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The Finitistic Consistency
of Heck’s Predicative Fregean System

Luís Cruz-Filipe and Fernando Ferreira

Abstract Frege’s theory is inconsistent (Russell’s paradox). However, the pred-
icative version of Frege’s system is consistent. This was proved by Richard Heck
in 1996 using a model-theoretic argument. In this paper, we give a finitistic proof
of this consistency result. As a consequence, Heck’s predicative theory is rather
weak (as was suspected). We also prove the finitistic consistency of the exten-
sion of Heck’s theory to �11-comprehension and of Heck’s ramified predicative
second-order system.

1 Introduction

Russell’s paradox was a serious blow to Frege’s logicist project. In modern and
adapted terminology, we may describe the system of Frege in [7] as a second-order
system with full comprehension and a variable-binding term-forming operator as
regulated by the infamous Law V:

Ox:�.x/ D Ox:�.x/ $ 8x
�
�.x/ $ �.x/

�
;

where �.x/ and �.x/ are arbitrary formulas of the language. In the above, the value-
range operator O yields a first-order term Ox:�.x/ when applied to a formula �.x/.
Full comprehension was left implicit by Frege, but it can be brought into the open by
the scheme 9F8x.F x $ �.x//, where � is any formula of the language.

Terence Parsons initiated the investigation into consistent subsystems of Frege’s
system. He showed in [9] that the “first-order portion of the Grundgesetze” is consis-
tent. Of course, in a language in which second-order variables are dropped, compre-
hension is dropped as well, since it cannot be expressed. Furthermore, the relation
of membership—a defined relation in Frege’s Grundgesetze—is also not expressible:
x 2 y is defined by 9F.y D Ox:F x ^ Fx/. Parsons work was pioneering, but his
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system suffers from severe restrictions on expressibility. A few years later, Richard
Heck proved in [8] that the predicative fragment of the Grundgesetze is consistent.
We take the language of Heck’s theory H as the language of monadic second-order
logic with equality (following Burgess [2], we do not admit nonlogical constants)
together with the value-range operator, but the theory restricts the comprehension
scheme (described above) to predicative formulas '. A predicative formula is a
formula with no second-order quantifiers (it may have second-order free variables).
Note, in particular, that the occurrences of value-range terms Ox:�.x/ in a predica-
tive formula are restricted to formulas � which do not have second-order quantifiers
(the so-called predicative value ranges). Using a model-theoretic argument, Heck
showed that his theory is consistent. (Heck admits nonlogical constants, but nothing
is lost by restricting to our case.) Heck’s result was extended by Kai Wehmeier and
the second author of this paper. It is shown in [6] that the extension of Heck’s the-
ory to �11-comprehension is consistent. The proof is also model-theoretic, using the
machinery of recursively saturated models.

It is important for the logicist project to investigate how much mathematics can
be developed in consistent fragments of Frege’s Grundgesetze. Heck’s theory is able
to interpret Robinson’s arithmetic theory Q. This theory seems too weak to merit
serious consideration—it has no induction (e.g., it does not even prove the commuta-
tivity of addition)—but, in fact, it is not as plain as one might at first be led to judge.
First, it is a classical result of Tarski [13] that Q is an essentially undecidable theory.
Moreover, Q interprets the theory I�0, namely, Peano arithmetic with the induction
scheme restricted to bounded formulas. This beautiful result is the work of many
people, including Robert Solovay, Edward Nelson, and Alex Wilkie. Robinson’s Q
is even able to interpret a modicum of analysis. For these and related results see the
survey Ferreira and Ferreira [5]. Can we draw a limit on how much can be interpreted
in consistent fragments of Frege’s Grundgesetze? Part of the importance of the exis-
tence of finitistic consistency proofs lies precisely in the fact that they provide good
upper bounds for interpretability. In fact, by Gödel’s second incompleteness theo-
rem, if a consistency proof of a given theory is formalizable within a certain other
theory, then the latter theory is not interpretable in the former.

By a finitistic proof we mean a proof formalizable in the theory PRA of primi-
tive recursive arithmetic, and the reader can study the present paper with this aim in
mind (see Tait [11] for a discussion of finitism). However, the claim that the proofs
are finitistic can be refined and one can point to subsystems of PRA where the proofs
go through. Burgess’s book [2] is a good reference for these subsystems and also
for predicative Fregean theories. In his book, Burgess gives a quite complete dis-
cussion of finitistic proofs for predicative Fregean theories with so-called extension
symbols (see, also, Visser [14]). With this machinery in place, Burgess is able to
prove finitistically that the consistency of Parsons theory is provable in the theory
I�0.super2exp/ (this result first appeared in Burgess [1]). In spite of this result,
Burgess comments that “technical issues have not been wholly resolved” for pred-
icative Fregean theories with a variable-binding term-forming operator (as opposed
to extension symbols that apply to second-order variables). Burgess asks whether
Heck’s theory (or even its extension to �11-comprehension) can be proved finitisti-
cally. The present work is dedicated to providing finitistic consistency proofs for
these theories.
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The paper is organized as follows. In the next section, we prove the extension
of the so-called Shoenfield’s theorem to theories with the predicative value-range
operator, thereby answering positively a question in [2]. Together with the finitistic
proof of the consistency of Parsons theory, this entails that there is a finitistic proof of
the consistency of Heck’s theory restricted to the predicative value-range operator.
In order to deal with the full value-range operator, we first extend our version of
Shoenfield’s theorem to allow �11-comprehension. This is done is Section 3. In
the next section, having this material available, we finally tackle Heck’s theory. In
Section 5 we extend our results to ramified theories. In the last section, we briefly
discuss the limits of strict predicativity and raise some technical questions. The
paper also includes a small appendix where a proof of cut elimination is sketched for
predicative second-order logic which is formalizable in the theory I�0.superexp/.

The collaboration between the two authors of this paper can be described as fol-
lows. While preparing his address to the Birkbeck conference on “Set Theory and
Higher-Order Logic: Foundational Issues and Mathematical Developments” in 2011,
the second author was puzzled by the claim (e.g., in [2]) that the cut-elimination the-
orem for pure predicative logic is formalizable in the theory I�0.superexp/. It is not
that he doubted the result but rather that he could not see how to reduce this result
to the usual cut elimination for first-order logic nor how to readily formalize in this
theory the usual textbook proof of Takeuti [12]. Moreover, he was unable to locate
in print a proof of this claim. So, he posed this problem to the first author. After
some tries, a quite simple solution was found by both authors. It is here given in the
Appendix. The remainder of the paper is due to the second author only.

