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The Thin Set Theorem for Pairs Implies DNR

Brian Rice

Abstract Answering a question in the reverse mathematics of combinatorial
principles, we prove that the thin set theorem for pairs (TS(2)) implies the diag-
onally noncomputable set principle (DNR) over the base axiom system RCA0.

1 Background and Definitions

The reverse mathematics of combinatorial principles has generated a good amount
of interest in recent years. In particular, a lot of principles have emerged with reverse
mathematical strength between RCA0 (recursive comprehension) and ACA0 (arith-
metic comprehension) which are not equivalent to either of these axiom sets or to the
other member of the “big five” sitting between them, WKL0 (weak König’s lemma).
The picture in reverse mathematics has been greatly expanded by a large web of
these combinatorial results, and it has been an ongoing and interesting project to
understand this web, adding new principles and establishing implications (and non-
implications) among them.

Some illustrations and descriptions of this fascinating jungle can be found in
Hirschfeldt and Shore [5] and Hirschfeldt, Shore, and Slaman [6]; here, we will be
content with a brief outline of some of the more important bits of vegetation in order
to appropriately locate the flora we are interested in examining.

We first remind the reader of a useful bit of notation: the symbol ŒX�n refers to
the set of all unordered n-tuples whose elements are elements of the set X . Thus, a
function f W ŒX�n ! ˛ should be interpreted as a coloring of the unordered n-tuples
from X with colors taken from the set ˛.

1. Ramsey’s theorem (RTn
k). Ramsey’s theorem is generally divided into a fam-

ily of principles, referred to as RTn
k for positive integers n and k, and cor-

responding to k-colorings of n-tuples. In particular, RTn
k states that for any

function f W Œ!�n ! k there is an infinite homogeneous set A, that is, an
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infinite set A � ! such that f restricted to domain ŒA�n takes only one value.
It is easy to see that RTn

1 and RT1
k are all provable in RCA0; moreover, it is

also not too difficult to show by induction that RTn
k and RTn

c are equivalent
for all c; k � 2. Not as obvious, but also known (due to Jockusch in [7]), is
the fact that RTn

2 is equivalent over RCA0 to ACA0 for all n � 3. This leaves
RT2

2 as the only remaining case.
2. Ramsey’s theorem for pairs (RT2

2). Ramsey’s theorem for pairs lies strictly
between RCA0 and ACA0 (the fact that it lies strictly below ACA0 is due
to Seetapun and Slaman in [9]). It is known that RT2

2 neither implies nor is
implied by WKL0 (the latter following from a result of Jockusch in [7] and
the former due to Liu in [8]), and it is RT2

2 and principles weaker than it which
make up much of the new jungle alluded to above.

3. Stable Ramsey’s theorem for pairs (SRT2
2). Stable Ramsey’s theorem states

that if f W Œ!�2 ! 2 is a function with the property that, for every n, there
is some M such that for all m � M , f .¹n; mº/ D f .¹n; M º/ (this is some-
times stated as “for all n, limm f .¹n; mº/ exists”), then there is an infinite
homogeneous set A. The idea is that the coloring stabilizes; in the language
of graphs, every vertex is connected either to cofinitely many other vertices
by a color-0 edge, or cofinitely many other vertices by a color-1 edge. For a
while it was an open question whether SRT2

2 was strictly weaker than RT2
2 or

whether they were equivalent; this has been resolved by Chong, Slaman, and
Yang [3] in favor of the former.

4. Cohesive principle (COH). COH states that for any infinite sequence of sets
.Ri /i2! , there is an infinite set A such that for each i , either A �� Ri

or A �� Ri . (Here, �� means that all but finitely many elements of the
left-hand side are contained in the right-hand side.) As originally proved by
Cholak, Jockusch, and Slaman in [2], RT2

2 is equivalent over RCA0 to the
conjunction of SRT2

2 and COH.
5. Chain-antichain, ascending or descending sequence, and friends (CAC,

ADS, etc.). Chain-antichain (CAC) states that every infinite partial order
has an infinite subset that is either a chain or an antichain. Ascending or
descending sequence (ADS) states that every infinite linear order has either
an infinite ascending sequence or an infinite descending sequence. These
principles were explored by Hirschfeldt and Shore in [5], who showed that
they lie strictly below SRT2

2. These principles themselves, like RT2
2, split into

stable and cohesive versions: SCAC, CCAC (which is equivalent to ADS),
SADS, and CADS. All of these splittings are strict.

