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SCE-Cell Decomposition and OCP
in Weakly O-Minimal Structures

Jafar S. Eivazloo and Somayyeh Tari

Abstract Continuous extension (CE) cell decomposition in o-minimal struc-
tures was introduced by Simon Andrews to establish the open cell property
(OCP) in those structures. Here, we define strong CE-cells in weakly o-minimal
structures, and prove that every weakly o-minimal structure with strong cell de-
composition has SCE-cell decomposition if and only if its canonical o-minimal
extension has CE-cell decomposition. Then, we show that every weakly o-
minimal structure with SCE-cell decomposition satisfies OCP. Our last result
implies that every o-minimal structure in which every definable open set is a
union of finitely many open CE-cells, has CE-cell decomposition.

1 Introduction and Preliminaries

A first-order expansion M D .M; <; : : :/ of a dense linear order without endpoints
is said to be o-minimal (resp., weakly o-minimal) if every unary definable (with pa-
rameters from M ) subset of M is a finite union of open intervals and points (resp.,
open convex subsets and points). Recall that intervals in the linearly ordered set
.M; </ are defined as in .R; </, and a subset C of M is said to be convex if for
all a < b in C and any c 2 M , a < c < b implies that c 2 C . We use .a; b/

to denote an open interval with endpoints a and b, but ha; bi denotes an ordered
pair with components a and b. When we use a 2 A, we mean a 2 An for some
positive integer n 2 NC. Here, we are concerned with interval topology on M for
which the set of all open intervals constitutes a basis. Also, for any positive integer
n, we equip M n with the product topology. An open box in M n is a product of n

open intervals I1; : : : ; In with endpoints in M . The set of all open boxes in M n is
a basis for the product topology on M n. The topological closure of a set X � M n

will be denoted by cl.X/. Also, fr.X/ denotes the frontier of X ; that is, cl.X/ n X .
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Throughout the paper, � will denote a projection map which drops the last coordi-
nate. Let f W X ! M be a definable function, and let a 2 cl.X/. Then, we write
limt!a f .t/ D b, where b 2 M [ ¹˙1º, if for every open neighborhood V of
b there exists an open neighborhood U of a in M n such that for all x 2 U \ X ,
f .x/ 2 V .

Let M D .M; <; : : :/ be a weakly o-minimal structure. For C; D � M , let
C < D if and only if c < d for all c 2 C and d 2 D. A pair hC; Di of nonempty
subsets of M is called a (Dedekind) cut in .M; </ if M D C [ D, C < D, and D

has no lowest element. A cut hC; Di in .M; </ is said to be definable in M if and
only if the sets C; D are definable in M. The set of all definable cuts of M will be
denoted by M . For hC1; D1i; hC2; D2i in M , let hC1; D1i < hC2; D2i if and only
if C1 � C2. With this relation, .M; </ is a dense linear order without endpoints. By
identifying any element a 2 M with the definable cut h.�1; a�; .a; C1/i, .M; </

is an extension of .M; </, where M is dense in M . A function f W X ! M , where
X � M m is a definable set in M, is said to be definable in M if and only if the set
A D ¹hx; yi 2 X � M W y < f .x/º is definable in M. The definable set A is called
the defining set of f in M.

We will use some basic notions from (weak) o-minimality without giving the
definitions, such as k-cell, cell decomposition, and so on. For further information
about o-minimality, we refer the reader to van den Dries [4]; for weak o-minimality,
see Macpherson, Marker, and Steinhorn [3] and Wencel [5].

Let M D .M; <; : : :/ be an o-minimal structure. The structure M is said to
have the open cell property, OCP, if every nonempty definable open subset of M n,
for any positive integer n, is a finite union of open cells. Wilkie has shown that if
M D .M; <; C; �; : : :/ is an o-minimal expansion of a real closed field, then every
definable bounded open subset S � M n is a finite union of open cells (see [7]). It is
easy to construct an open definable subset of M 2 that cannot be expressed as a finite
union of definable open cells. Edmundo, Elefteriou, and Prelli in [2] extended the
result of Wilkie for o-minimal expansions of an ordered group. Andrews in [1] intro-
duced continuous extension cell decomposition (i.e., denoted by CE-cell decomposi-
tion) in o-minimal structures. Then, he proved that every o-minimal structure having
CE-cell decomposition satisfies OCP.