2 Shoenfield’s Theorem Extended

It is well known how to set up a sequent calculus for pure predicative second-order
logic. This is done, for instance, in Takeuti’s book on proof theory [12]. In the se-
quel, we use this calculus but with sequents consisting of sets of formulas instead
of sequences of formulas. (This is the inessential variant that is studied in the Ap-
pendix.) The sequent calculus enjoys the property of cut elimination. It is impor-
tant that the calculus is pure. There are no nonlogical axioms in the calculus, not
even the equality axioms (but, of course, the equality symbol may be present, incon-
spicuous among binary relation symbols). The calculus is, nevertheless, set up so
that predicative comprehension is provable. (To describe the calculus, Takeuti uses
the metadevice of abstracts given by formulas without second-order quantifiers.) In
order to simplify notation, our second-order calculus only has unary second-order
variables even though the natural setting allows any arity. There is no obstacle in
extending the cut-elimination theorem to the calculus with a value-range operator.
The discussion of the several cases in the cut-elimination proof is unaltered provided
that one treats the new terms as plain terms which do not increase the complexity of
formulas (even though the value ranges may apply to complex formulas). The usual
proof (see also the Appendix) of cut elimination is independent of the structure of
the terms. Of course, it is crucial that the calculus remains pure, that is, that there is
no Law V present. Even though the next theorem holds for the language with the un-
restricted value-range operator, in this and in the next section we are only interested
in predicative value-range term formation.
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Theorem 2.1 The sequent calculus of pure predicative logic with the predicative
value-range operator enjoys the property of cut elimination.

The next result is a Herbrand-like consequence of the above theorem.

Corollary 2.2 Suppose that a formula 9F�.F /, where � does not have second-
order quantifiers, is provable in the sequent calculus of pure predicative logic with
the predicative value-range operator. Then there are abstracts ¹x W �1.x; z1/º; : : : ;

¹x W �n.x; zn/º such that the sequent
) 9z1�

�®
x W �1.x; z1/

¯�
; : : : ; 9zn�

�®
x W �n.x; zn/

¯�
is provable in the restriction of the above calculus to the language without second-
order quantifiers. (In this restricted calculus, second-order variables only occur
free.)

Proof The proof is standard (see, e.g., [12, pp. 174–75]), but we give it here for
completeness and in order to draw attention to the appearance of the variables z1,
. . . , zn and the corresponding existential quantifications. Of course, this appearance
makes a lot of sense (semantically speaking), but it is noteworthy to pin down exactly
where it is required in the proof-theoretic proof.

We prove a slightly more general and refined statement. Suppose that � and �
are sequences of formulas without second-order quantifiers, and let 9F�.F / be as in
the corollary. We show that if the sequent calculus of pure predicative logic with the
predicative value-range operator proves the sequent � ) �; 9F�.F /, then there are
abstracts ¹x W �1.x; z1/º; : : : ; ¹x W �n.x; zn/º such that the sequent calculus without
second-order quantifiers proves

� ) �; 9z1�
�®
x W �1.x; z1/

¯�
; : : : ; 9zn�

�®
x W �n.x; zn/

¯�
:

Importantly, we also require that the free first-order variables of each formula
9zi�.¹x W �1.x; zi /º/ be exactly the same as the free first-order variables of
9F�.F /.

By Theorem 2.1, the sequent � ) �; 9F�.F / has a cut-free proof. The corol-
lary is now proved by induction on the number of inferences of this proof. The
crucial case is when the sequent is obtained by the 92r-rule. In this case, the se-
quent is inferred from a sequent of the form � ) �;�.¹x W �.x; z/º/ or of the form
� ) �; 9F�.F /; �.¹x W �.x; z/º/, where � is a formula without second-order
quantifiers and z are the free first-order variables of � which do not occur among the
free first-order variables of 9F�.F /. (We do not care about second-order variables.)
In the first case, we can infer � ) �; 9z�.¹x W �.x; z/º/ and, clearly, we are done.
In the second case, by the induction hypothesis, there are abstracts ¹x W �1.x; z1/º,
. . . , ¹x W �n.x; zn/º such that the sequent calculus without second-order quantifiers
proves the sequent
� ) �; 9z1�

�®
x W �1.x; z1/

¯�
; : : : ; 9zn�

�®
x W �n.x; zn/

¯�
; �

�®
x W �.x; z/

¯�
:

We can now apply the 9r-rule to conclude the sequent
� ) �; 9z1�

�®
x W �1.x; z1/

¯�
; : : : ; 9zn�

�®
x W �n.x; zn/

¯�
; 9z�

�®
x W �.x; z/

¯�
:

This is what we want.
The application of the induction hypothesis to the other rules is straightforward

(note that the other second-order quantifier rules do not occur in the cut-free proof),
but we want to draw attention to the first-order quantifier rules 9l and 8r . We must
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be sure that the eigenvariable condition is still met after applying the induction hy-
pothesis to the top sequent of these rules, in order to be able to apply the very same
rule to the very same formula afterwards. Of course, this is guaranteed by the ad-
ditional requirement described above (thanks to the systematic inclusion of suitable
existential first-order quantifications).

The appearance of a finite number of abstracts in the conclusion of the above corol-
lary is typical of a Herbrand-like theorem. In such theorems, the finite number of
abstracts is usually unavoidable, but sometimes it can be replaced with a single one.
This is the case if a procedure for definition by cases is available. In the second-order
case, a definition by cases can be simulated. Let us see how this simulation works
for two abstracts. (The general case is similar.) Suppose that we have

) 9z1�
�®
x W �1.x; z1/

¯�
; 9z2�

�®
x W �2.x; z2/

¯�
:

Let us consider the abstract®
x W

�
�1.x; z1/^ 9z1�

�®
x W �1.x; z1/

¯��
_

�
�2.x; z2/^ 8z1:�

�®
x W �1.x; z1/

¯��¯
:

If we denote this abstract by ¹x W �.x; z1; z2/º, it is clear that

) 9z19z2�
�®
x W �.x; z1; z2/

¯�
:

The corollary can be extended in several ways. First of all, we may have a list
of second-order quantifiers 9F1 � � � 9Fk�.F1; : : : ; Fk/ instead of just one quantifica-
tion. The proof is similar. Let us call a formula of the form 9F�.F /, with � with-
out second-order quantifiers, a †11-formula. Dually, a …1

1-formula is obtained by
replacing the existential second-order quantifiers by universal quantifications. (We
allow the empty list of second-order quantifiers, thereby including predicative for-
mulas among the †11- and …1

1-formulas.) Let us introduce some more terminology.
A predicative instantiation of a †11-formula (as above) is a formula of the form

9y1 � � �yk�
�®
x W �1.x; y1/

¯
; : : : ;

®
x W �k.x; yk/

¯�
;

where �1; : : : ; �k are formulas without second-order quantifiers. When k D 0, there
is only one predicative instantiation of the formula: it is the formula itself. A pred-
icative instantiation of a…1

1-formula is defined dually, with the first-order existential
quantifiers replaced by universal quantifiers. The most general form of the corollary
which we will use in the sequel applies when the sequent calculus of pure predicative
logic with the predicative value-range operator proves the sequent

8G1�1.G1/; : : : ;8Gr�r .Gr / ) 9F 1�1.F 1/; : : : ; 9F r�r .Fm/;

where the formulas in �1; : : : ; �r ; �1; : : : ; �m are all without second-order quanti-
fiers. Let us denote by Ai the formula 8Gi�i .Gi / (1 � i � r) and by Bj the
formula 9F j�j .F j / (1 � j � m). Under these circumstances there are predicative
instantiations A?1 , . . . , A?r and B?1 , . . . , B?m of A1, . . . , Ar and B1, . . . , Bm, respec-
tively, such that the following sequent is provable in the restricted sequent calculus
without second-order quantifiers:

A
?

1 ; : : : ; A
?

r ) B
?