6. Diagonally noncomputable set principle (DNR). A computability principle
more measure-theoretic than combinatorial in flavor, DNR states that for ev-
ery set A, there is a set which is diagonally noncomputable relative to A.
DNR has proved to be important in that some, but not all, of the various
combinatorial principles of interest imply it. For instance, SRT2

2 is known
to imply DNR (proved by Hirschfeldt, Jockusch, Kjos-Hanssen, Lempp, and
Slaman in [4]), but Hirschfeldt and Shore proved in [5] that CAC does not
imply DNR, immediately giving the result that CAC does not imply SRT2

2.
Other similar results have also been achieved.

7. Free set and thin set theorems (FS(n) and TS(n)). The free set and thin set
theorems represent another kind of weakening of Ramsey’s theorem, dealing
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with colorings with infinitely many colors. The principle FS(n) states that
for any function f W Œ!�n ! !, there is an infinite free set A such that
f .X/ 2 X [ .! n A/ for every n-tuple X of elements from A. The principle
TS(n) states that for every such function, there is an infinite thin set A, with
the property that f restricted to ŒA�n omits some color; that is, f .ŒA�n/ ¨ !.
For every n, RTn

2 implies FS(n), which implies TS(n). (These facts, and
others, are proved by Cholak, Giusto, Hirst, and Jockusch in [1] where they
establish a number of results about free set and thin set.) These theorems
are much weaker than Ramsey’s theorem; while RT3

2 implies ACA0 already,
Wang [10] has recently shown that even the conjunction of FS(n) (and TS(n))
over all n is not enough to imply ACA0.

The focus of this paper is on the thin set theorem for pairs, or TS(2). This principle
should be regarded as a substantial weakening of RT2

2. TS(2) has something of a
reputation for being almost uselessly weak; while it lies strictly above RCA0, it was
known to imply almost nothing of note. The goal of this paper is to vindicate this
little flower of the reverse math jungle and show that it is not, in fact, uselessly weak
but represents a notably different direction of weakening of RT2

2 than the collection
of principles living below CAC. Our goal is to prove the following theorem.

Main Theorem RCA0 ` TS.2/ ! DNR.

We will approach the proof of the Main Theorem by first proving that it holds in
!-models of RCA0 using techniques from computability theory, and then to show
how to modify the proof to hold in the general setting. The interested reader may
wish to compare this proof to the simpler proof that SRT2

2 implies DNR in [4] from
which it takes its inspiration.

2 !-Models of TS(2) Are Models of DNR

Our proof that !-models of TS(2) are models of DNR begins with two lemmas.

Lemma 1 There are sets ¹Ai ºi2! , uniformly �T 00, a partition of !, and a com-
putable function f , such that for every e, if We � Ai , then jWej < f .e; i/. In fact
we may take f .e; i/ D .k C 1/.k C 2/, where k D max.e; i/.

Proof Let R.e; i/ be the requirement “if We � Ai , then jWej < f .e; i/.”
We will prove this by 00-computable construction in stages.
Begin with all Ai empty. For each n � 0, at stage n, we have already decided

in previous stages y 2 Ai (for any i ) for at most n.n C 1/ numbers (by induction)
and will decide y 2 Ai for at most 2n C 2 new numbers y in stage n, giving at most
.n C 1/.n C 2/ numbers in some Ai (call these numbers used) by the end. We do
this in three steps.

First, for each 0 � e < n, we ensure that R.e; n/ is satisfied. Check using 00 if We

has at least .n C 1/.n C 2/ elements. We are done with those We which do not; they
are small and R.e; n/ is already satisfied. For those which do, take one element from
each which has not been used. Since only n.n C 1/ numbers have been used, each
such We will contain such an element (in fact, n such elements, so we can choose
them all distinct if we like). Put all these elements into An, satisfying R.e; n/ by
negating the hypothesis. This uses at most n new numbers.

Next, we ensure that R.n; i/ is satisfied for each 0 � i � n. Check if Wn has at
least .n C 1/.n C 2/ elements; if not, R.n; i/ is already satisfied for every i . If so,
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since we have used at most n.n C 1/ C n numbers so far, Wn contains at least n C 1

elements which have not been used, say, ¹xi º0�i�n. Put xi 2 Ai for each 0 � i � n,
satisfying R.n; i/ for each 0 � i � n. This uses at most n C 1 new numbers.

Finally, if n is not yet in some Ai , put n 2 A0.
Thus at the end of stage n, we have ensured that R.e; i/ is satisfied for each

0 � e; i � n, used at most n.n C 1/ C n C .n C 1/ C 1 D .n C 1/.n C 2/ numbers
total, and ensured that all numbers up to n have been used.