In this article, we focus on OCP in weakly o-minimal structures. First, we com-
bine CE-cell decomposition of [1] with strong cell decomposition of [5] to intro-
duce strong continuous extension cell decomposition (SCE-cell decomposition) in
weakly o-minimal structures. Wencel [5] showed that every weakly o-minimal struc-
ture M D .M; <; : : :/ with strong cell decomposition has a canonical o-minimal
extension M D .M; <; : : :/. In Section 2, we show that M has SCE-cell decom-
position if and only if M has CE-cell decomposition. We use this result to show
that every weakly o-minimal structure with SCE-cell decomposition has OCP; that
is, every nonempty definable open set is a finite union of open strong cells. Let
M D .M; <; : : :/ be a weakly o-minimal structure with strong cell decomposition.
In Section 3, we also prove that if every definable open set X � M n, n 2 N, is
a union of finitely many SCE-cells, then M holds SCE-cell decomposition. This
implies somehow a partial converse to [1, Theorem 2].
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2 SCE-Cell Decomposition in Weakly O-Minimal Structures

Let M D .M; <; : : :/ be a weakly o-minimal expansion of a dense linear order
.M; </. According to [5], strong cells in M m and their completions in M

m are
simultaneously defined for any m 2 NC. The completion of a strong cell C � M m

will be denoted by C .

(i) Any singleton of M is a 0-strong cell in M and is equal to its completion.
(ii) A nonempty open convex definable subset of M is a 1-strong cell in M . If

C � M is a 1-strong cell, then C WD ¹x 2 M j .9a; b 2 C /.a < x < b/º.
Let m 2 NC, k � m, and suppose that we have already defined k-strong

cells in M m and their completions in M
m.

(iii) If C � M m is a k-strong cell in M m and f W C ! M is a definable
continuous function which has a (necessarily unique) continuous extension
f W C ! M , then the graph of f , which is denoted by �.f /, is a k-strong
cell in M mC1 and its completion in M

mC1 is defined as �.f /.
(iv) Assume that C � M m is a k-strong cell in M m and that f; g W C !

M [ ¹˙1º are definable continuous functions with continuous extensions
f ; g W C ! M [ ¹˙1º, respectively, such that f .a/ < g.a/ for all a 2 C .
Then, the set

.f; g/C WD
®
ha; bi 2 C � M W f .a/ < b < g.a/

¯
is a .k C 1/-strong cell in M mC1. The completion of .f; g/C in M

mC1 is the
set

.f ; g/C WD
®
ha; bi 2 C � M W f .a/ < b < g.a/

¯
:

For a k-strong cell C , dim.C / D k is the topological dimension of C . A weakly
o-minimal structure M is said to have strong cell decomposition if for any positive
integers m; k and any definable sets X1; : : : ; Xk � M m, there exists a decomposition
of M m into strong cells that partitions each of the sets X1; : : : Xk . (For the notions
of decomposition and partitioning a set, see [4].)

For X � M m, let clM .X/ denote the topological closure of X in the space M
m.

Using induction on m, one can see that if C is a strong cell, then C � clM .C /. So,
clM .C / D cl.C /.

Let C � M m be a strong cell, and let f W C �! M be a definable function.
Then, f is said to be strongly continuous if and only if it has a (unique) continuous
extension f W C �! M . A function which is identically equal C1 or �1, and
whose domain is a strong cell will be also strongly continuous.

In [1], continuous extension cells, CE-cells, are defined inductively in an o-
minimal structure .M; <; : : :/. In M , CE-cells are exactly the points and open
intervals. The cells �.f /C and .g; h/C are CE-cells if C is a CE-cell and there
exist continuous extensions of f , g, and h on cl.C /. An o-minimal structure is
said to have the CE-cell decomposition property if any cell decomposition admits a
refinement by CE-cells. Below, we define strong CE-cells (SCE-cells) in a weakly
o-minimal structure M inductively.

(i) Every singleton of M is a 0-SCE-cell, and every definable open convex subset
of M is a 1-SCE-cell.
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(ii) If C � M n is a k-SCE-cell, where k � n, and f W C ! M is a definable
continuous function which has a continuous extension f W clM .C / ! M ,
then �.f / D ¹hx; yi 2 C � M j y D f .x/º is a k-SCE-cell.

(iii) If C � M n is a k-SCE-cell and f; g W C ! M are definable continuous
functions which have continuous extensions f ; g W clM .C / ! M such that
f jC < gjC , then .f; g/C D ¹hx; yi 2 C � M j f .x/ < y < g.x/º is a
.k C 1/-SCE-cell.

The dimension of a k-SCE-cell is k. As in the o-minimal case, one can see that for
0 � k < m and every k-SCE-cell C � M m there exists a k-SCE-cell D � M m�1

and a definable homeomorphism �C from C onto D which has a definable continu-
ous extension �C from clM .C / onto clM .D/. An SCE-cell decomposition for M is
a strong cell decomposition of M in which any strong cell is an SCE-cell. Note that
if C is an SCE-cell decomposition of M mC1, then �.C/ D ¹�.C / j C 2 Cº is an
SCE-cell decomposition of M m.

