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Notes on Cardinals That Are Characterizable
by a Complete (Scott) Sentence

Ioannis Souldatos

Abstract This is the first part of a study on cardinals that are characterizable by
Scott sentences. Building on previous work of Hjorth, Malitz, and Baumgartner,
we study which cardinals are characterizable by a Scott sentence ', in the sense
that ' characterizes �, if ' has a model of size � but no models of size �C.

We show that the set of cardinals that are characterized by a Scott sentence
is closed under successors, countable unions, and countable products (see The-
orems 3.3 and 4.6 and Corollary 4.8). We also prove that if @˛ is characterized
by a Scott sentence, at least one of @˛ , @˛C1, or .@˛C1;@˛/ is homogeneously
characterizable (see Definitions 1.3 and 1.4 and Theorem 3.19). Based on an
argument of Shelah, we give counterexamples that characterizable cardinals are
not closed under predecessors or cofinalities.

1 Introduction and Known Results

This section contains the basic definitions and background theorems. A similar dis-
cussion also appears in Souldatos [9].

Let the signature of our logic be L. We will consider only countable L. For basic
definitions in infinitary logic L!1;! , the reader can refer to Keisler [4]. In L!1;! we
allow formulas that have negation, universal/existential quantification, and countably
long disjunctions and conjunctions but not countably long quantification.

Definition 1.1 A sentence � 2 L!1;! is called complete if for every sentence
� 2 L!1;! , either � ) � is valid or � ) :� is valid.

Obviously, all complete sentences that hold inside the same model are equivalent
to one another. Scott (in [7]) proved that for every countable model M, there is a
sentence 'M 2 L!1;! , such that if N is a countable model that also satisfies 'M,
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then M and N are isomorphic; 'M is called the Scott sentence for M. From this it
follows that every Scott sentence is a complete sentence.

Compactness fails in L!1;! , and the same is true for the upward Löwenheim–
Skolem theorem. So, it can be the case that a certain sentence has models in cardi-
nality @˛but not in cardinality @˛C1. This motivates the following definition.

Definition 1.2 We say that an L!1;!-sentence ' characterizes @˛ , or that @˛ is
characterizable, if ' has models in all cardinalities up to @˛ but not in cardinal-
ity @˛C1. If ' is the Scott sentence of a countable model (or any other complete
sentence), we say that it completely characterizes @˛ or that @˛ is completely char-
acterizable. Moreover, if ' is the Scott sentence of a countable model M, we also
say that M characterizes @˛ .

Denote by CH !1;! , the set of all completely characterizable cardinals.

Note that the downward Löwenheim–Skolem theorem still holds, which means that
every sentence that characterizes some cardinal @˛ has models in all cardinali-
ties � @˛ .

On the other hand, Hanf [2] was the first to notice that there exists a cardinal,
denote it H .L!1;!/, such that if an L!1;!-sentence has a model of this cardinality,
then it has models of all cardinalities. H .L!1;!/ is called the Hanf number for
L!1;! , and it is equal to Æ!1

. So, CH !1;! � Æ!1
, and from now on we only consider

cardinals below Æ!1
. We will also restrict ourselves to cardinals that are completely

characterizable, and we may refer to them as just characterizable cardinals.
Using a stronger notion of characterizability which we will call homogenous char-

acterizability, Malitz [6] and Baumgartner [1] proved that for all ˛ < !1, Æ˛C1 is
homogeneously characterizable. We give the definition first.

Definition 1.3 If P is a unary predicate symbol, we say that it is completely
homogeneous for the L-structure A, if PA D ¹a j A ˆ P.a/º is infinite and every
permutation of it extends to an automorphism of A.

If � is a cardinal, we will say that � is homogeneously characterizable by .'� ; P�/,
if '� is a complete L!1;!-sentence and P� a unary predicate in the language of '�

such that
� '� does not have models of power greater than �;
� if M is the (unique) countable model of '� , thenP� is infinite and completely

homogeneous for M; and
� there is a model A of '� such that PA

� has cardinality �.
Denote the set of all homogeneously characterizable cardinals by HCH !1;! .

We will also need a refinement of the above definition.