1 ; : : : ; B
?

m:

This extended case of Corollary 2.2 can be proved directly by the same argument or,
else, reduced to the corollary itself (modified to allow a list of second-order existen-
tial quantifications).
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Definition 2.3 Let us consider a second-order language (with a distinguished
symbol for first-order equality) extended with the predicative value-range operator.
A …1

1-theory in this language is a theory with the first-order axioms of reflexivity,
symmetry, and transitivity for equality, the further equality axiom

(Eq) 8F8x8y.x D y ^ Fx ! Fy/,
the axiom version of Law V,

(LV) 8F8G. Ox:F x D Ox:Gx $ 8x.F x $ Gx//,
and …1

1-axioms peculiar to the theory (the so-called proper axioms of the theory).
We call a …1

1-theory with no proper axioms a pure …1
1-theory.

Given a language as in the definition above, we may consider the restriction of this
language to its first-order part: a so-called first-order Parsons language. Let T be a
…1
1-theory. The first-order schematization of T is the theory Ts , formulated in the as-

sociated first-order Parsons language, obtained from T by replacing each…1
1-axiom,

including (Eq) and (LV), by the associated predicative instantiations which have no
second-order variables.

We are now ready to enunciate and give a finitistic proof of the following extension
of Shoenfield’s theorem.

Theorem 2.4 Let T be a …1
1-theory. If Ts is consistent, then T with predicative

comprehension is also consistent.

Proof Suppose that T with predicative comprehension proves a first-order contra-
diction ?, for example, 9x.x ¤ x/. Let A be the conjunction of the axioms of
equality of reflexivity, symmetry, and transitivity. Then there is a finite set of proper
axioms A1; : : : ; An of T such that one can derive the sequent

LV; Eq; A;A1; : : : ; An ) ?

in pure predicative logic with the predicative value-range operator. Since both LV
and Eq are …1

1-sentences, by the discussion following Corollary 2.2, there are se-
quences of predicative instantiations LV?;Eq?; A1

?
; : : : ; An

? of LV; Eq; A1; : : : ;
An (resp.) such that the sequent

LV?;Eq?; A; A1
?
; : : : ; An

?
) ?

is provable in the restriction of the calculus of pure predicative logic with the pred-
icative value-range operator to the language without second-order quantifiers. If in
this proof we replace all the second-order variables by (say) the abstract ¹x W x D xº,
we have a first-order proof of the sequent

LVı
; Eqı

; A;A
ı

1; : : : ; A
ı

n ) ?;

where each ı-formula is obtained from the corresponding ?-formula by the substitu-
tion described above. Since all these ı-formulas are in Ts , we have shown that Ts is
inconsistent.

The above proof is formalizable in I�0.superexp/. All syntactic manipulations are
relatively simple. Technically, they are elementary, that is, formalizable in I�0.exp/,
except for an application of the cut-elimination theorem. But, as noticed, this theorem
is formalizable in I�0.superexp/.
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Let LH be the pure …1
1-theory, based on the first-order language of equality, to-

gether with predicative comprehension. This theory only differs from Heck’s pred-
icative theory in that it does not allow the formation of impredicative value ranges
(along with the corresponding Law V that goes with them).

Corollary 2.5 LH is consistent.

Proof The first-order schematization of LH is just Parsons theory. As remarked in
the Introduction, Burgess proved the finitistic consistency of this theory in [1]. Now,
use the above theorem.

3 The Extension to �1
1
-Comprehension

The scheme of �11-comprehension is constituted by the formulas

8x
�
�.x/ $ �.x/

�
! 9F8x

�
Fx $ �.x/

�
;

where � is a †11-formula and � is a …1
1-formula. The main aim of this section is to

extend Theorem 2.4 and prove finitistically the following result.

Theorem 3.1 Let T be a …1
1-theory. If Ts is consistent, then T with �11-compre-

hension is also consistent.

In a first-order Parsons language, we can define a pairing operation. For instance, the
Kuratowski–Wiener ordered pair is defined thus:

hx; yi WD Ou:
�
u D Ov.v D x _ v D y/ _ u D Ov.v D x/

�
:

In Parsons theory, this pairing operation satisfies the pairing axiom P :

8x; y; u; v
�
hx; yi D hu; vi ! x D u ^ y D v

�
:

The presence of pairing simplifies many formulations since there will be no need to
speak of tuples. However, the presence of pairing seems to be unavoidable for the
efficient formulation of the following principle.

Definition 3.2 Modified †11-choice is the following scheme:

8x9F �.F; x/ ! 9R8x9y �.Rx;y ; x/;

where � has no second-order quantifiers and Rx;y.u/ stands for R.hu; hx; yii/.

The (seeming) unavoidability of pairing in the formulation of the above principle lies
in the fact that the occurrences of the variable y above may play the role of a tuple of
variables of unspecified arity. As it will be clear by the proof of Lemma 3.4 below,
this is important because we are going to rely on Corollary 2.2 and, therefore, on
abstracts with (unspecified) tuples of new variables.

Modified†11-choice was introduced in [6], where the following result was proved.
We repeat the argument here for completeness.

Lemma 3.3 A pure …1
1-theory with predicative comprehension and modified

†11-choice proves the scheme of �11-comprehension.

Proof We argue informally. Suppose that 8x.8G �.G; x/ $ 9F �.F; x//, where
both � and � have no second-order quantifiers. In particular,

8x9G9F
�
�.G; x/ ! �.F; x/

�
:
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By modified †11-choice (and using pairing cleverly), it is not difficult to conclude
that 9R9Q8x9y9z.�.Rx;y ; x/ ! �.Qx;z ; x//. Take R and Q such that

8x9y9z
�
�.Rx;y ; x/ ! �.Qx;z ; x/

�
:

We claim that 9F�.F; x/ is equivalent to 9z �.Qx;z ; x/. Note that the latter for-
mula is predicative and, therefore, we can apply predicative comprehension to it.
The right-to-left direction of the claim is obvious. Let x be given, and assume
that 9F�.F; x/. Take y and z such that �.Rx;y ; x/ ! �.Qx;z ; x/. By hypothesis,
we have 8G �.G; x/. In particular, �.Rx;y ; x/. We get �.Qx;z ; x/ and, therefore,
9z�.Qx;z ; x/.

In order to prove Theorem 3.1, we consider an extension of the calculus of sequents
of the pure predicative logic with the predicative value-range operator. The extension
is obtained by adding the following rule:

� ) �; 9F�.F; a/
(choice)

� ) �; 9R8x9y �.Rx;y ; x/

where � has no second-order quantifiers and a is an eigenvariable. The following
formal deduction shows that modified †11-choice is provable in this extended calcu-
lus:

9F �.F; a/ ) 9F �.F; a/
(8l)

8x9F �.F; x/ ) 9F �.F; a/
(choice)

8x9F �.F; x/ ) 9R8x9y �.Rx;y ; x/(! r)
) 8x9F �.F; x/ ! 9R8x9y �.Rx;y ; x/

The extended calculus does not enjoy the property of cut elimination. When one
tries to eliminate a cut coming from the application of (choice), there is no way to
proceed. However, it is a known observation (see, e.g., Buss [4] in a slightly different
setting) that proofs with (choice) enjoy partial cut elimination, in the sense that all
cuts—with the exception of those whose cut formula is a†11-formula—can be elimi-
nated. This has a conspicuous consequence for proofs of sequents consisting only of
†11-formulas. In this case, a proof of such a sequent enjoying partial cut-elimination
consists solely of †11-formulas (because of the subformula property). In a nutshell:
If a sequent consisting only of †11-formulas is provable in the extended sequent cal-
culus, then it has a proof, in the same calculus, consisting only of †11-formulas.

