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Generalizations of the Weak Law
of the Excluded Middle

Andrea Sorbi and Sebastiaan A. Terwijn

Abstract We study a class of formulas generalizing the weak law of the
excluded middle and provide a characterization of these formulas in terms of
Kripke frames and Brouwer algebras. We use these formulas to separate logics
corresponding to factors of the Medvedev lattice.

1 The Weak Law of the Excluded Middle

Let IPC denote the intuitionistic propositional calculus. The weak law of the excluded
middle (w.l.e.m. for short) is the principle

:p _ ::p:

We view this as an axiom schema, in which we can substitute any formula for the
variable p. Consider the logic IPC C :p_ ::p, that is, the closure under deduc-
tions and substitutions of IPC and the w.l.e.m. The logic IPC C :p_ ::p has been
studied extensively and is known in the literature under various names. It has been
called

� the logic of the weak law of the excluded middle by Jankov,
� Jankov logic by various Russian authors,
� De Morgan logic by various American authors,
� testability logic by some others, and
� KC by still many others.

The term principle of testability for :p_ ::p goes back to Brouwer himself. In [3,
p. 80] he writes (our comments in brackets):

Another corollary of the simple principle of the excluded third [i.e., � _ :� ] is
the simple principle of testability, saying that every assignment � of a property
to a mathematical entity can be tested, i.e. proved to be either non-contradictory
[::� ] or absurd [:� ]. (p. 80)
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Apparently the name KC comes from Dummett and Lemmon [5], who used LC to
denote the “linear calculus,” and K alphabetically precedes L, hence the name KC.
The name De Morgan logic derives from the fact that the principle :p _ ::p is
equivalent (over IPC) to the validity of the familiar De Morgan laws, or more pre-
cisely, to the only intuitionistically problematic implication :.p ^ q/ ! :p _ :q

of these laws.
In this paper we will study the following sequence ¹'kºk�1 of formulas general-

izing the w.l.e.m.

Definition 1.1 Let '1 D :p _ ::p, and for every k > 1 define

'k D

_
i¤j

.:pi ! :pj / _ :.:p1 ^ � � � ^ :pk/ (1)

(where 1 � i; j � k).

Notice that the formula '1 can be seen as a special case of 'k : indeed, 'k is equiva-
lent over IPC to

:p1 _ � � � _ :pk _

_
i¤j

.:pi ! :pj / _ :.:p1 ^ � � � ^ :pk/ (2)

because :pi implies :pj ! :pi in IPC. Then '1 is the special case k D 1.
Also note that IPC proves 'k ! 'kC1 for every k � 1. This follows for example

from Theorem 2.4, or from Theorem 3.3 below.
Below, we will study the logics IPC C 'k , which again is the deductive closure

of IPC and the axiom schema 'k . In particular, IPC C 'k proves any substitution
instance of 'k .

2 Kripke Semantics

In this section we characterize the formulas 'k in (1) in terms of Kripke frames, and
relate them to a class of formulas introduced by Smorynski [12].

We briefly recall some elementary notions about Kripke semantics. For unex-
plained terminology about Kripke frames and models, we refer the reader to Chagrov
and Zakharyaschev [4] or Gabbay [7, p. 67].

A Kripke frame hK;Ri is a nonempty set K, partially ordered by an accessibility
relation R. Throughout this paper, we will work with Kripke frames that have a
root, that is, a least element with respect to R, though this is not standardly part of
the definition. As usual, we distinguish between models and frames. A Kripke model
hK;R; V i is a Kripke frame together with a valuation V , which associates with every
variable p a set V.p/ � K, such that if x 2 V.p/ and xRy, then y 2 V.p/ for every
x and y. Now the forcing relation x 
 �, with x 2 K and ' a formula, is defined by

� x 
 p if x 2 V.p/;
� x 
 ' ^  if and only if x 
 ' and x 
  ;
� x 
 ' _  if and only if x 
 ' or x 
  ;
� x 
 ' !  if and only if for every y with xRy, if y 
 ', then y 
  ;
� x 
 :' if and only if there is no y with xRy and y 
 '.