Definition 1.4 If � � � are infinite cardinals, we will say that .�; �/ is homoge-
neously characterizable by .'� ; P�/, if '� is a complete L!1;!-sentence and P� a
unary predicate in the language of '� such that

� '� does not have models of power greater than �;
� in all models of '� the predicate P� has size at most �;
� if M is the (unique) countable model of '� , then P� is infinite and com-

pletely homogeneous for M;
� there is a model A of '� of size �; and
� there is a model B of '� such that PB

�
has cardinality �.
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Observe that we do not require that A and B are the same model; that is, the maxi-
mum cardinality for '� and P� may be attained at different models.

Abusing notation we will write .�; �/ 2 HCH !1;! for the above, and .�; �/ 2

HCH !1;! is equivalent to � 2 HCH !1;! .

Obviously, HCH !1;! � CH !1;! , but the inverse inclusion fails, with @0 being a
counterexample (see Hjorth [3]). It is open whether there is any other counterex-
ample. By Corollary 3.21 it is consistent that all such counterexamples have co-
finality !. Our conjecture is that a characterizable cardinal is not homogeneously
characterizable if and only if it has cofinality ! (see Conjecture 1).

In [6], Malitz proved that under the assumption of the generalized continuum hy-
pothesis (GCH), for every successor ˛ < !1, Æ˛ is homogeneously characterizable.
Baumgartner improved this result in [1] by eliminating the GCH assumption.

Hjorth in [3] extended a result of Knight [5] that @1 is characterizable, to all @˛’s
being characterizable, for ˛ countable.

Breaking the arguments down we can easily get the following generalizations.
Baumgartner’s argument proves that the class of homogeneously characterizable car-
dinals is closed under the powerset operator; that is, if @˛ 2 HCH !1;! , then
2@˛ 2 HCH !1;! (see Theorem 4.1). Hjorth’s argument proves that the class of
characterizable cardinals is closed under successors and countable unions; that is, if
@˛ 2 CH !1;! and ˇ < !1, then @˛Cˇ 2 CH !1;! (see Theorem 3.3). This means
that characterizable cardinals come in clusters of length !1.

Definition 1.5 A cardinal @˛ 2 CH !1;! is called the head of a cluster if we
cannot find ordinals ˇ; 
 such that

� @
 2 CH !1;! ,
� ˇ < !1, and
� @˛ D @
Cˇ .

It is immediate that all characterizable cardinals are of the form @˛Cˇ , where @˛ is
the head of a cluster and ˇ < !1.

Since not all characterizable cardinals are homogeneously characterizable, the
theorems by Hjorth and Baumgartner cannot be combined directly.

Our contributions: Malitz’s proof that 2@0 is (homogeneously) characterizable
generalizes to the following: if � is characterizable, then �! is homogeneously char-
acterizable. Using this theorem, we prove closure under countable products for both
the characterizable and homogeneously characterizable cardinals (see Corollary 4.8).
Moreover, if @

@ˇ
˛ 2 CH !1;! , then for all 
 < !1, @

@ˇ

˛C
 2 HCH !1;! (see Theo-
rem 4.9). In particular if @˛ is the head of a cluster and @

@ˇ
˛ is a cardinal in CH !1;! ,

then the same is true if we replace @˛ with any cardinal in the same cluster. We
then conclude that if C is the smallest set of characterizable cardinals that contains
@0 and is closed under successors, countable unions, countable products, and pow-
ersets, then it is also closed under powers. This is Theorem 4.10. Whence, we see
that the class of characterizable and homogeneously characterizable cardinals may be
much richer than just containing the countable aleph and beth numbers. Of course,
it depends on our set-theoretic universe.

In the last section we prove that characterizable cardinals are not closed under
predecessors and cofinalities.
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2 Structure of the Paper

� In Section 3, most of the theorems either follow, or extend, theorems from
[3]. The main theorem is that for every � 2 CH !1;! , at least one of �, �C or
.�C; �/ is in HCH !1;! . We will use some of the theorems from this section
in Part II too.

� In Section 4 the main theorem is that for � 2 CH !1;! , �! is in HCH !1;! .
The construction behind it is given in Theorem 4.6 and is very similar to the
construction found in [6]. Some consequences of this theorem are proved too.

� Section 5 contains counterexamples that characterizable cardinals are not
closed under predecessors or cofinalities.

� Section 6 contains a few open questions about .M;N /-full structures formu-
lated as questions about functions.

