quantifier’s
meaning is explained with reference to an open sentence, which is in turn explained
with reference to a universal quantifier. We are not, therefore, given any satisfactory
account of the meaning of the universal quantifier, which the inferentialist requires.5

The inferentialist cannot, therefore, appeal to the role of free variables in informal
mathematics to satisfy the principle of answerability. Such variables must be inter-
preted on the conditional or the generality approach, but neither is successful: the
former fails to match the formalism, and the latter renders any meaning explanations
circular.

4 Inferentialist Responses

First, it may be objected that, although most inferentialists do use free variables in
the inference rules for the quantifiers, they need not. Rather, the introduction rule for
the universal quantifier could be given by, for example,

A.a/

8xA.x/
8I0

The suggestion is that, in 8I0, a is not a free variable but an arbitrary name. If we for-
mulate universal introduction in this way, then there are no free variables involved,
only bound variables and arbitrary names. As such, we do not need to find read-
ings of free variables in natural language. Rather, we need to find natural language
counterparts to the expression F.a/, with a as an arbitrary name. Quite plausibly,
something like “F is true of an arbitrary a” is an English counterpart to this. So, the
arbitrary name response goes, we avoid the problem of free variables by eliminating
them and replacing them with arbitrary names for which English readings can be
found.

It should first be noted that, despite occasional appearances to the contrary, this
is not usually the way that inferentialists formulate the rule of universal introduction.
Prawitz [5]—though no other time slices of Prawitz—does express the rule syntac-
tically in this way, as does Dummett [2]. Both writers, however, are clear that a is
still being treated as a free variable: they are merely using letters from the start of the
alphabet for free variables and those from the end of the alphabet for bound variables
(see [5, p. 7] and [2, p. 259]).

In any case, the arbitrary name response is not one that can help the inferential-
ist at this point. The problem comes with how the formula containing an arbitrary
name, F.a/, is to be understood. If a functions as a name, then the resulting intro-
duction rule that supposedly gives the meaning of the universal quantifier fails: the
introduction rule should not feature any particular name, because the meaning of
the universal quantifier does not depend on any particular name. Rather, the univer-
sal quantifier must be in some sense schematic: it must somehow range over all of
the particular closed instances. After all, it is clearly not sufficient grounds to assert
8xF x that we have established F to hold of some name in particular; we must have
established F to hold of every name. So it must not be that a in 8I0 involves any
particular name, as the rule must be in some way schematic. What more must be
added to this rule to ensure that a really is arbitrary?

It would have to be the case that a does not occur in 8xA.x/ nor in any assumption
on which A.a/ depends. In other words, even though a is supposed to be functioning
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as an arbitrary name, rather than as a free variable, they come to the same. It is
functioning as a variable because, to achieve the generality required, it must have a
range of instances. And the range of instances is having to be limited by just the same
restrictions that have to be in play for any rule that attempts to achieve generality in
this way. And it is a free variable because it is not bound by any quantifier. The
arbitrary name response fails, therefore, because the sort of arbitrary name that would
have to be in place for the rule to be plausible would make it indistinguishable from
a free variable.

The inferentialist may respond at this point that, although free variables do feature
ineliminably in the introduction rule for the universal quantifier, this is unproblematic
because the universal quantifier is itself eliminable. In particular, it can be defined
in terms of the existential quantifier by using :9:, and the introduction rule for the
existential quantifier does not feature any free variables:

A.t=x/

9xA
9I

In the introduction rule, t is not a free variable, since it does not range over all values:
it is not the case that to assert 9xA, we must have established that A holds of every
name. And, the response continues, since the introduction rules typically give the
meaning of a logical constant on the inferentialist approach, providing an acceptable
introduction rule for the existential quantifier and taking the universal quantifier as
defined is enough.

This response is not, however, an attractive one for the inferentialist to make
because, even though existential introduction typically does not involve open sen-
tences, existential elimination typically does:

9xA

�
A.y=x/

�
....