A formula ' holds in a frameK, denoted byK ˆ ', ifK 
 ' (meaning that x 
 '

for every x 2 K), for every valuation V on the frame. A logic L is complete with
respect to, or characterizes, a class of frames K if a formula is derivable in L if and
only if it holds on every frame in K .
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Definition 2.1 A Kripke frame with accessibility relation R has topwidth k if it
has k maximal nodes x1; : : : ; xk such that for every y 2 K, there is an i with yRxi .

Following Jankov [9], Gabbay [7, p. 67] showed that the logic IPC C :p _ ::p is
complete with respect to the class of Kripke frames of topwidth 1. Smorynski [12]
introduced, for every k � 1, the formula

�k D

^
0�i<j �k

:.:pi ^ :pj / !

_
0�i�k

�
:pi !

_
j ¤i

:pj

�
(3)

and showed that the logic IPC C �k characterizes the class of Kripke frames of
topwidth at most k (henceforth we refer to this result as Smorynski’s completeness
theorem [12, Theorem 1.III.16]). In particular, IPC proves the formula �k ! �kC1

and IPC C �1 coincides with the logic of the w.l.e.m. Note that 'k has k variables
and that �k has k C 1. The relation between these formulas is sorted out below.

We now turn to a characterization of the formulas 'k in (1) in terms of Kripke
frames. We start with some preliminaries about canonical models. For more on
canonical models we refer to [4]. The canonical model K of a logic L containing
IPC consists of tableaux, that is, pairs .�;�/ of sets of formulas, with the following
properties. (Gabbay [7] uses saturated sets of formulas to define the canonical model,
which is similar but different.)

(i) .�;�/ is consistent with L, meaning that for no �1; : : : ; �n 2 �, � proves
�1 � � ��n over L,

(ii) .�;�/ is maximal in the sense that � [� is the set of all formulas.
The accessibility relation R in the canonical model is defined by

.�;�/R .� 0; �0/ ” � � � 0
” � � �0:

This defines the canonical frame, and to make it into a model it is defined that every
atomic formula in � is forced in the node .�;�/. It is a basic property of K that for
every node .�;�/ and every formula ',

.�;�/ 
 ' ” ' 2 �: (4)

Note that it follows from properties (i) and (ii) that � is closed under L-provability.

Lemma 2.2 Suppose thatK is a Kripke frame of topwidth nC1 in which 'k does
not hold. Then

�
n

bn=2c

�
� k.

Proof Under the assumptions, we prove that the power set P .¹1; : : : ; nº/ has an
antichain of size k. The lemma then follows from Sperner’s theorem (see Sperner
[16, p. 544]; see also Aigner and Ziegler [1]) stating that

�
n

bn=2c

�
is the greatest

number k for which there is an antichain of k pairwise incomparable subsets of
¹1; : : : ; nº.

Since there is a model on the frame K that falsifies 'k , there must be a maximal
node in which :p1 ^ � � � ^ :pk holds. This leaves n nodes to falsify all implications
:pi ! :pj with i ¤ j . Label these nodes by 1; : : : ; n. Let Si � ¹1; : : : ; nº be the
set of nodes where pi holds, with i D 1; : : : ; k. Then the sets Si form an antichain
since for every pair i ¤ j there is a node that falsifies :pi ! :pj (hence in which
pi and :pj hold).
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Lemma 2.3 Suppose that .�1; �1/; : : : ; .�n; �n/ are distinct maximal nodes in
the canonical model of L. Then for every S � ¹1; : : : ; nº there is a formula A such
that A 2 �j if and only if j 2 S .

Proof By maximality, the �i are pairwise �-incomparable; hence for every i ¤ j ,
there is a formula Ai;j 2 �i � �j . Hence, taking Ai D

V
j ¤i Ai;j for every i , it is

easy to see that .�i ; �i / 
 Ai ! :Aj for every i ¤ j . Now let A D
W

j 2S Aj .