3 Successors

In this section we deal with successors of characterizable cardinals. The main the-
orem is Theorem 3.19: If � 2 CH !1;! , then at least one of the following holds:
� 2 HCH !1;! , �C 2 HCH !1;! , or .�C; �/ 2 HCH !1;! .

The first two theorems are (essentially) in [3], although Hjorth is interested only
in the case where ˛ < !1.

Theorem 3.1 (Hjorth) If @˛ 2 CH !1;! , then @˛C1 2 CH !1;! .

Proof This follows by (the proof of ) [3, Theorem 5.1].

Theorem 3.2 (Hjorth) Whenever @˛n
, n 2 !, is a nondecreasing sequence of

cardinals in CH !1;! , then @� D sup @˛n
is also in CH !1;! .

Proof Take the disjoint union of structures that characterize @˛n
, for all n.

Combining these two theorems we get the following by induction on ˇ.

Theorem 3.3 If @˛ 2 CH !1;! , then @˛Cˇ 2 CH !1;! , for ˇ < !1.

So, characterizable cardinals come into clusters of length !1.
Next, for the sake of completeness, we repeat some definitions from [3], as well

as a few lemmas.

Definition 3.4 Let M;N be structures with languages LM;LN , respectively.
Assume that LM and LN have no common symbols and are entirely relational. Let
S be a ternary relation, let P be a binary relation, and for every k 2 !, let Tk be a
.kC 2/-ary relation, all of which are new symbols and do not appear in LM or LN .
Let L.LM;LN / be the language generated by LM;LN ; S; P; ¹Tk W k 2 !º. Let
an L.LM;LN /-structure A including M;N be .M;N /-neat if

(1) A n .M [ N / is finite;
(2) for any relation symbol R in LM and a 2 A, if A ˆ R.a/, then a 2 M;
(3) similarly for any relation symbol R in LN and a 2 A, if A ˆ R.a/, then

a 2 N ;
(4) if A ˆ Tk.a0; a1;b/, then a0; a1;b 2 A n .M [ N /;
(5) if A ˆ P.a; c/, then a 2 N and c … .M [ N /;
(6) if A ˆ S.a0; c0; c1/, then a 2 M and c0; c1 … .M [ N /;
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(�1M;N ) A satisfies the conjunction of
(�1M;N

a ) 8c0; c1 … .M [ N /9a 2 M S.a; c0; c1/,
(�1M;N

b
) 8c0; c18a0 ¤ a1 S.a0; c0; c1/ ) :S.a1; c0; c1/;

(�2M;N ) A satisfies the conjunction of
(�2M;N

a ) for each k and i < j < k,
8c0; c1; b0; : : : ; bk�1 Tk.c0; c1; b0; : : : ; bk�1/ )

.bi ¤ bj ^ c0 ¤ c1/;
(�2M;N

b
) for each k and permutation � of k,

8c0; c1; b0; : : : ; bk�1 Tk.c0; c1; b0; : : : ; bk�1/ ,

Tk.c1; c0; b�.0/; : : : ; b�.k�1//,
(�2M;N

c ) 8c0; c1; b0; : : : ; bk�18a 2 M
V

i<k Tk.c0; c1; b0; : : : ; bk�1/ )

.S.a; c0; bi / , S.a; c1; bi //,
(�2M;N

d
) 8c0; c1; b0; : : : ; bk�18d8a 2 M .Tk.c0; c1; b0; : : : ; bk�1/V

i<k d ¤ bi / ) .S.a; c0; d / ) :S.a; c1; d //;
(�3M;N ) A satisfies the conjunction of

(�3M;N
a ) 8c … .M [ N /9a 2 NP.a; c/,

(�3M;N
b

) 8c8a0 ¤ a1 :.P.a0; c/ ^ P.a1; c//;
(7) for all c0; c1 2 A n .M [ N / there is k 2 ! and b 2 A with

A ˆ Tk.c0; c1;b/:

Definition 3.5 An L.LM;LN /-structure A including M;N is .M;N /-happy if
for all finite A � A there is some .M;N /-neat substructure B of A with B � A.

Definition 3.6 An L.LM;LN /-structure A is .M;N /-full if
(1) it is .M;N /-happy ;
(2) for all .M;N /-neat F � A and .M;N /-neat H0 � F there is .M;N /-neat

H1 � A with F � H1 and there is i W H0 Š H1 with i jF the identity.