In the following example, we give a weakly o-minimal structure with strong cell
decomposition but without SCE-cell decomposition. We first recall the notion of
nonvaluational (weakly) o-minimal structure. Let M D .M; <; C; : : :/ be a (weakly)
o-minimal expansion of an ordered abelian group. A cut hC; Di of M is said to
be nonvaluational if for any � 2 M >0, there exist x 2 C and y 2 D such that
jx � yj < �. Then, M is called nonvaluational if every definable cut of M is nonval-
uational. By Wencel [6, Theorem 2.11], every expansion of a nonvaluational weakly
o-minimal structure M by a family of nonvaluational cuts of M is a nonvaluational
weakly o-minimal structure, so it has the strong cell decomposition property by [5,
Corollary 2.16].

Example 2.1 Let M D .M; <; C; �; 0; 1; : : :/ be a weakly o-minimal nonvalua-
tional expansion of a real closed field, for example, the ordered field of real algebraic
numbers expanded by a unary predicate for the set of real algebraic numbers less
than � . Then, M has strong cell decomposition but does not have SCE-cell de-
composition; as for the definable strongly continuous function f W .0; C1/ ! M ,
where f .x/ D

1
x

, the definable strong cell .�1; f /.0;C1/ cannot be a finite union
of SCE-cells.

It is worth noting that SCE-cell decomposition for weakly o-minimal structures does
not imply the o-minimality. To illustrate that, let M D .M; <; C; ¹� j � 2 Dº/ be an
ordered vector space over an ordered division ring D, and let ¹Ci j i 2 I º be a family
of nonvaluational convex subsets of M . Then M1 D .M; <; C; ¹� j � 2 Dº; ¹Ci j

i 2 I º/, which is a nonvaluational weakly o-minimal structure, has strong cell de-
composition. In the following, we make the method of [4, (1.7.4)] compatible with
weak o-minimality to show that M1 has indeed SCE-cell decomposition.

We say that a function f W M n ! M is pseudoaffine if there exist k 2 N,
C1; : : : ; Ck 2 ¹Ci j i 2 I º, �1; : : : ; �n; 1; : : : ; k 2 D, and ˛ 2 M such that

f .x1; : : : ; xn/ D �1x1 C � � � C �nxn C ˛ C 1C1 C � � � C kCk :

Note that by i Ci in the above expression, we mean the least upper bound of the
(proper) convex set i Ci in M . If k D 0, then f is an affine function. Also, a basic
pseudo-semilinear set in M n is a set of the form®

x 2 M n
ˇ̌

f1.x/ D � � � D fp.x/ D 0; g1.x/ > 0; : : : ; gq.x/ > 0
¯
;
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where the fi ’s are affine functions and the gj ’s are pseudoaffine functions. A pseudo-
semilinear set in M n is a finite Boolean combination of basic pseudo-semilinear sets.
As in [4], one can show that M1 has a cell decomposition property for which all cell-
defining functions are pseudoaffine. Thus, every cell here is an SCE-cell and so M1

has SCE-cell decomposition.
The proof of the following fact is completely routine.

Fact 2.2 Assume that M D .M; <; : : :/ is a weakly o-minimal structure with
SCE-cell decomposition, m is a positive integer, X is a definable subset of M m, and
f W X ! M is a definable function. Then, there is an SCE-cell decomposition C

of M m which partitions X , and for each C 2 C with C � X , f jC has a definable
continuous extension on clM .C /.

Refined strong cells are all those whose boundary functions (cell-defining functions)
assume values in one of the sets: ¹�1º, ¹C1º, M , M n M . As mentioned in [5,
Fact 2.5], it is easy to see that if M has strong cell decomposition, then every strong
cell can be partitioned into finitely many refined strong cells; so every strong cell
decomposition can be refined into a cell decomposition with refined strong cells.

Let M D .M; <; : : :/ be a weakly o-minimal structure with strong cell decompo-
sition. By [5, Section 3], the structure M D .M; <; ¹C j C is a refined strong cell
in Mº/ is o-minimal. It is called the canonical o-minimal extension of M. As noted
in [5, comments before Fact 3.4], for every definable set X � M

n in M, X \ M n is
a definable set in M.

In the following fact, which can be proved inductively on m, we compare cell
types in M and M.

Fact 2.3 Let M D .M; <; : : :/ be a weakly o-minimal structure with strong cell
decomposition, and let M be its canonical o-minimal extension. Then we have the
following.

(i) If C � M m is a strong cell (resp., SCE-cell), then C is a cell (resp., CE-cell)
in M. If C is, in addition, open, then C is open too.

(ii) If S � M
m is an open cell (resp., open CE-cell) in M, then S \ M m is a

strong open cell (resp., open SCE-cell) in M whose completion is S .