Lemma 3.4 If a sequent consisting only of †11-formulas can be proved in the
sequent calculus of pure predicative logic with the predicative value-range operator
extended with the rule (choice), then it can be proved without this rule in the presence
of the pairing axiom P .

Proof As we have discussed, such a sequent has a proof consisting only of
†11-formulas. We prove by induction on the number of inferences of this proof
that the sequent can be proved without (choice) in the presence of the pairing
axiom P . The only case that must be discussed is when the proof ends with an
application of (choice). So, let us consider an application of (choice) in which
the sequents � and � consist solely of †11-formulas. By the induction hypothesis,
there is a proof in the restricted system—that is, without (choice)—of the sequent
P;� ) �; 9F�.F; a/. If � has the form 9G1�1.G1/; : : : ; 9Gr�r .Gr /, where the
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formulas �1.G1/; : : : ; �r .Gr / are all without second-order quantifications, then the
restricted system proves

P; �1.G1/; : : : ; �r .Gr / ) �; 9F�.F; a/:

By the discussion following Theorem 2.2, we can replace the †11-formulas in � and
the very formula 9F�.F; a/ by suitable predicative instantiations. We actually only
care for the instantiations of the last formula. As discussed, these instantiations can
be reduced to only one. Let this instantiation be given by the abstract ¹u W �.u; y; a/º.
Note that we may assume that y is a single variable because of the availability of the
pairing axiom.

In short, the restricted theory proves
P; �1.G1/; : : : ; �r .Gr / ) �; 9y�

�®
u W �.u; y; a/

¯
; a

�
:

Let Q�.z/ be the formula 9u; y; x .�.u; y; x/ ^ z D hu; hx; yii/. It is easy to see that
�.u; y; x/ and Q�.hu; hx; yii/ are equivalent (provably in the restricted system with
the pairing axiom). Therefore, the restricted theory proves

P; �1.G1/; : : : ; �r .Gr / ) �; 9y�
�®
u W Q�

�˝
u; ha; yi

˛�¯
; a

�
:

Using the 8r-rule, it also proves

P; �1.G1/; : : : ; �r .Gr / ) �;8x9y�
�®
u W Q�

�˝
u; hx; yi

˛�¯
; x

�
;

and, hence, P; �1.G1/; : : : ; �r .Gr / ) �, 9R8x9y�.Rx;y ; x/. We conclude that
the sequent

P; 9G1�1.G1/; : : : ; 9Gr�r .Gr / ) �; 9R8x9y�.Rx;y ; x/

is provable in the restricted system. In other words, the restricted system does in-
deed prove the sequent P;� ) �; 9R8x9y�.Rx;y ; x/, which corresponds to the
conclusion of the rule (choice).

We are now ready to prove Theorem 3.1. We will actually show that the theory T with
�11-comprehension is †11-conservative over T with predicative comprehension (then
apply Theorem 2.4). Suppose that B is a †11-sentence and that the theory T with
�11-comprehension proves B . Let A be the conjunction of the axioms of reflexivity,
symmetry, and transitivity for equality. Then there is a finite set of proper axioms
A1, . . . , An of T such that the sequent

LV;Eq; A;A1; : : : ; An ) B

is provable in the extension, with (choice), of the calculus of sequents of the pure
predicative logic with the predicative value-range operator. All the formulas in
the antecedent of the above sequent are …1

1-formulas. Consider their negationsfLV;fEq;fA1; : : : ;fAn in the form of †11-formulas by using the De Morgan laws. Of
course, we can prove the sequent

A ) fLV;fEq;fA1; : : : ;fAn; B
in the extended calculus. By Lemma 3.4, the sequent

P;A ) fLV;fEq;fA1; : : : ;fAn; B
can be proved in the calculus of sequents of the pure predicative logic with the pred-
icative value-range operator. Therefore, so it happens with the sequent

LV;Eq; P; A;A1; : : : ; An ) B:
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It follows that the theory T with predicative comprehension proves B .
The proof of Theorem 3.1 is finished, and it is plain that it can be formal-

ized in I�0.superexp/. It is also worth noting that the proof delivers more than
�11-comprehension: it even delivers modified †11-choice.

4 The Consistency of Heck’s Predicative Second-Order System

It was observed in the Introduction that the consistency of Parsons theory has a fini-
tistic proof, formalizable in I�0.super2exp/. Hence, by Corollary 2.5, the theory LH
(the modification of Heck’s predicative theory that does not allow the formation of
impredicative value-range terms) has a consistency proof in I�0.super2exp/. In this
section, we show that Heck’s theory H, with the full value-range operator as regulated
by schematic Law V, has also a consistency proof in the theory I�0.super2exp/.

In order to take care of impredicative value-range terms, we chose to work on the
firm and well-studied ground of theories without a variable-binding term-forming
operator. We define a (consistent) theory PVC

! and show that H is interpretable in
it. The language of this theory is the language of PV! of Burgess (cf. [2]) together
with a pairing apparatus (pairing objects into objects). Briefly put, there is a style of
variables x, y, z, . . . (first-order variables) for objects and, for each natural number n,
a style of variable for nth round concept variables F n,Gn,Hn, . . . . (We usually omit
the superscript of zeroth round concept variables and write F ,G,H , . . . instead.) We
have the identity symbol D for objects, a binary function symbol h ; i for the pairing
of objects, and, for each n, an extension symbol �n which can be applied to nth
round concept variables F n in order to form a first-order term �nF n. (When n D 0,
we usually omit the superscripts and simply write �F .) The part of the language
restricted to variables of round at most n is denoted by Ln. (Hence, only extension
symbols �k , with k � n, appear in Ln.) The full language is denoted by L! . There
are four kinds of axioms:

(1) hx; yi D hu; vi ! x D u ^ y D v;
(2) predicative comprehension and modified †11-choice for the fragment L0;

that is, the following two schemes of formulas: 9F8x.F x $ �.x// and
8x9F�.F; x/ ! 9R8x9y �.Rx;y ; x/, where � and � are formulas of L0

without second-order quantifiers;
(3) 9F n8x .F nx $ �.x//, for n � 1 and � a formula of Ln without second-

order quantifiers of variables of round n;
(4) �nF n D �mGm $ 8x.F nx $ Gmx/, for natural numbers n and m.

Lemma 4.1 Heck’s theory H is interpretable in PVC
! .

Proof The first-order domain of H is interpreted by the first-order domain of PVC
! ,

and the second-order domain of H is interpreted by the zeroth round domain of PVC
! .

We must interpret the value-range operator of H. The treatment is different depending
on whether the term is predicative or impredicative.