Observation 3.7 It follows from the definition that
(a) if A is .M;N /-full, then

8a 2 N 9c … .M [ N / P.a; c/I

in particular, N gives a partition of A n .M [ N /;
(b) combining (a) and (�3M;N ), jN j � jA n .M [ N /j;
(c) if A is .M;N /-full, c 2 A n .M [ N /, and a 2 M, then there exists some

c0 2 A n .M [ N / such that S.a; c; c0/; in particular, jM j � jA n .M [ N /j

and combining with (b), jM [ N j � jA n .M [ N /j;
(d) fullness is expressible in L!1;!; that is, there exists some L!1;!-sentence �

such that A is a .M;N /-full model, for some M;N if and only if A ˆ �.

The following lemmas are [3, Corollary 5.2, Lemma 5.4, Lemma 5.5].

Lemma 3.8 (Hjorth) Let 
 � � be cardinals, and let � be an infinite cardinal.
If M is a structure of size � and N is a structure of size 
 , then there exists an
.M;N /-full structure of cardinality �.

Lemma 3.9 (Hjorth) Under the same assumptions for M and N , there is no
.M;N /-full structure of size greater than �C.
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Lemma 3.10 (Hjorth) Let jMj D @0, jN j � @0, and let A;B be .M;N /-full
structures of size @0. Then A Š B and in fact there is an isomorphism i W A Š B

with i jM and i jN both equal to the identity.

By inspecting theproof ofLemma3.9, we see that theboundon .M;N /-full structures
is induced by the size of M and that N is not playing any role. This is not surprising
since by Observation 3.7(a), N gives a partition of the elements in A n .M [ N /.
So, we rephrase Lemma 3.9 as follows.

Lemma 3.11 Let � be an infinite cardinal, and let M be a structure of size �. If
A is .M;N /-full for some N , then jA n .M [ N /j � �C.

Corollary 3.12 The assumption on N in Lemma 3.9 can be relaxed to jN j � �C.
In particular, for any N , all .M;N /-full structures (if any) have size at most �C.

Working similarly to [3, Lemma 3.6], we can also prove the following.

Lemma 3.13 Let M;N be models of size @0, let A be the (unique) .M;N /-full
countable structure, and assume that LN D ;, that is, N comes with no structure
on it. Then for any permutation � W N ! N , there exists an automorphism
� W A ! A such that

A ˆ P.a; c/ , P
�
�.a/; �.c/

�
:

In particular, N is completely homogeneous for A (see Definition 1.3).

Proof Let B be a countable model that agrees with A on all relations except for P ;
it holds that

B ˆ P.a; c/ if and only if A ˆ P
�
�.a/; c

�
:

It follows by the definition that B is also .M;N /-full, and using Lemma 3.10, we
find the required � .

Definition 3.14 Let � be a cardinal number (finite or infinite). An .M; �/-neat
structure is an .M;N /-neat structure, where N has size � and LN D ;; that is, there
is no structure on N other than the predicate P given by Definition 3.4. Since the
choice of N is immaterial, we will assume for the rest of the paper that the universe
of N is �.

Similarly define .M; �/-happy and .M; �/-full structures.

The following is immediate from the definition.

Lemma 3.15 Let �; � be infinite cardinals.
(a) If there exists an .M;N /-full structure of size � and jN j D �, then there

exists an .M; �/-full structure of size �.
(b) If there exists an .M; �/-full structure of size �, then there exists an

.M; �/-full structure of size �, for all � � �.

If jMj D �, it is an open question whether for � < �C the existence of some
.M; �/-full structure of size �C implies the existence of some .M; �0/-full structure
of size �C where �0 > �, or even the existence of some .M; �C/-full structure
(necessarily of size �C). Theorem 3.18 gives some necessary conditions for this to
be true.1
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Definition 3.16 Let K be a collection of structures, and let � be an infinite car-
dinal. K has the .< @0; < @0; < �/-disjoint amalgamation property (dap for short),
if for every A;B;C 2 K such that jAj < @0, jBj < @0, jC j < �, A � B;C ,
and C \ B D A, there exists some D 2 K such that D � C and there exists an
embedding i W B ! D such that i jA D id and i ŒB� \ C D A.

Theorem 3.17 Let A be an .M;N /-full structure, and let K be the collection of
all .M; �/-happy substructures of A. The following are equivalent.