Note that (ii) does not hold for nonopen cells. To see that, let M D .M; <; C; �;

0; 1; P / be the ordered field of real algebraic numbers expanded by P D .�1; �/.
We remarked in Example 2.1 that M has strong cell decomposition. Let S D �.f /,
where f W .0; 7/ ! M is a continuous definable function in M such that f .x/ D x

for x 2 .0; �/, f .x/ D � for x 2 Œ�; 2��, and f .x/ D
1
2
x for x 2 .2�; 7/. Then, S

is a CE-cell in M, but S \ M 2 is a union of two disjoint SCE-cells in M.
In the following, we make a link between the SCE-cell decomposition property of

a weakly o-minimal structure M having strong cell decomposition and the CE-cell
decomposition property of the canonical o-minimal extension M of M. First, we pro-
vide some requirements in the following lemmas, where we fix an arbitrary weakly
o-minimal structure M D .M; <; : : :/.

Lemma 2.4 Let C � M m be an open SCE-cell for some m 2 NC, and let
a 2 clM .C /. Then, for every open box B � M m with a 2 B , there exists an
open box B1 � B with a 2 B1 such that B1 \ C is an open SCE-cell.
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Proof This is done by induction on m. It is clear for m D 1. Assume that
C � M mC1 is an open SCE-cell, with a 2 clM .C /. Then, C D .f; g/D , where
D is an open SCE-cell in M m and f; g are definable continuous functions which
have definable continuous extensions f ; g W clM .D/ ! M such that f jD < gjD .
Let B D E � I be an open box with a D ha; amC1i 2 B . Since a 2 clM .C /,
limt!a f .t/ � amC1 � limt!a g.t/ and a 2 clM .D/. So, we have four cases as
follows.

(i) limt!a f .t/ < amC1 < limt!a g.t/. Let J D .c; d/ be an open subinterval
of I where limt!a f .t/ < c < amC1 < d < limt!a g.t/. Then, there
exists an open box E 0 � E with a 2 E 0 such that f .E 0 \ clM .D// < c

and g.E 0 \ clM .D// > d . By the induction hypothesis, there is an open
box E 00 � E 0 containing a in E 00 such that E 00 \ D is an open SCE-cell
with E 00 \ D � D. Then, E 00 � J is the desired open box. Note that
.E 00 � J / \ C D .h1; h2/E 00\D , where h1 and h2 are the definable constant
functions with values c and d , respectively.

(ii) limt!a f .t/ < amC1 D limt!a g.t/. In this case, we take an open subinter-
val J � I as .c; d/ where limt!a f .t/ < c < amC1 < d . Now, similarly
to the case (i), there exists an open box E 00 with a 2 E 00 such that E 00 \ D is
an open SCE-cell with E 00 \ D � D. Then, .E 00 � J / \ C D .h; g/E 00\D is
the desired open box in which h is the constant function c.

(iii) limt!a f .t/ D amC1 < limt!a g.t/. This case is completely similar to the
case before.

(iv) limt!a f .t/ D amC1 D limt!a g.t/. In this case, we take E 0 � E as an
open box with a 2 E 0 such that for every x 2 E 0 \ clM .D/, f .x/; g.x/ 2 I .
By the induction hypothesis, there is an open box E 00 � E 0 containing a in
E 00 such that E 00 \ D is an open SCE-cell with E 00 \ D � D. Then, we have
.E 00 � I / \ C D .f; g/E 00\D .

Lemma 2.5 Let C � M m be an open SCE-cell for some m 2 NC, a 2 clM .C /,
and let C be an SCE-cell decomposition that partitions C . Assume that C1; : : : ; Cn

are all elements of C such that Ci � C and a 2 clM .Ci / for every 1 � i � n. Then,
there exists an open box B with a 2 B such that B \ C D

S
1�i�n.B \ Ci /.

Proof This is done by induction on m. It is clear for m D 1. Let C D .f; g/D �

M mC1 be an open SCE-cell, let a D ha; amC1i 2 clM .C /, and let C be an SCE-cell
decomposition of M mC1 that partitions C . Let C 0 D ¹C1; : : : ; Cnº be the set of all
elements of C such that Ci � C and a 2 clM .Ci / for every 1 � i � n. Then, for
every E 2 �.C 0/, we have .f; g/E D