C
C

9E

So, although the open sentences have moved from the introduction to the elimination
rule, the open sentences remain and have no natural language counterpart. So making
this response would amount to the inferentialist admitting that they have gotten the
extension of logical consequence wrong: their valid open arguments have no natural
language counterpart, so their concept of logical consequence has overgenerated.

Another possible response from the logical inferentialist is that they rely on a prior
metalinguistic understanding of universal quantification. For example, in the case of
conjunction, the following metalinguistic clause may be given:

(C) A ^ B can be deduced once we have deduced A and we have deduced B .
We may worry that there is circularity involved at the metalevel in the case of con-
junction because (C) uses the expression “and.” But (C) is nevertheless generally
allowed as an elucidation of conjunction. Why is the case of universal quantification
different?6

My reply is that even if the appeal to a prior metalinguistic understanding is legit-
imate and is unproblematic in the case of conjunction, the analogy between conjunc-
tion and the universal quantifier breaks down.

Steinberger [8, Section 7] discusses the issue of circularity and conjunction. He
notes that it may seem circular to offer a clause such as (C) as an elucidation of
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the meaning of conjunction, but that this is unproblematic. We do not need a prior
understanding of “and” to be able to assert A and to be able to assert B . What we
learn when we master the meaning of ^ is that when we are warranted to assert A,
and when we are warranted to assert B , we are warranted to assert A ^ B , and vice
versa. But no understanding of “and” is presupposed by our knowing how to assert
A and our knowing how to assert B .

This is the sort of reason we may have for thinking that an apparent circularity
in the case of conjunction is unproblematic. But, even if something like this story
is correct, the analogous story cannot be told in the case of the universal quanti-
fier. The logical inferentialist could offer the following clause, along with the usual
restrictions:

(Q) 8xA can be deduced once we have deduced A.y=x/.
But, if the free variables in A.y=x/ are understood on the generality interpretation,
as I have argued they should, then universal quantification is being presupposed once
again. In the case of universal quantification, therefore, the metalinguistic move on
the part of the logical inferentialist has merely pushed the problem up a level. This
was not the case with conjunction because, as we have seen, no prior understanding
of “and” is required to assert conjunctions by using the inferentialist’s rules. But, in
the case of the universal quantifier, a prior understanding of universal quantification
is being presupposed when the generality interpretation of free variables is in place.

The analogy with conjunction therefore breaks down: even if the metalinguistic
move is a legitimate one and it is unproblematic in the case of conjunction, the same
move cannot be made in the case of the universal quantifier. The inferentialist is able
to appeal to a prior metalinguistic understanding of conjunction, therefore, because
no circularity is involved. But the same move cannot be made in the case of the
universal quantifier.

5 Conclusion

Inferentialists should accept the principle of answerability. But this creates problems
for their treatment of quantification: the inference rules for the quantifiers make use
of free variables, and there is no answer to these in natural language. The obvious
answer would be the language of informal mathematics, but here they must choose
between Kleene’s conditional and generality readings: on the former, the language
does not logically match the formalism; on the latter, any meaning explanations are
circular.

Notes

1. Logical inferentialism is generally contrasted with the global inferentialism of, for exam-
ple, [1], who holds that the meanings of all expressions can be given by introduction and
elimination rules.

2. This exact formulation is found in [4, p. 64].

3. I am assuming that Kleene’s interpretations are exhaustive, since it is not obvious what
other interpretation is possible, and I am not aware of any other interpretation in the
literature.
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4. The generality interpretation is implicit in the work of most logical inferentialists. Read [6,
p. 137] is explicit, however, that he intends the generality interpretation of free variables.

5. I do not want to imply that we do not understand reasoning about arbitrary objects in
informal mathematics. Rather, I believe that we do understand such reasoning, so it is
a failure of logical inferentialism that it cannot account for this understanding. What
is needed instead, I suggest, is an alternative approach to the meanings of the logical
constants in terms of truth-conditions.

6. I am grateful to an anonymous reviewer for making this response.
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