Theorem 2.4 For every k � 1, IPC C'k is complete with respect to the class of
Kripke frames of topwidth at most n, where n is minimal such that 

n

bn=2c

!
� k:

Proof For the right-to-left implication, suppose that K is a frame of topwidth
m C 1 � n in which 'k does not hold. Then by Lemma 2.2,

�
m

bm=2c

�
� k; hence

by minimality of n we have m � n, which is a contradiction. Hence any frame of
topwidth l � n satisfies 'k .

For the converse direction, we have to show that if ' is a formula that IPC C 'k

does not prove, then there is a Kripke frame of topwidth at most n, where n and k are
related as in the statement of the theorem, in which ' does not hold, that is, there is a
model on this frame on which ' does not hold. We show that a part of the canonical
model of IPC C 'k has this property.

Now if ' is not provable in IPC C'k , then the tableau .¹'kº; ¹'º/ is consistent,
but not maximal. By Lindenbaum’s lemma (see [4, Lemma 5.1]) it can be extended
to a maximal tableau t D .�;�/, which is thus a node in the canonical model in
which ' does not hold by the property (4). Let Kt denote the part of K that is
R-reachable from t . We prove that Kt has the required property.

First we note that every node in K is below an R-maximal one: every path in K
has an upper bound (by taking unions on the first coordinate and intersections on the
second); hence an application of Zorn’s lemma gives a maximal element above any
node in K.

We now show that Kt has at most n R-maximal nodes. Suppose for a contradic-
tion that there exist at least nC 1 distinct maximal nodes

.�1; �1/; : : : ; .�nC1; �nC1/:

Since
�

n
bn=2c

�
� k, there is an antichain S1; : : : ; Sk in P .¹1; : : : ; nº/ of size k. For

every Si , with the help of Lemma 2.3 choose a formula Ai such that

Ai 2 �j ” j 2 Si (5)

and such that Ai … �nC1. Note that by maximality it follows from (5) that

:Ai 2 �j ” Ai … �j ” j … Si :

But now we can prove that 'k is not forced in t . First t ± :.:A1 ^ � � � ^ :Ak/

because .�nC1; �nC1/ 
 :A1 ^� � �^:Ak by choice ofAi . Also t ± :Ai ! :Ai 0

for every i ¤ i 0 with i; i 0 � k. Namely, the elements Si and Si 0 of the antichain are
incomparable; hence j 2 Si 0 � Si for some j 2 ¹1; : : : ; nº. Thus, by definition of
Ai , we have Ai 0 2 �j and :Ai 2 �j , and hence .�j ; �j / 
 :Ai ^ Ai 0 . So we see
that t does not force the formula 'k.A1; : : : ; Ak/ obtained from 'k by substituting
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Ai for every variable pi . But then it follows that t ± 'k , for if t 
 'k , then t
would also force 'k.A1; : : : ; Ak/ because we work over the logic IPC C 'k , which
by definition proves every substitution instance of 'k .

By the property (4), every formula of a logic L holds in the canonical model of L.
A logic L is called canonical if every formula of L holds in the canonical frame of L.
Note that the proof of Theorem 2.4 shows that the logics of 'k are canonical in this
sense.

Following [7, p. 69], a condition F on a partially ordered set hK;R; 0i with least
element 0 is absolute if it can be formulated in a higher-order language (with symbols
for R; 0;D), and for every hK;R; 0i satisfying F , there exists a finite K0 � K such
that for every K 0, with K0 � K 0 � K, we have that also hK 0; R�K 0; 0i satisfies F .
It is known (see, e.g., [7, p. 69]) that if L is an intermediate logic which characterizes
a class of Kripke frames, consisting of exactly the frames satisfying an absolute
condition F , then L also characterizes the class of finite Kripke frames satisfying F .
An intermediate logic L is said to have the finite model property, if for every ' with
' … L, there exists a finite Kripke model which does not satisfy '. By a classical
theorem of Harrop (see [8, Lemma 4.1]; see also [7, p. 266]), if an intermediate logic
L has the finite model property and is finitely axiomatizable, then L is decidable.
Therefore, we have the following.