Let us first consider the predicative case, concerning terms of Heck’s language
of the form Ox:�.x/, where � has no second-order quantifiers. The interpretation of
these terms relies crucially on the availability of modified †11-choice, as stated in
axiom (2). The class of extended †11-formulas (resp., extended …1

1-formulas) is the
smallest class of formulas of L0 which contains the formulas without second-order
quantifiers and is closed for conjunction, disjunction, first-order quantifications, and
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existential second-order quantifiers (resp., universal second-order quantifiers). Since
we have modified †11-choice in L0, every extended †11-formula (resp., extended
…1
1-formula) is equivalent to a†11-formula (resp., a…1

1-formula) of the language L0.
We are now ready to interpret LH in the fragment of PVC

! restricted to L0. The
terms of LH of the form Ox:�.x/ can be ranked according to the depth of nesting of
these terms. If the rank is zero, this means that there are no value-range operators
in �. Let L LH0 be the fragment of the language L LH

of LH in which only terms of rank
0 occur. We interpret a formula of the form Ox:�.x/ D y, where Ox:�.x/ has rank 0,
by the formula 9F.y D �F ^ 8x.F x $ �.x///. By predicative comprehension
and axiom (4) restricted tom D n D 0, this formula is equivalent to the…1

1-formula:
8F.8x.F x $ �.x// ! y D �F /. Of course, a negation of the form Ox:�.x/ ¤ y,
for Ox:�.x/ of rank 0, can also be put in †11- and …1

1-form. With this base case dis-
cussed, it is now standard to translate (by induction on the complexity) every formula
� of L LH0 without second-order quantifiers into equivalent extended †11-formulas
�9 and extended …1

1-formulas �8 of L0. By �11-comprehension (a consequence
of axiom (2)), we have (�) PVC

! ` 9F8x..F x $ �9.x// ^ .F x $ �8.x///

for such � of L LH0 . Suppose now that Ox:�.x/ is a term of rank 1. Let us inter-
pret the formula Ox:�.x/ D y. We translate this equality by the equivalent formulas
9F.y D �F ^ 8x.F x $ �9.x/// and 8F.8x.F x $ �8.x// ! y D �F /. This
time the equivalence holds because we have (�), as well as the already-mentioned
restriction of (4). Note that the above formulas are equivalent to †11-formulas and
…1
1-formulas, respectively. This can be easily seen by replacing �9 by �8 (and vice

versa) in appropriate places. The translation standardly extends to all formulas of
L LH1 (the fragment of L LH

in which only terms of rank 0 and one occur) without
second-order quantifiers, and the comprehension scheme (�) extends to these formu-
las. It is clear that the iteration of this process provides a translation of the formulas
of L LH

without second-order quantifiers into the fragment of PVC
! restricted to L0.

By construction, the comprehension principle (�) holds for these formulas. The ex-
tension of the translation to all formulas of L LH

is automatic: Translate second-order
quantifiers by corresponding (zero round) second-order quantifiers. Since the base
case without second-order quantifiers has two (equivalent) translations, we fix one
such translation and extend it—as was just described—to all formulas of LH: �Ý�T .

It remains to extend the interpretation to the full language of H, that is, to formulas
which also include terms of the form Ox:�.x/, where � may have second-order quan-
tifiers. We can give a (impredicative) rank to terms of this form. If � has no second-
order quantifiers, the term Ox:�.x/ has zero (impredicative) rank. If � has only terms
of (impredicative) rank � n, then Ox:�.x/ has (impredicative) rank � nC1. We have
already shown how to interpret formulas of the language of LH, that is, formulas of H
which only have terms of zero (impredicative) rank. Given one such formula �.x/,
we translate the equality Ox:�.x/ D y by 9F 1.y D �F 1 ^ 8x.F 1x $ �T .x///.
Note that, due to axiom (3), PVC

! ` 9F 18x .F 1x $ �T .x//. It is now standard
to translate formulas of H with terms of at most impredicative rank 1 by formulas
of L1. This procedure can be iterated and we end up translating the formulas of
H which only include terms of at most (impredicative) rank n by formulas of Ln.
The translation of the Law V of the theory H is provable in PVC

! because of axiom
scheme (4).

We have obtained an interpretation of H into PVC
! .
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Let us call T0 the restriction of the theory PVC
! to L0, together with the sentences

9kx8F.x ¤ �F / (one for each natural number k, saying that there are at least k
objects outside of the range of �).

Lemma 4.2 The theory T0 is consistent.

Proof The proof consists of three steps. In the first step, we observe that Burgess’s
consistency proof of Parsons’s theory in [2, pp. 136–37, p. 140] can be easily adapted
so that it contains an auxiliary unary predicate symbol R such that (i) the scheme
:R. Ox:�.x// holds for all formulas � of the language; (ii) 9kxR.x/, for all natu-
ral numbers k. In the second step, we use the results of Section 3 to conclude that
the second-order version of this theory with predicative comprehension, modified
†11-choice, and the axiom 8F:R. Ox:F x/ is consistent. (This is the only step in prov-
ing the finitistic consistency of H where we use the results of the previous sections.)
In the third step, we interpret T0 in the theory of the previous step by translating
�F by Ox:F x and pairing via the Kuratowski–Wiener definition. It is clear that this
argument does the job.

We are making the seemingly strange maneuver of working with the (two-sorted)
first-order theory T0 instead of working over the more natural theory described in the
first step of the above proof. The reason is that in order to deal with impredicative
value-range terms, we need to rely on some results typical of first-order logic: the
splitting lemma, the injection lemma, the representatives lemma, and so forth (cf.
[2]). These results have not yet been considered in the framework of a language with
value ranges.

Lemma 4.3 The theory PVC
! is consistent.

Proof We have shown that the theory T0 is consistent. Notice that there are
infinitely many elements outside of the range of �. (The intuitive idea is that there is
enough room left for interpreting the impredicative value ranges.) The construction
at the turn of [2, pp. 136–37] (which uses the above-mentioned splitting lemma,
injection lemma, representatives lemma, etc.) shows that the theory T1, the re-
striction of PVC

! to the language L1, is consistent. Moreover, we can ensure that
9kx8F 1.x ¤ �1F 1/. Of course, this process iterates to all the restrictions Tn of
PVC

! to the language Ln. Therefore, the consistency of their union, that is, of PVC
! ,

is established.

As Burgess remarks, the relative consistency proofs of TnC1 with respect to Tn
are formalizable in I�0.superexp/. In fact, the theory I�0.superexp/ proves
8n .ConTn

! ConTnC1
/, where ConT formalizes the consistency of the the-

ory T. As a consequence, we get I�0.super2exp/ ` ConT0
! ConPVC

!
. On the

other hand, the consistency of T0 hinges upon the consistency of Parsons theory.
It is now clear that I�0.super2exp/ ` ConT0

. Hence, I�0.super2exp/ ` ConPVC
!

.
Now, by Lemma 4.1, we may conclude that the consistency of H is provable in
I�0.super2exp/. Of course, our proof even shows that this is also true for Heck’s
theory with the �11-comprehension scheme.