S
0�i�kE

.hi ; hiC1/E [
S

¹�.hi jE / j 1 � i �

kE and �.hi jE / 2 Cº for some kE � 0, where h0 D f; hkE C1 D g, and
any hi is a definable continuous function which has a definable continuous
extension on clM .E/. Let CE D ¹.hi ; hiC1/E j 0 � i � kE º. Since
a D ha; amC1i 2 clM .C /, a 2 clM .D/ and limt!a f .t/ � amC1 � limt!a g.t/.
So, �.C1/; : : : ; �.Cn/ are all �.X/ 2 �.C/ for which a 2 clM .�.X// and
�.X/ � D. By the induction hypothesis, there exists an open box B1 with a 2 B1

such that B1 \ D D
S

1�i�n.B1 \ �.Ci //. For every E 2 �.C 0/, let

lE D min
®
hi

ˇ̌
0 � i � kE and .hi ; hiC1/E 2 CE

¯
;

hE D max
®
hiC1

ˇ̌
0 � i � kE and .hi ; hiC1/E 2 CE

¯
:
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Then, it is easy to see that lE and hE hold the following conditions:
(i) lE and hE are definable continuous functions on E which have definable

continuous extensions lE and hE on clM .E/, and lE < hE on E;
(ii) limt!a lE .t/ � amC1 � limt!a hE .t/;
(iii) if limt!a lE .t/ D amC1, then lE D f jE ; also, hE D gjE if limt!a hE .t/ D

amC1.
There exist elements c; d in M such that c < amC1 < d and

(i) limt!a lE .t/ < c for every E 2 �.C 0/ which limt!a lE .t/ < amC1,
(ii) d < limt!a hE .t/ for every E 2 �.C 0/ which amC1 < limt!a hE .t/.

By the continuity of lE and hE , there exists an open box B2 � B1 with a 2 B2,
such that lE .B2 \ clM .E// < c or c < lE .B2 \ clM .E// < d , and c < hE .B2 \

clM .E// < d or d < hE .B2 \ clM .E// for every E 2 �.C 0/. Then, for
B D B2 � .c; d/, we have B \ C D

S
1�i�n.B \ Ci /.

Lemma 2.6 Let C � M m be an open SCE-cell, and let f W C ! M be a
definable strongly continuous function. Assume that C is an SCE-cell decomposition
partitioning C such that for all D 2 C , f jD has a definable continuous extension to
clM .D/. Then, f has a definable continuous extension to clM .C /.

Proof It is sufficient to show that for every D1; D2 2 C and a 2 clM .D1/ \

clM .D2/, limt!a f jD1
.t/ D limt!a f jD2

.t/. It is true for every a 2 C , since
f is strongly continuous. So, fix an element a 2 fr.C /, and let D1; : : : ; Dn be
all elements of C such that Di � C and a 2 clM .Di / for every 1 � i � n.
If the claim does not hold, then there are elements b1 < b2 < � � � < bk in M ,
where k > 1, such that for every 1 � i � n, limt!a f jDi

.t/ D bj for some
1 � j � k. By Lemma 2.5, there exists an open box B1 with a 2 B1 such that
B1 \ C D

S
1�i�n.B1 \ Di /. For every 1 � j � k, let Ij be an open interval

.cj ; dj / � M where cj < bj < dj < cj C1. We may assume, without loss of
generality, that 8t 2 .B1 \ Di /; f jDi

.t/ 2 Ij for all 1 � i � n and 1 � j � k

such that limt!a f jDi
.t/ D bj . By Lemma 2.4, there exists an open box B2 � B1

with a 2 B2 such that B2 \ C is an open SCE-cell and B2 \ C � C . Since
.�1; f /C is a strong cell with completion .�1; f /C , f W C .� M

n
/ ! M is

a continuous definable function in the o-minimal structure M. Then, f .B2 \ C /

is a definably connected set in M , as B2 \ C is a cell in M and hence definably
connected. This is a contradiction, because of B2 \ C D

S
1�i�n.B1 \ Di / and

8t 2 .B2 \ Di /; f jDi
.t/ 2 Ij whenever limt!a f jDi

.t/ D bj .

Theorem 2.7 Let M D .M; <; : : :/ be a weakly o-minimal structure with
SCE-cell decomposition. Then every definable strongly continuous function
f W C ! M , where C � M n is an open SCE-cell in M, has a definable
continuous extension to clM .C /.

Proof Let C � M n be an open SCE-cell in M, and let f W C ! M be a definable
strongly continuous function. By Fact 2.2, there is an SCE-cell decomposition C of
M n that partitions C into SCE-cells on each of which f has a continuous extension
on its topological closure in M

n. By Lemma 2.6, f has a definable continuous
extension to clM .C /.
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Corollary 2.8 Let M D .M; <; : : :/ be a weakly o-minimal structure with
SCE-cell decomposition. Then every open strong cell C � M m is a finite union
C1 [ � � � [ Cn, for some n � 1, of open SCE-cells such that Ci � C for 1 � i � n.

Proof This is done by induction on m. It is clear for m D 1. Let C D .f; g/D �

M mC1 be an open strong cell. By the induction assumption, D is a finite union
D1 [ � � � [ Dn of open SCE-cells such that Di � D for 1 � i � n. By Theorem 2.7,
for any 1 � i � n, the definable strongly continuous functions f jDi

; gjDi
have

definable continuous extensions on clM .Di /. Hence, .f; g/D1
; : : : ; .f; g/Dn

are all
SCE-cells. As C D .f; g/D1

[ � � � [ .f; g/Dn
and .f; g/Di

D .f ; g/Di
� C for any

1 � i � n, we are done.