Theorem 2.5 For every k � 1, IPC C 'k is complete with respect to the class of
finite Kripke frames with topwidth at most n, where n is least such that

�
n

bn=2c

�
� k.

Moreover, IPC C 'k is decidable.

Proof The claim follows by the above-quoted remark and the fact that the condition
of being a Kripke frame with topwidth at most n, and n least such that

�
n

bn=2c

�
� k,

is absolute.

Finally, we have the following additional characterization of IPC C 'k .

Corollary 2.6 We have that IPC C 'k D IPC C �n, for all n and k such that n is
minimal with

�
n

bn=2c

�
� k.

Proof This follows from Theorem 2.4 and Smorynski’s completeness theorem.

Note that the sequence of logics IPC C 'k is decreasing, but not strictly decreasing,
with respect to inclusion. Namely, if k1 < k2 and n is the least such that

�
n

bn=2c

�
� k1,

but n is also the least such that
�

n
bn=2c

�
� k2, then

IPC C 'k1
D IPC C 'k2

D IPC C �n:

3 Algebraic Semantics

A Brouwer algebra is an algebra hL;C;�;!;:; 0; 1i where hL;C;�; 0; 1i is a
bounded distributive lattice (with C and � denoting the operations of sup and inf,
respectively) and ! is a binary operation satisfying

b � aC c , a ! b � c; (6)

or, equivalently,
a ! b D least ¹c W b � aC cº;
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and : is the unary operation, given by :a D a ! 1. A Brouwer algebra L satisfies
a propositional formula � (denoted by L ˆ � ; we also say that � is an identity of L)
if whatever substitution of elements of L in place of the propositional variables of
� (interpreting the connectives _, ^, !, : with the operations �, C, !, :, resp.)
yields the element 0. (Note that this definition of truth is dual to that in a Heyting
algebra; see also the remarks on Heyting algebras below.) Let

Th.L/ D ¹� W L ˆ �º:

It is well known that IPC � Th.L/, for every Brouwer algebra L. An intermediate
logic L is complete with respect to a class of Brouwer algebras, if for every formula
� , L derives � if and only if every algebra in the class satisfies � .

Recall that in a distributive lattice L, we have that an element a 2 L is join-
irreducible if and only if a � xCy implies that a � x or a � y, for every x; y 2 L.
Thus if L is a Brouwer algebra, b 2 L with b D

P
X , where X is a finite set

consisting of join-irreducible elements, then for every a 2 L,

a ! b D

X
¹x 2 X W x 6� aº: (7)

This follows from the fact that b � a C y, where y D
P

¹x 2 X W x 6� aº, and by
join irreducibility of each element of X , we have that x � c for every c such that
b � aC c and every x 2 X such that x — a. Thus y is the least such that b � aCy.
Finally, if X is an antichain of join-irreducible elements in a distributive lattice, and
I; J � X are finite sets, thenX

I �

X
J , I � J: (8)

Recall the following well-known construction (see Fitting [6, Chapter 1, Sec-
tion 6]) which associates with every Kripke frame a Brouwer algebra, whose iden-
tities coincide with the formulas that hold in the frame. Let K be a given Kripke
frame, with accessibility relation R: a subset A � K is open, if for every x; y 2 K

we have that x 2 A and xRy, then y 2 A. Let Op.A/ be the collection of open
subsets of K. The following two lemmas, based on [6], appear in Ono [10].