The collection ¹Ai ºi2! constructed in the end are uniformly 00-computable, since
it takes only to stage n to find out for which Ai we have n 2 Ai , and there is a unique
such Ai , so this is a partition of !. Finally, all the requirements R.e; i/ are satisfied
(each by stage max.e; i/).

Observe that the proof, and thus the result, relativizes to W X
e and ¹Ai ºi2! uni-

formly �t X 0.

Lemma 2 Let Turing ideal I model TS(2). Then for all ¹Ai ºi2! uniformly �T C 0,
where C 2 I, there is an infinite B 2 I and an n so that B � An.

Proof By the limit lemma, there is a function f W !2 ! !, f �T C such that
Ai D ¹x 2 ! W limm!1 f .x; m/ D iº. Taking f W Œ!�2 ! ! by ignoring .x; m/

with x � m does not change these limits.
Then by TS(2), since f �T C 2 I,

9n9B 2 I
�
f

�
ŒB�2

�
� ! n ¹nº

�
:

So 8x 2 B .limm!1 f .x; m/ ¤ n/, and hence B � An.

Theorem 3 Every !-model of TS(2) is a model of DNR.

Proof Let I be a Turing ideal that is an !-model of TS(2). We will show that I

contains a diagonally noncomputable function, but everything relativizes naturally to
find a DNR relative to any X 2 I.

Let ¹Ai ºi2! be as in Lemma 1. By Lemma 2, there is an infinite B 2 I and an
n 2 ! such that B � An. Then for all e, if We � B , then jWej < .k C 1/.k C 2/,
where k D max.e; n/. Call this quantity fn.e/.

Let g be such that Wg.e/ is the set consisting of the first fn.e/ many elements of
B (g is not computable, but is computable in B). For any e, if We D Wg.e/, then
We � B � An, and so jWej < fn.e/ by construction of An. But jWg.e/j D fn.e/,
which is a contradiction. So 8e.We ¤ Wg.e//.

Now let f be computable such that Wf .e/ D Wˆe.e/ if ˆe.e/ #, and Wf .e/ D ;

otherwise, and consider h D g ı f . Now if ˆe.e/ #, then Wh.e/ D Wg.f .e// ¤

Wf .e/ D Wˆe.e/, so it follows that h.e/ ¤ ˆe.e/. As h is total (since both f and g

are), this means that h is a diagonally noncomputable function. But h �T B 2 I, so
h is the function in I that we wanted.

3 TS(2) Implies DNR

In order to check that RCA0 ` TS.2/ ! DNR, it suffices to show that the above
proof can be carried out in RCA0. To do this we need to, first, eliminate all references
to jumps (we can only talk about functions that exist in the model) and then check
that the proof only requires †0

1-induction.
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So, for instance, Lemma 1 becomes the following, recalling that there is an enu-
meration within a model M of all the M-ce sets We (where indices range over the
first-order part of M).
Lemma 4 There is a function A.x; m/ and a function f .e; i/ such that

(a) limm A.x; m/ exists for each x,
(b) for each e, if 8x 2 We.limm A.x; m/ ¤ i/, then jWej < f .e; i/.

Similarly, Lemma 2 becomes the following.
Lemma 5 For every function A.x; m/ such that limm A.x; m/ exists for each x,
there is an infinite B and an n such that 8x 2 BŒlimm A.x; m/ ¤ n�.
The proof of Lemma 5 is exactly the same as that of Lemma 2, except it is even easier:
there is no need to apply the limit lemma because we are using the limit notion in the
first place as we do not have access to the jump. (Also, all instances of ! now refer
instead to the first-order part of M.)

The proof of Lemma 4 is somewhat more subtle, since we do not have access to
any oracle with which to determine the size of We .

Proof Let R.i; e/ be the requirement that if 8x 2 We.limm A.x; m/ ¤ i/, then
jWej < f .e; i/. Let he; ii be the pairing function that orders .e1; i1/ < .e2; i2/ if
max e1; i1 < max e2; i2 or these are equal and i1e1 precedes i2e2 in lexicographic
order. At stage 0, we define A.x; 0/ D 0. At stage m > 0, we do the following.

First, we run stages 0 � n < m from the proof of Lemma 1 as substages of
stage m, except that, first, every time we need information about We or its size, we
use instead the corresponding information about We;m (which we can know), and
second, whenever we would put x 2 Ai , we instead define A.x; m/ D i . Also,
omit the last step of each substage n (where we would put A.n; m/ D 0 if it is not
yet defined); it will not be necessary. Observe that for each he; ii � hm; mi, this
attempts to satisfy R.e; i/ (based on the assumption that We D We;m) in order. Say
that the requirement R.e; i/ assigns x at stage m.