Theorem 2.9 Let M D .M; <; : : :/ be a weakly o-minimal structure with strong
cell decomposition. Then, M has SCE-cell decomposition if and only if the canonical
o-minimal extension M of M has CE-cell decomposition.

Proof Assume that M has SCE-cell decomposition. We show that if S � M
n is

a k-CE-cell in M and f W S ! M is a definable continuous function, then f has
a continuous extension on cl.S/. It is clear for k D 0. For k � 1, we prove it by
induction on n. If S � M is a 1-cell in M, then S D C for some open SCE-cell C

in M. Then, cl.S/ D clM .C / and f jC W C ! M is a definable strongly continuous
function in M. Hence by Theorem 2.7, limt!a f .t/ exists in M for any element
a 2 cl.S/.

Now, let S � M
nC1 be a k-CE-cell in M, let f W S ! M be a definable

continuous function, and let a 2 cl.S/. If S is open, then by Fact 2.3(ii), S D C

for some open SCE-cell in M, and so cl.S/ D clM .C /. Thus by Theorem 2.7,
limt!a f .t/ exists in M for any a 2 cl.S/. Now, assume that S is not open. In this
case, there exists a k-CE-cell U � M

n and a definable homeomorphism �S from
S onto U which has a definable continuous extension �S from cl.S/ onto cl.U /.
Then, by the induction assumption, limy!�S .a/ f ı ��1

S .y/ exists in M . Thus,
limt!a f .t/ exists in M . Now, using cell decomposition of M, we can inductively
show that M has CE-cell decomposition.

Conversely, assume that M has CE-cell decomposition. Since M has strong cell
decomposition, the following assertions, which can be easily proved by using simul-
taneous induction on m, follow the SCE-cell decomposition of M.

.a/m. If C1; : : : ; Ck are strong cells in M m, then there exists an SCE-cell decom-
position C of M m that partitions each of the sets C1; : : : ; Ck .

.b/m. If C1; : : : ; Ck are strong cells in M m and f1 W C1 ! M; : : : ; fk W Ck ! M

are definable strongly continuous functions, then there exists an SCE-cell decompo-
sition C of M m that partitions each of the sets C1; : : : ; Ck , and for every D 2 C

such that D � Ci , fi jD has a definable continuous extension on clM .D/.
.a/1 is clear. For .b/1, there exists a CE-cell decomposition D of M that partitions

each of the sets C1; : : : ; Ck , and for every D 2 D such that D � Ci , fi jD has a
definable continuous extension on cl.D/. Then, C D ¹D \M j D 2 Dº is a desired
SCE-cell decomposition of M .

For .a/mC1, let C1; : : : ; Ck be strong cells in M mC1. There exists a strong cell
decomposition C that partitions each of the sets C1; : : : ; Ck . Now, by using .b/m for
all cell-defining functions of C , we get a desired SCE-cell decomposition of M mC1.
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For .b/mC1, let C1; : : : ; Ck be strong cells in M mC1, and let f1 W C1 ! M; : : : ;

fk W Ck ! M be definable strongly continuous functions. By Fact 2.3, the functions
f1 W C1 ! M; : : : ; fk W Ck ! M are definable in M. There exists a CE-cell
decomposition D of M

mC1 that partitions each of the sets C1; : : : ; Ck , and for every
D 2 D such that D � Ci , fi jD has a definable continuous extension on cl.D/. By
the assumption, there exists a strong cell decomposition C1 that partitions every set
of ¹D \ M mC1 j D 2 Dº. Now, using .a/mC1 on members of C1 gives a desired
SCE-cell decomposition of M mC1.

From Theorem 2.9, and [5, Corollary 2.16], we have the following.

Corollary 2.10 Let M D .M; <; C; : : :/ be a weakly o-minimal nonvaluational
expansion of an ordered abelian group. If M has SCE-cell decomposition, then the
canonical o-minimal extension M of M has OCP.

It is worth noting that if D is a CE-cell decomposition of M
m in the structure

M, then D \ M m D ¹D \ M m j D 2 Dº is not necessarily an SCE-cell de-
composition for M m in the structure M. For example, we consider the structure
M D .Q; <; C; ¹r j r 2 Qº; P / as an ordered vector space over Q expanded
by P D .�1;

p
2/. As we saw above, M has SCE-cell decomposition. Let

f W .0; 4/ ! M be a continuous definable function in M such that f .x/ D x

for x 2 .0;
p

2/, f .x/ D
p

2 for x 2 Œ
p

2; 2
p

2�, and f .x/ D
1
2
x for x 2 .2

p
2; 4/.