Lemma 3.1 ([10, Corollary 1.3.1]) The distributive lattice Alg.K/ D hOp.K/;C;
�;! 0; 1i is a Brouwer algebra, where AC B D A \ B , A � B D A [ B ,

A ! B D
®
x 2 K W .8y 2 K/ŒxRy ^ y 2 A ) y 2 B�

¯
;

0 D K, and 1 D ;. Moreover,

¹' W K ˆ 'º D
®
' W Alg.K/ ˆ '

¯
:

Proof See [6]. In fact, the theorem in [6] is formulated in terms of Heyting alge-
bras. Recall that L is a Heyting algebra if the dual Lop is a Brouwer algebra. If L is a
Heyting algebra, we write L ˆH � , if Lop ˆ � . In [6] it is shown that the collection
of open sets together with the operations C D [, � D \, 0 D ;, 1 D K, and

A ! B D
®
x 2 K W .8y 2 K/ŒxRy ^ y 2 A ) y 2 B�

¯
;

is a Heyting algebra which satisfies the same formulas as K. To prove our result,
given a frame K, apply Fitting’s construction to get a Heyting algebra, and then
take its dual: the claim then follows from the obvious fact that the formulas satisfied
(under ˆ) by a Brouwer algebra are the same as the ones satisfied (under ˆH ) by its
dual Heyting algebra.
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Conversely, given a Brouwer algebra L with meet-irreducible 0, let I.L/ be the
collection of prime ideals of L, which becomes a Kripke frame Kr.L/ D hI.L/;�i.
(Note that Kr.L/ satisfies our assumption that all Kripke frames have a root, since
0 2 L is meet-irreducible, so that ¹0º is a prime ideal.)

Lemma 3.2 (Ono [10, Corollary 1.5]) For every Brouwer algebra L, we have

¹' W L ˆ 'º �
®
' W Kr.L/ ˆ '

¯
:

Moreover, equality holds if L is finite.

Proof See [10]. Again, a few words may be spent on the proof, since [10] uses
Heyting algebras instead of Brouwer algebras. So, suppose that we are given a
Brouwer algebraL; take its dualLop, which is a Heyting algebra, and then use [10] to
conclude that hF.Lop/;�i (where F.Lop/ is the collection of prime filters of Lop) is
a Kripke frameK that satisfies ¹' W Lop ˆH 'º � ¹' W K ˆ 'º, with equality ifLop

is finite. The claim then follows from the fact that ¹' W Lop ˆH 'º D ¹' W L ˆ 'º,
and F.Lop/ is order-isomorphic to I.L/ under �, as easily follows from recalling
that in a distributive lattice L, for every X � L, X is a prime filter if and only if
L �X is a prime ideal.

Theorem 2.5 has the following algebraic counterpart.

Theorem 3.3 Each IPC C 'k is complete with respect to the class of all finite
Brouwer algebras L with meet-irreducible 0 and at most n coatoms, where n is
minimal such that

�
n

bn=2c

�
� k.

Proof The proof follows from Theorem 2.4 and Lemmas 3.1 and 3.2, together with
the following observations.

1. If K has topwidth n, then Alg.K/ has n coatoms. Indeed, for every maximal
element x in the frame, the singleton ¹xº is open, and this is clearly a coatom
in Alg.K/; moreover, the coatoms in Alg.K/ are all of this form.

2. If a finite Brouwer algebra L has n coatoms, then Kr.L/ is of topwidth n.
Indeed, in a finite Brouwer algebra L, the ideals generated by the coatoms
are prime and contain all other prime ideals, generated by meet-irreducible
elements. In other words, the coatoms correspond exactly to the maximal
elements in Kr.L/.

Finally, note that, for every Kripke frame K, Alg.K/ has meet-irreducible 0, since
the Kripke frames in this paper always have a least element.

For finite Brouwer algebras, we may also describe the completeness property in terms
of join-irreducible elements joining to the greatest element 1.

Definition 3.4 For every n, let Bn denote the class of Brouwer algebras in which
the top element is the join of some antichain of n join-irreducible elements.