Then, write A.x; m/ D 0 for all x for which A.x; m/ is not yet defined.
There is a subtle problem here, in that in the original proof of Lemma 1, we on

several occasions made an arbitrary choice from elements of We . If we happened
to make different choices at different stages m in the above construction, we could
possibly ruin the existence of limm A.x; m/. On the other hand, we cannot mandate
that we always make the same choices, because if we chose an element from We1

, say,
to put into Ai1 (i.e., A.x; m0/ D i1, using x to satisfy R.e1; i1/), then discovered
at a later stage m0 that We2

was large enough that it had to have an intersection
with Ai2 , we might need to put A.x; m1/ D i2. To solve this, we keep track of
which requirement R.e; i/ assigns x at stage m—and only this—to change to a higher
priority requirement. Since we deal with requirements within each stage in their
priority order, making this restriction does not hamper us at all.

We have to verify that, first, the construction can be carried out in RCA0, and
second, RCA0 can verify that limm A.x; m/ exists for all x and satisfies the stated
requirements.

It is clear that each of the things we wish to do can be carried out in RCA0 pro-
vided that we can show in RCA0 that, as in the proof of Lemma 1, when we begin
substage n of stage m we have defined A.x; m/ for at most n.nC1/ many elements x.
This can be shown by �0

1-induction (on n), so it holds in RCA0.
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Next, we verify that limm A.x; m/ exists for each x. Suppose that there is a stage
m0 at which A.x; m/ ¤ 0 (if not, the limit exists and is 0). Then x is assigned by
some R.e; i/ at some stage m0. Since A.x; m1/ can only be defined differently if x

is assigned by a higher priority requirement at stage m1 than at stage m0, it follows
that there are at most he; ii C 1 many m such that A.x; m/ ¤ A.x; m C 1/. Hence
limm A.x; m/ exists.

Finally, we need to check that each R.e; i/ is satisfied. It follows by induction
that for each .e; i/, there are at most he; ii many numbers x such that A.x; m/ is ever
assigned by any requirement R.e0; i 0/ with he0; i 0i < he; ii. This is by …0

1-induction
(which holds in RCA0), via a formula stating that for all finite sequences of length
he; ii C 1 and all m, it is not the case that each element of the sequence has been
assigned by some R.e0; i 0/ with he0; i 0i < he; ii by stage m. So there is some stage
m.e; i/ after which no new elements are ever assigned by requirements R.e0; i 0/ with
he0; i 0i < he; ii. So if jWej � .k C 1/.k C 2/, where n D max.e; i/, then picking a
stage m � m.e; i/ such that jWe;mj � .k C 1/.k C 2/, we know that A.x; m/ D i

for some x 2 We;m, and furthermore, x can never be assigned by some R.e0; i 0/ with
he0; i 0i < he; ii. (It cannot have been before, since if it were, it could never have
been assigned by R.e; i/ as which requirement assigns an element can change only
to requirements of higher priority. And since it has never been, it cannot in the future
by our definition of m.e; i/.) Hence, since x is never assigned later by a requirement
with higher priority, it will always be assigned by R.e; i/. Thus A.x; m0/ D i for all
m0 � m; that is, limm.x; m/ D i .

Since our two lemmas are both provable in RCA0 C TS.2/, it remains to check the
construction of the function in the proof of Theorem 3. Everything in the construc-
tion goes through in RCA0 (pretty much verbatim, in fact), so we have the following.

Main Theorem RCA0 ` TS.2/ ! DNR.

4 Remarks

It is worth noting that we do not require even the full strength of TS(2) for this proof.
Even a “stable” version of TS(2) suffices, where we assume (naturally enough) that
for each x, limy c.¹x; yº/ exists (where c is the coloring). This does not seem terribly
interesting, however, if for no other reason than that the corresponding “cohesive”
version of TS(2) is of course false.

The fact that TS(2) implies DNR but other weakenings of RT2
2, such as CAC, do

not, suggests that DNR may prove to be a very useful tool for classifying various
combinatorial principles. It has already been used to great effect to show several
nonimplications among combinatorial principles, and the current result suggests that
such use may be fruitfully expanded. It may be that DNR is a much more interesting
point of comparison for the reverse mathematics of combinatorial principles than
something like WKL0.
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