Then,

D D
®
.�1; 0/ � M; ¹0º � M; .�1; f /.0;4/;

�.f /; .f; C1/.0;4/; ¹4º � M; .4; C1/ � M
¯

is a CE-cell decomposition of M
2, while D \ M 2 is not even a strong cell decom-

position.

3 OCP in Weakly O-Minimal Structures

We say that a weakly o-minimal structure M D .M; <; : : :/ has the open cell prop-
erty, OCP, if every definable open set X � M m, for each m 2 NC, is a finite union
of open strong cells. In this section, we show that weakly o-minimal structures with
SCE-cell decomposition have OCP. We also provide a partial converse of that result,
which implies a partial converse for Theorem 2 of [1].

Lemma 3.1 Let M D .M; <; : : :/ be a weakly o-minimal structure with SCE-cell
decomposition. Then, for every definable open set X � M m, m 2 NC, there exists
an open set Y � M

m definable in M such that X D Y \ M m.

Proof Let X � M m, where m 2 NC, be a definable open set in M. By [5,
Fact 2.5], there exists a strong cell decomposition C of M m that partitions X into
refined strong cells C1; : : : ; Cp , that is, strong cells with cell-defining functions
taking value only in one of the sets M , M n M , or ¹�1; C1º. Assume that
f1; : : : ; fq are all cell-defining functions of C1; : : : ; Cp that take value in M n M

(if they exist). For 1 � j � q, let fj W �.Ci / ! M be the strongly con-
tinuous extension of fj W �.Ci / ! M n M for some 1 � i � p. Now, set
Z D .

S
1�i�p Ci / [ .

S
1�j �q �.fj // and Y D int.Z/, the interior of Z in M

m. It
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is clear that Y is definable in M. We show that Y \M m D X . Since Z \M m D X ,
Y \ M m � X . For the converse, we show that for every a 2 X there exists an open
box B � M

m containing a such that B � Z.
By the assumption and Theorem 2.9, there exists a CE-cell decomposition D of

M
m that partitions the definable set Z. By refining D , we may assume that for all

E; F 2 �.D/, E � cl.F / whenever E \cl.F / ¤ ;. Assume that Z D
S

1�l�k Dl ,
where D1; : : : ; Dk 2 D . Let a D .a; am/ 2 X , and let D be a CE-cell from
¹D1; : : : ; Dkº containing a. Since the assertion of the lemma clearly holds for
m D 1, we may assume that m > 1. If D is open, then we are done. Assume that
D is not open. Let E be the set of all E 2 �.D/ such that cl.E/ \ �.D/ ¤ ;.
Also, let F denote the set of all cell-defining functions of D . Now, for every
E 2 E , let lE D min¹f 2 F j dom.f / D E and am < limt!�.a/ f .t/º

and hE D max¹f 2 F j dom.f / D E and limt!�.a/ f .t/ < amº. Then,
.lE ; hE /E � Z, because X is open in M m and a D .a; am/ 2 X . Also,
a 2 cl..lE ; hE /E /. If �.D/ is open, then for E D �.D/, the open CE-cell
.lE ; hE /E contains the desired open box. Otherwise, let U D

S
E2E E. Then, U is

a connected open set and �.a/ 2 U . For every E 2 E , there are bE ; cE 2 M such
that limt!�.a/ lE .t/ < bE < am < cE < limt!�.a/ hE .t/. Then, there exists an
open box BE containing �.a/ such that hE .BE \ E/ > cE and lE .BE \ E/ < bE .
Then, for B1 D

T
E2E BE and I D

T
E2E.bE ; cE /, B D B1 � I is an open box

such that a 2 B � Z.

Theorem 3.2 Assume that M D .M; <; : : :/ is a weakly o-minimal structure with
SCE-cell decomposition. Then, M has OCP.

Proof Let X � M m be a definable open set. By Lemma 3.1, there is an open
set Y � M

m definable in M such that X D Y \ M m. By Theorem 2.9 and [1,
Theorem 2], there are open cells C1; : : : ; Cn � M

m such that Y D
S

1�i�n Ci .
Then, X D

S
1�i�n.Ci \ M m/, where each .Ci \ M m/ is an open strong cell in M

by Fact 2.3(ii).

From Corollary 2.8 and Theorem 3.2, we have the following result.

Corollary 3.3 Let M D .M; <; : : :/ be a weakly o-minimal structure with
SCE-cell decomposition. Then, every definable open set X � M m is a union of
finitely many open SCE-cells.

The following theorem is a partial converse to the above result.

Theorem 3.4 Assume that M D .M; <; : : :/ is a weakly o-minimal structure with
strong cell decomposition and that every open definable set X � M m, m 2 NC, is a
finite union of open SCE-cells. Then, M has SCE-cell decomposition.

Proof By simultaneous induction on m, we prove the assertions .a/m, .b/m, and
.c/m below for any m > 0.