Note that in any distributive lattice, if
P
X D

P
Y , whereX; Y are finite antichains

of join-irreducible elements, then it follows from (8) that X D Y . Thus, in a finite
distributive lattice L, or more generally in a distributive lattice L having the finite
descending chain condition (see, e.g., Balbes and Dwinger [2, Theorem III.2.2]),
each element is the join of a unique antichain of join-irreducibles, and thusL belongs
to Bn, for a unique n.
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Lemma 3.5 If L is a finite Brouwer algebra, then L has exactly n coatoms if and
only if L 2 Bn.

Proof Suppose that L 2 Bn is finite, and let b1; : : : ; bn be the antichain of n
join-irreducible elements such that 1 D

Pn
iD1 bi . For every i , let Obi D

P
j ¤i bj .

We claim that each Obi is a coatom. Indeed Obi < 1, as bi — Obi ; moreover, assume
that Obi � b, and let b D

P
X , where X is an antichain of join-irreducible elements.

(Here we use that L is finite.) By join irreducibility, we have

¹bj W j ¤ iº � X � ¹bj W 1 � j � nº;

and thus either Obi D b or b D 1. It follows that L has at least n coatoms. On the
other hand, suppose that L has also a coatom a … ¹ Obi W 1 � i � nº. Then for every
i , Obi C a D 1, thus bi � Obi C a; hence by join irreducibility, bi � a. This implies
that

P
i bi � a; hence a D 1, which is a contradiction.

Conversely, suppose that L is a finite Brouwer algebra that has n coatoms. Since
L is finite, there exists m such that L 2 Bm. On the other hand, the above argument
shows that m D n, so that L 2 Bn.

Let B?
n be the subclass of Bn consisting of the algebras with meet-irreducible 0.

Then we have the following.

Corollary 3.6 Each IPC C 'k is complete with respect to the class of finite
Brouwer algebras B?

n , where n is minimal such that
�

n
bn=2c

�
� k.

Proof This is immediate from Theorem 3.3 and Lemma 3.5.

Finally, we prove Theorem 3.8 below, which holds also for Brouwer algebras that are
not necessarily finite. We need a preliminary lemma, which illustrates the range of
: in a Brouwer algebra from Bn.

Lemma 3.7 Let L 2 Bn, and let b1; : : : ; bn be an antichain of join-irreducible
elements such that 1 D b1 C � � � C bn. Then every negation :a in L is of the form
:a D

P
i2I bi for some subset I � ¹1; : : : ; nº (where, of course, :a D 0 if I D ;).

In particular, :bi D
P

j ¤i bj .

Proof By (7) we have :a D
P

i2I bi , where I D ¹i W bi — aº.

Theorem 3.8 Let
�

n
bn=2c

�
D k. Then the following hold:

(i) if L 2 Bm and m � n, then L ˆ 'k;
(ii) if L 2 B?

m and m > n, then L 6ˆ 'k .

Proof (i) Let k and n be as in the statement of the theorem. Let L 2 Bm, m � n,
with b1; : : : ; bm join-irreducible elements that join to 1. In order to show that 'k

holds in L, we take any sequence ai of k elements in L and show that 'k evalu-
ates to 0 for pi D ai . If there are i ¤ j such that :ai and :aj are comparable,
then the first clause of 'k is satisfied. So suppose that all :ai are pairwise incom-
parable. We have to show that then the last clause of 'k is satisfied, that is, that
:.:a1 C � � � C :ak/ D 0, or equivalently, that

Pk
iD1 :ai D 1. By Lemma 3.7,

every :a is of the form :a D
P

i2I bi . Note that
P

i2I bi �
P

j 2J bj if and only
if I � J , as follows from (8). So to the k incomparable negations :ai corresponds
a collection of k pairwise �-incomparable subsets of ¹1; : : : ; mº. Sperner’s theorem
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says that
�

m
bm=2c

�
is the maximum number k for which there is such an antichain of

k pairwise incomparable subsets of ¹1; : : : ; mº. Hence because
�

m
bm=2c

�
� k, the

collection corresponding to the :ai covers all of ¹1; : : : ; mº, and in particular
kX

iD1

:ai D

mX
iD1

bi D 1;

which is what we had to prove.
(ii) Suppose that L 2 B?