The Finitistic Consistency of Heck’s Predicative Fregean System 73

5 The Consistency of Heck’s Ramified Predicative System

Let T be a theory in a first-order Parsons language, and consider TH its extension to
the second-order language with predicative comprehension and with the full value-
range operator regulated by schematic Law V. The arguments of Section 4 can be
adapted to show the following.
Theorem 5.1 If T is consistent, then TH is also consistent.
Although the checking is a bit tiresome (one must go through Theorems 2.4, 3.1, and
the constructions of Section 4), it should be clear that the above theorem is also true
for first-order Parsons languages with finitely many sorts. Therefore, we can apply
the theorem to the theory TH itself and get that .TH/H is consistent, if T is. We can
iterate this procedure and define R0 D T and RnC1 D .Rn/H. Of course, the union
of these theories is consistent. Do notice that, when we start with Parsons’s “first-
order portion of the Grundgesetze,” the union of these theories is essentially Heck’s
ramified predicative fragment of Frege’s arithmetic (cf. [8, Section 4]). Therefore we
have the following.
Theorem 5.2 Heck’s ramified predicative second-order system is consistent.
This result was proved by Heck in [8], using model theory. We have proved more.
Theorem 5.1 is true even if we allow �11-comprehension (or modified †11-choice)
instead of just predicative comprehension. As a consequence, Theorem 5.2 also
holds if, at each round, one has �11-comprehension (or even modified †11-choice).

Our consistency proofs were designed to be finitistic. What finitistic theory proves
Theorem 5.2 (and its extension mentioned in the previous paragraph)? The consis-
tency of Parsons first-order theory is provable in I�0.super2exp/. Theorem 5.1 is also
provable in this theory. Therefore, the above theorem is provable in I�0.super3exp/.

6 Some Observations, Some Questions

We have observed in the Introduction that the bounded theory I�0 is interpretable
in Heck’s predicative second-order system. One can do much better for Heck’s ram-
ified predicative second-order system: This theory interprets the bounded theory
I�0.exp/. This is a consequence of a result of Burgess and Hazen in [3]. What
Burgess and Hazen actually show is that I�0.exp/ is interpretable in the ramified
predicative arithmetic built on top of an infinite Dedekind domain (axiomatized via
a first-order theory with successor and zero symbols, and axioms saying that the suc-
cessor is injective and that zero is outside the range of the injection). A close inspec-
tion of the proof shows that only two rounds of variables are necessary to interpret
I�0.exp/. Since the consistency of this two-round fragment is known to be provable
in I�0.superexp/, the result is optimal for these two rounds. However, the consis-
tency of the full ramified theory (with all finite rounds) is only known to be provable
in I�0.super2exp/. There is a gap between what is known to be interpretable in the
Burgess–Hazen ramified theory (cf. the last section of [3]) and the theory in which it
is known that its consistency proof can be formalized. Is it possible to close this gap?
The gap is even wider for Heck’s ramified predicative second-order system because
our consistency proof is only formalizable in I�0.super3exp/. Of course, Heck’s
ramified second-order system has more resources than the Burgess–Hazen ramified
theory, due to the presence of the value-range operator. Can the presence of this
operator be explored to obtain stronger interpretations? Can the gaps be bridged?
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Appendix: Predicative Cut Elimination

The result that the theorem of cut elimination for pure predicative second-order logic
is formalizable in the theory I�0.superexp/ seems to be folklore. The proof of
Takeuti in [12] does not seem to be readily formalizable in this theory. The prob-
lem hinges on the fact that a (predicative) instantiation of a second-order quantifi-
cation can arise through first-order formulas of arbitrary complexity. A new mea-
sure of complexity of formulas is needed. Below, in order to avoid a transfinite
measure, we opt for a two-stage cut elimination. In the first stage, we describe a
cut-elimination procedure for cut formulas with second-order bounded quantifiers
(second-order cuts). This procedure does not eliminate predicative cuts (i.e., cuts of
first-order formulas, possibly with second-order parameters). We claim that this cut-
elimination result is formalizable in I�0.superexp/. Therefore, this theory proves
that every theorem of pure predicative logic has a derivation without second-order
cuts. The attentive reader will notice that this amount of cut-elimination is suffi-
cient for the proofs of this paper, namely, for Corollary 2.2 and (suitably adapted for
the partial cut elimination used) for the remark before Lemma 3.4. However, hav-
ing now a proof without second-order cuts, it is a well-trodden path to get the full
cut-elimination result. We duly discuss this further stage also.

Rules of the sequent calculus. We work within the context of a sequent calculus
where sequents are of the form � ) �, with � and � finite sets of formulas (unlike
in [12]). As usual, we separate the elements in these sets by commas, and write,
for example, �; ' for � [ ¹'º. The logical rules are the same as in [12], with two
exceptions. First, the only structural rule is Cut. Second, axioms are of the form
�; ' ) �; ', where ' is a predicative formula. (This choice of initial sequents
is specially adapted for the proof below.) We do without the syntactic distinction
between free and bound variables and adopt the conventions of Schwichtenberg [10]
(suitably adapted to our setting) regarding this issue.

Second-order size of a formula. Since we are only interested in eliminating
second-order cuts, we use a special measure for the size of a formula. In this mea-
sure, predicative formulas have measure zero. The second-order size j'j2 of a for-
mula ' is defined as follows: j'j2 D 0 if ' is a predicative formula; in the remain-
ing cases j:'j2 D j8x'j2 D j9x'j2 D j82R'j2 D j92R'j2 D j'j2 C 1 and
j' _  j2 D j' ^  j2 D j' !  j2 D max.j'j2; j j2/C 1.

A straightforward induction shows that j'Œ�=R�j2 D j'j2 for every formula ' and
first-order abstract � . Here, 'Œ�=R� denotes the formula obtained by effecting the
substitution of the abstract � for the second-order variable R in '.

Length of a derivation. This is defined as in first-order logic, with axioms as
derivations of length zero (see [10]). We denote the length of a derivation d by jd j.

Second-order cut rank of a derivation. If d is a derivation, then the second-order
cut rank of d is �2.d/ D max¹j'j2W ' is a cut formula of dº.

Our strategy is an adaptation of the argument in [10].
Weakening lemma. A derivation d of � ) � can be weakened into a derivation

d
�0;�0

�;� of � 0 ) �0 by adding � 0 n� to the left-hand side of each sequent and�0 n�

to the right-hand side of each sequent, assuming � � � 0 and � � �0. The length
and second-order cut rank of d and d�

0;�0

�;� are the same.
First-order substitution lemma. If d is a derivation of � ) � and x is not the

eigenvariable of any application of 8r or 9l in d , then, by replacing every occurrence
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of x by a term s in d , one obtains a derivation dŒs=x� of �Œs=x� ) �Œs=x� with the
same length and second-order cut rank as d .

Second-order substitution lemma. If d is a derivation of � ) � and R is not the
eigenvariable of any application of 82r or 92l in d then, by effecting the substitution
of every occurrence of R by the predicative abstract � in d , one obtains a deriva-
tion dŒ�=R� of �Œ�=R� ) �Œ�=R� with the same length and second-order cut rank
as d . Both the remark after the definition of second-order size of a formula and our
statement of the axioms with first-order formulas ' are essential to the proof of this
result.

Second-order inversion lemma. Suppose that the formulas :', ' ^  , ' _  ,
' !  , 8x', 9x', 8R', and 9R' below are not predicative formulas. Then we
have the following.

(1) If d is a derivation of �;:' ) �, then there exists a derivation d' of
� ) �; '.

(2) If d is a derivation of � ) �; ' ^  , then there exist a derivation d' of
� ) �; ' and a derivation d of � ) �; .

(3) If d is a derivation of �; ' _  ) �, then there exist a derivation d' of
�; ' ) � and a derivation d of �; ) �.