.a/m If C1; : : : ; Ck are strong cells in M m, then there exists an SCE-cell decom-
position C of M m that partitions each of the sets C1; : : : ; Ck .

.b/m If C1; : : : ; Ck are strong cells in M m and f1 W C1 ! M; : : : ; fk W Ck ! M

are definable functions, then there exists an SCE-cell decomposition C of M m that
partitions each of the sets C1; : : : ; Ck , and for every 1 � i � k and D 2 C such that
D � Ci , fi jD has a definable continuous extension on clM .D/.
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.c/m If C � M m is an SCE-cell and f W C ! M is a definable strongly contin-
uous function, then f has a definable continuous extension on clM .C /.

Since M has strong cell decomposition, the above assertions imply that M has
SCE-cell decomposition.

.a/1 holds because strong cells in M are SCE-cells. For .b/1, let C1; : : : ; Ck be
strong cells in M , and let f1 W C1 ! M; : : : ; fk W Ck ! M be definable functions.
By [5, Fact 2.5], there exists a strong cell decomposition C that partitions each of the
sets C1; : : : ; Ck , and for every C 2 C with C � Ci , fi jC is strongly continuous. By
[5, Lemma 1.3], limt!a fi jC .t/ exists in M [ ¹�1; C1º for every a 2 clM .C /.
Assume that limt!a fi .t/ D b 2 ¹�1; C1º, where a 2 ¹sup C; inf C º. In the case
b D C1 and a D sup C , the definable open set .�1; fi /C [ Œa; C1/ � M cannot
be a finite union of open SCE-cells. This contradicts our assumption. Similarly, three
other cases conclude a contradiction. So fi jC has a definable continuous extension
on clM .C /. .c/1 is clear for C a singleton. If C � M is a definable convex set and
f W C ! M is a definable strongly continuous function, then as we saw in .b/1,
limt!a f .t/ exists in M for every a 2 clM .C /. So, f has a definable continuous
extension on clM .C /.

Now suppose that .a/i , .b/i , and .c/i hold for each i � m. For .a/mC1, let
C1; : : : ; Ck be strong cells in M mC1. There exists a strong cell decomposition C that
partitions each of C1; : : : ; Ck . Now, by applying .b/m for all cell-defining functions
of C , we get an SCE-cell decomposition of M mC1 that partitions each of the sets
C1; : : : ; Ck .

For .b/mC1, let C1; : : : ; Ck be strong cells in M mC1, and let f1 W C1 ! M; : : : ;

fk W Ck ! M be definable functions. There exists a strong cell decomposition C

that partitions each of the sets C1; : : : ; Ck , and for every C 2 C with C � Ci , fi jC

is strongly continuous. By .a/mC1, we may assume that C is an SCE-cell decompo-
sition. Let C 2 C be such that C � Ci for some 1 � i � k. We show that fi jC

has a definable continuous extension on clM .C /. For that, we consider two cases.
We first assume that C is nonopen. Then, there exists an SCE-cell D � M m and a
definable homeomorphism �C from C onto D which has a definable continuous ex-
tension �C from clM .C / onto clM .D/. By .c/m, the definable strongly continuous
function fi jC ı ��1

C W D ! M has a definable continuous extension on clM .D/.
Therefore, fi jC has a definable continuous extension on clM .C /. For the other case,
assume that C is open. Then, .�1; fi jC /C is a strong cell and, by the hypothesis
of the theorem, is a finite union of open SCE-cells, say, U1; : : : ; Un. Then for any
1 � j � n, fi j�.Uj / has a definable continuous extension on clM .�.Uj //. By us-
ing .a/mC1 for SCE-cells �.U1/; : : : ; �.Un/, we get an SCE-cell decomposition D

that partitions each of the SCE-cells �.U1/; : : : ; �.Un/. Hence, for every D 2 D

contained in some �.Ui /, fi jD has a definable continuous extension on clM .D/. By
Lemma 2.6, fi jC has a definable continuous extension on clM .C /.

For .c/mC1, let C � M mC1 be an SCE-cell, and let f W C ! M be a definable
strongly continuous function. If C is nonopen, then, after using a projection map,
we use .c/m. If C is open, then by .b/mC1 there exists an SCE-cell decomposition
D of M mC1 that partitions C , and for every D 2 D such that D � C , f jD has a
definable continuous extension on clM .D/. Then, by Lemma 2.6, f has a definable
continuous extension on clM .C /.
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From Theorem 3.4 and Corollary 3.3, we have the following result, which somehow
contains a partial converse to [1, Theorem 2].

Corollary 3.5 Let M D .M; <; : : :/ be an o-minimal structure. Then, M has
CE-cell decomposition if and only if every definable open set X � M m, m 2 NC, is
a union of finitely many open CE-cells.
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