m, with m > n; let

I D ¹b1; : : : ; bn; bnC1; : : : ; bmº

be an antichain of join-irreducible elements such that in L we have 1 D
P

1�i�m bi .
By Sperner’s theorem, take a collection of k incomparable subsets ¹Ii W 1 � i � kº

of ¹1; : : : ; nº. For every i D 1; : : : ; k choose ai so that :ai D
P

j 2Ii
bj . (The

proof of Lemma 3.7 shows how to achieve this: take ai D
P

j …Ii
bj .) Then the

negations :ai are incomparable because the sets Ii form an antichain, and hence the
first clause of 'k is nonzero (as 0 is meet-irreducible in L). We also have

kX
iD1

:ai D

X
1�i�k
j 2Ii

bj ¤ 1

(because no bj , with j > n, is included); hence :.
Pk

iD1 :ai / ¤ 0 and the second
clause of 'k is also nonzero. So 'k does not evaluate to 0 in L, since in this algebra,
0 is meet-irreducible.

4 An Application to the Medvedev Lattice

This section is an addendum to Sorbi and Terwijn [15]. We thank Paul Shafer [11] for
pointing out some inaccuracies in that paper. In [15] logics of the form Th.M=A/ are
studied, where M is the Medvedev lattice, A 2 M, and M=A is the initial segment
of M consisting of all B 2 M such that B � A. The Medvedev lattice arises from
the following reducibility on subsets of !! (also called mass problems): if A;B

are mass problems, then A � B, if there is an oracle Turing machine which, when
given as oracle any function g 2 B, computes a function f 2 A. The Medvedev
degrees, or simply, M-degrees, are the equivalence classes of mass problems under
the equivalence relation generated by �. The collection of all M-degrees constitutes
a bounded distributive lattice, called the Medvedev lattice, which turns out to be in
fact a Brouwer algebra, that is, it is equipped with a suitable operation !, satisfying
(6). Hence every factor of the form M=A is itself a Brouwer algebra, being closed
under !, with : given by :B D B ! A. In the following we use the notation from
[15], to which the reader is also referred for more details and information about the
Medvedev lattice and intermediate propositional logics.

In order to show that there are infinitely many logics of the form Th.M=A/, in
[15] a sequence of M-degrees Bn, n 2 !, is introduced. In [15, Corollary 5.8] it is
claimed that the logics Th.M=Bn/ are all different, but no detailed proof of this is
given. Below we prove that indeed these logics are all different from each other. In
particular, for any f 2 !! consider the mass problem

Bf D ¹g 2 !!
W g —T f ºI
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then the Medvedev degree Bf of Bf is join-irreducible (see Sorbi [13]). Recall that
the top element 1 of M=Bn is the join

Bn D Bf1
C � � � C Bfn

;

where ¹fi W i 2 !º is a collection of functions whose Turing degrees are pairwise
incomparable. In particular, the top element of M=B1 is join-irreducible and the top
elements of all other factors M=Bn are not. Hence Th.M=B1/ can be distinguished
from all the other theories by the formula :p _ ::p. Namely, the w.l.e.m. holds
in a factor M=A if and only if A is join-irreducible (see Sorbi [14]). We recall that
the least element of M, and thus of every factor M=A, is meet-irreducible. Hence
M=Bn 2 B?

n . (This is in fact enough for the proof below.)

Corollary 4.1 If m ¤ n, then Th.M=Bm/ ¤ Th.M=Bn/.

Proof Assume that n < m, and let k D
�

n
bn=2c

�
. Since M=Bn 2 B?

n , by
Theorem 3.8, we have that 'k 2 Th.M=Bn/, but 'k … Th.M=Bm/. Note also
that by Corollary 2.6, we can now also conclude that �n 2 Th.M=Bn/, but
�n … Th.M=Bm/.
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