(4) If d is a derivation of �; ' !  ) �, then there exist a derivation d' of
� ) �; ' and a derivation d of �; ) �.

(5) If d is a derivation of � ) �;8x', then there exists a derivation d' of
� ) �; '.

(6) If d is a derivation of �; 9x' ) �, then there exists a derivation d' of
�; ' ) �.

(7) If d is a derivation of � ) �;8R', then there exists a derivation d' of
� ) �; '.

(8) If d is a derivation of �; 9R' ) �, then there exists a derivation d' of
�; ' ) �.

Furthermore, in all cases jd� j � jd j and �2.d� / � �2.d/, for � D '; .
The above result is an adaptation of the inversion lemma of [10] to our setting.

The reader might be puzzled by the restriction to nonpredicative formulas in the
above lemma. In fact, points (1)–(8) of the inversion lemma are always true. It is
the bound jd� j � jd j, with � D '; , that does not hold anymore. The reason
lies in the fact that we are admitting axioms of the form of �; ' ) �; ', with ' as a
predicative formula (as opposed to atomic formulas ' in [10]). For instance, consider
in case (1) the situation in which �;:' ) � is an axiom. If :� is nonpredicative,
then �\�must have a common formula and, therefore, � ) �; ' is also an axiom.
However, if :' were predicative, then the sequent � ) �; ' need not be an axiom.
In this case, :� 2 �, and the argument is as follows: �; � ) �;� is an axiom and,
from this sequent, we may conclude � ) �;� by the rule :r . Note that, in this
situation, jd' j D jd j C 1. A unit must be added. Actually, we could have formulated
the above lemma for all formulas (not only the predicative formulas) as long as we
were content with the bound jd� j � jd j C 1, with � D '; . This is a perfectly good
option. The only consequence is that the bounds in the results below would have to
be slightly increased (but still quite acceptable for our formalizations).
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Lemma A.1 (Second-order reduction lemma) Suppose that d1 is a derivation of
�1 ) ';�1 and d2 is a derivation of �2; ' ) �2 such that �2.d1/ < j'j2 and
�2.d2/ < j'j2. Then there exists a derivation d such that

� d is a derivation of �1; �2 ) �1; �2;
� jd j � jd1j C jd2j;
� �2.d/ < j'j2.

Proof To start with, observe that ' is not a predicative formula (because j'j2 > 0).
The proof distinguishes several cases, according to the form of '. In each case,
the proof is by induction on jd1j C jd2j and a corresponding case of the second-
order inversion lemma is used in the argument. (The proof follows the blueprint of
Lemma 2.6 of [10].) Here, we analyze only the case where ' is the formula 82R .

We begin with the situation in which ' is not the principal formula in at least one
of the derivations d1 or d2. Suppose that it is not the principal formula in d1 (the d2
case is similar). A possibility is that �1 ) ';�1 is an axiom. In this case we do not
have to use the induction hypothesis: there must be a common (predicative) formula
in �1 and�1 and, therefore, �1; �2 ) �1; �2 is also an axiom. In case �1 ) ';�1
is the conclusion of a rule in d1, one just applies the induction hypothesis to the
derivation of each premise together with d2 and, with the resulting sequence(s), apply
the very same rule (see [10]).

The interesting situation is when ' is the principal formula of the last step of
both d1 and d2. Then the rules 82r and 82l must have been applied in the last
inferences of d1 and d2, respectively. Without loss of generality (eventually applying
the weakening lemma), assume that ' is a side formula in the last step of d2. Then
d2 has the form

d 0
2

�2; ';  Œ�=R� ) �2(82l)
�2; ' ) �2

where � is a predicative abstract. (In our notation, d 0
2 is a derivation of the sequent

�2; ';  Œ�=R� ) �2; therefore, it includes this sequent.) Applying the induction
hypothesis to d1 and d 0

2, we find a derivation d 0 of �1; �2;  Œ�=R� ) �1; �2 such
that

jd 0
j � jd1j C jd 0

2j < jd1j C jd2j and �2.d
0/ < j'j2:

Applying the inversion lemma to d1, we find a derivation d of �1 ) �1;  such
that

jd j � jd1j and �2.d / � �2.d1/:

By the second-order substitution lemma, the derivation d Œ�=R� has the same
length and second-order cut rank as d , and furthermore d Œ�=R� is a derivation of
�1 ) �1;  Œ�=R�. Take d to be the following derivation:

d Œ�=R�

�1 ) �1;  Œ�=R�
d 0

�1; �2;  Œ�=R� ) �1; �2(cut)
�1; �2 ) �1; �2

Then
jd j D max

�ˇ̌
d Œ�=R�

ˇ̌
; jd 0

j
�

C 1 � max
�
jd1j C 1; jd1j C jd2j

�
� jd1j C jd2j;

�2.d/ D max
�
�2

�
d Œ�=R�

�
; �2.d

0/;
ˇ̌
 Œ�=R�

ˇ̌
2

�
< j'j2

since j Œ�=R�j2 D j j2, as observed before.
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Lemma A.2 (Second-order cut elimination) Suppose that d is a derivation of
� ) �. If �2.d/ > 0, then there exists a derivation d 0 of � ) � such that
�2.d

0/ < �2.d/ and jd 0j � 2jd j.

Proof The proof is by induction on jd j. If the last inference is not a cut with
second-order cut rank �2.d/, the result follows easily by the induction hypothesis.
So, assume that the last inference is

d1
�1 ) �1; '

d2
�2; ' ) �2(cut)

� ) �

where j'j2 D �2.d/. By the induction hypothesis, there are derivations d 0
1 and d 0

2 of
�1 ) �1; ' and �2; ' ) �2, respectively, such that jd1j � 2jd1j and jd2j � 2jd2j,
both with second-order cut-rank strictly less than �2.d/.

By the reduction lemma there is a derivation d 0 of �1; �2 ) �1; �2 such that

jd 0
j � jd 0

1j C jd 0
2j � 2jd1j

C 2jd2j
� 2max.jd1j;jd2j/C1

D 2jd j

and �2.d 0/ < j'j2 D �2.d/.

As in [10], let 2a0 D a and 2a
kC1

D 22
a
k . The following is now straightforward by

induction on n.

Theorem A.3 Assume that d is a derivation of � ) �. Then there exists a
derivation d 0 of the same sequent such that �2.d 0/ D 0 and jd 0j � 2

jd j

�2.d/
. Therefore,

d 0 has only predicative cuts.

Notice that the above results also hold if we allow for value-range terms in the syntax
of the language (predicative or impredicative, it does not matter), as long as the
calculus remains pure (without Law V), because the above proofs are independent of
the structure of the terms.

As discussed in the first paragraph of this appendix, the above results are enough
for the arguments of this paper. However, we can go further and obtain full cut elim-
ination. We only have to remove the remaining predicative cuts. This can be done
following the blueprint of cut elimination for first-order logic. (The extra second-
order rules pose no problems in the analysis since a cut formula can never be the
principal formula of such a rule.) If we follow [10], it would be very convenient to
have only axioms of the form �; ' ) �; ', with ' an atomic formula, in the proof
without second-order cuts (in order to have an inversion lemma similar to the one
in [10]; see the discussion before Lemma A.1). But, of course, we can suppose this.
Just replace all the axioms of the form �; ' ) �; ', with � a predicative formula, by
derivations starting with axioms for atomic formulas. There are such simple enough
(even cut-free) derivations.

References

[1] Burgess, J. P., “On a consistent subsystem of Frege’s Grundgesetze,” Notre Dame Jour-
nal of Formal Logic, vol. 39 (1998), pp. 274–78. Zbl 0968.03015. MR 1715015.
DOI 10.1305/ndjfl/1039293068. 62, 67

[2] Burgess, J. P., Fixing Frege, Princeton Monographs in Philosophy, Princeton University
Press, Princeton, 2005. Zbl 1089.03001. MR 2157847. 62, 63, 70, 72

http://www.emis.de/cgi-bin/MATH-item?0968.03015
http://www.ams.org/mathscinet-getitem?mr=1715015
http://dx.doi.org/10.1305/ndjfl/1039293068
http://www.emis.de/cgi-bin/MATH-item?1089.03001
http://www.ams.org/mathscinet-getitem?mr=2157847


78 Cruz-Filipe and Ferreira

[3] Burgess, J. P., and A. P. Hazen, “Predicative logic and formal arithmetic,” Notre Dame
Journal of Formal Logic, vol. 39 (1998), pp. 1–17. Zbl 0967.03048. MR 1671801.
DOI 10.1305/ndjfl/1039293018. 73

[4] Buss, S. R., “An introduction to proof theory,” pp. 1–78 in Handbook of Proof
Theory, edited by S. R. Buss, vol. 137 of Studies in Logic and the Foundations
of Mathematics, North-Holland, Amsterdam, 1998. Zbl 0912.03024. MR 1640325.
DOI 10.1016/S0049-237X(98)80016-5. 68

[5] Ferreira, F., and G. Ferreira, “Interpretability in Robinson’s Q,” Bulletin of Symbolic
Logic, vol. 19 (2013), pp. 289–317. Zbl 06247401. MR 3134895. 62

[6] Ferreira, F., and K. F. Wehmeier, “On the consistency of the �11-CA fragment of
Frege’s Grundgesetze,” Journal of Philosophical Logic, vol. 31 (2002), pp. 301–11.
Zbl 1012.03059. MR 1923976. DOI 10.1023/A:1019919403797. 62, 67

[7] Frege, G., Basic Laws of Arithmetic, Vols. I, II, a translation of Grundgesetze der Arith-
metik, translated and edited by P. A. Ebert and M. Rossberg with a foreword by C. Wright,
Oxford University Press, Oxford, 2013. Zbl 1281.03002. MR 3202390. 61

[8] Heck, R. G., Jr., “The consistency of predicative fragments of Frege’s Grundge-
setze der Arithmetik,” History and Philosophy of Logic, vol. 17 (1996), pp. 209–20.
Zbl 0876.03032. MR 1468610. DOI 10.1080/01445349608837265. 62, 73

[9] Parsons, T., “On the consistency of the first-order portion of Frege’s logical system,”
Notre Dame Journal of Formal Logic, vol. 28 (1987), pp. 161–68. Zbl 0637.03005.
MR 0871007. DOI 10.1305/ndjfl/1093636853. 61

[10] Schwichtenberg, H., “Proof theory: Some applications of cut-elimination,” pp. 867–95
in Handbook of Mathematical Logic, edited by J. Barwise, vol. 90 of Studies in Logic
and the Foundations of Mathematics, North-Holland, Amsterdam, 1977. 74, 75, 76, 77

[11] Tait, W. W., “Finitism,” Journal of Philosophy, vol. 78 (1981), pp. 524–46. 62
[12] Takeuti, G., Proof Theory, 2nd edition, vol. 81 of Studies in Logic and the Foundations

of Mathematics, North-Holland, Amsterdam, 1987. Zbl 0609.03019. MR 0882549. 63,
64, 74

[13] Tarski, A., A. Mostowski, and R. M. Robinson, Undecidable Theories, Studies
in Logic and the Foundations of Mathematics, North-Holland, Amsterdam, 1953.
Zbl 0053.00401. MR 0058532. 62

[14] Visser, A., “The predicative Fregean hierarchy,” Annals of Pure and Ap-
plied Logic, vol. 160 (2009), pp. 129–53. Zbl 1172.03005. MR 2541469.
DOI 10.1016/j.apal.2009.02.001. 62

Acknowledgments

The authors’ work was supported by Fundação para a Ciência e a Tecnologia project
grant PTDC/MAT/104716/2008. Ferreira’s work partially supported by Fundação para
a Ciência e a Tecnologia grant PEst-OE/MAT/UI0209/2011 and by a sabbatical leave
from Faculdade de Ciências da Universidade de Lisboa.

Cruz-Filipe
Department of Mathematics and Computer Science
University of Southern Denmark
Denmark
lcfilipe@gmail.com

http://www.emis.de/cgi-bin/MATH-item?0967.03048
http://www.ams.org/mathscinet-getitem?mr=1671801
http://dx.doi.org/10.1305/ndjfl/1039293018
http://www.emis.de/cgi-bin/MATH-item?0912.03024
http://www.ams.org/mathscinet-getitem?mr=1640325
http://dx.doi.org/10.1016/S0049-237X(98)80016-5
http://www.emis.de/cgi-bin/MATH-item?06247401
http://www.ams.org/mathscinet-getitem?mr=3134895
http://www.emis.de/cgi-bin/MATH-item?1012.03059
http://www.ams.org/mathscinet-getitem?mr=1923976
http://dx.doi.org/10.1023/A:1019919403797
http://www.emis.de/cgi-bin/MATH-item?1281.03002
http://www.ams.org/mathscinet-getitem?mr=3202390
http://www.emis.de/cgi-bin/MATH-item?0876.03032
http://www.ams.org/mathscinet-getitem?mr=1468610
http://dx.doi.org/10.1080/01445349608837265
http://www.emis.de/cgi-bin/MATH-item?0637.03005
http://www.ams.org/mathscinet-getitem?mr=0871007
http://dx.doi.org/10.1305/ndjfl/1093636853
http://www.emis.de/cgi-bin/MATH-item?0609.03019
http://www.ams.org/mathscinet-getitem?mr=0882549
http://www.emis.de/cgi-bin/MATH-item?0053.00401
http://www.ams.org/mathscinet-getitem?mr=0058532
http://www.emis.de/cgi-bin/MATH-item?1172.03005
http://www.ams.org/mathscinet-getitem?mr=2541469
http://dx.doi.org/10.1016/j.apal.2009.02.001
mailto:lcfilipe@gmail.com


The Finitistic Consistency of Heck’s Predicative Fregean System 79

Ferreira
Departmento de Matemática
Faculdade de Ciências
Universidade de Lisboa
Portugal
fjferreira@fc.ul.pt
http://www.ciul.ul.pt/~ferferr/

mailto:fjferreira@fc.ul.pt
http://www.ciul.ul.pt/~ferferr/

	1 Introduction
	2 Shoenfield's Theorem Extended
	3 The Extension to Delta11-Comprehension
	4 The Consistency of Heck's Predicative Second-Order System
	5 The Consistency of Heck's Ramified Predicative System
	6 Some Observations, Some Questions
	Appendix: Predicative Cut Elimination
	References
	Acknowledgments
	Author's addresses