(I) K satisfies the .< @0; < @0; < �/-dap.
(II) For all A � A and B � A; A;B .M;N /-neat, there exist (distinct) sub-

structures C˛ � A; ˛ < � and isomorphisms i˛ W B Š C˛ such that
C˛ \ Cˇ D A D C˛ \ B for all ˛ ¤ ˇ and i˛jA D id .

Proof .I / ) .II/ Fix some .M;N /-neat structures A;B as in .II/, and we will
define the C˛’s by induction. Assume that for some ˇ < �, .C˛/˛<ˇ have been
defined. We need to define Cˇ too. Consider C D

S
˛<ˇ C˛ , and apply the

.< @0; < @0; < �/-dap for the triple .A;B; C / to find some .M;N /-happy D � A

such that D � C and there exists an embedding i W B ! D such that i jA D id and
i ŒB� \ C D A. Let Cˇ D i ŒB�, and the result follows.
.II/ ) .I / Let A;B;C be structures in K such that jAj < @0, jBj < @0,

jC j < �, A � B;C , and C \ B D A. Applying .II/ for A;B we can find dis-
tinct substructures C˛ � A; ˛ < � and isomorphisms i˛ W B Š C˛ such that
C˛ \ Cˇ D A D C˛ \B for all ˛ ¤ ˇ and i˛jA D id . Since jC j < � and there are
�-many such C˛’s, there exists some ˛ < � such that C \ C˛ D A. Taking D to be
an .M;N /-happy structure that contains C [ C˛ we finish the proof.

Abusing terminology we will refer to part (II) of Theorem 2.17 as: “for every pair
.A;B/ of .M;N /-neat structures there exist �-many disjoint copies ofB in A,” even
though the C˛’s in the previous theorem share A as their common intersection.

Theorem 3.18 Let M be a model of size �, and let � � �C.
(a) If there exists an .M; �/-full structure of size �C, then there exists an

.M; 1/-full structure of size �C such that the collection K of all its

.M; 1/-happy substructures satisfies the .< @0; < @0; < �/-dap.
(b) If there exists an .M; 1/-full structure of size �C such that the collection K

of all its .M; 1/-happy substructures satisfies the .< @0; < @0; < �C/-dap,
then there exists an .M; �C/-full structure of size �C.

Proof (a) Let A be an .M; �/-full structure of size �C. By Observation 3.7, �
gives a partition of An .M [N /, and we can consider A as an .M; 1/-full structure
too.

A word of caution: For the rest of the proof we will switch between considering A

(and its substructures) as .M; �/-full and .M; 1/-full. Abusing notation we will write
A for both the .M; �/-full and the .M; 1/-full structure, even though .An�/[¹1º is
more appropriate for the latter. Other than that, it should be obvious from the context
what we mean.

We have to prove that the collection K of all .M; 1/-happy substructures of A

satisfies the .< @0; < @0; < �/-dap. Let A;B;C 2 K be such that jAj < @0,
jBj < @0, jC j < �, A � B;C , and C \ B D A. Notice here that since for finite
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structures the notions of .M; �/-happy and .M; �/-neat coincide, A;B are (both)
.M; �/-neat and .M; 1/-neat. Let X be the set®

˛ 2 �
ˇ̌

9x 2 C P.˛; x/
¯
;

where C is seen here as an .M; �/-happy structure. It follows from Observation 3.7
that jX j � jC j < �, and let ˇ be an element in � nX . Define a new structure B 0 that
agrees with B except for P , and let for all x 2 B 0 n A,

B 0
ˆ P.ˇ; x/:

B 0 is also an .M; �/-neat structure, and it extends A. By the definition of
.M; �/-fullness, there exists some .M; �/-neat H � A with A � H and there
exists some i W B 0 Š H with i jA being the identity. It follows that for all x 2 H nA,
P.ˇ; x/ and by the definition of ˇ, for all y 2 C n A, :P.ˇ; y/. Therefore,
C \ H D A. Moreover, if B;B 0;H are seen as .M; 1/-neat structures, i becomes
an isomorphism between B and H and i jA D id . Letting D D C [H , where D is
seen as an .M; 1/-structure too, we conclude part (a).

(b) Let A be an .M; 1/-full structure of size �C, let K be the collection of all
.M; 1/-happy substructures of A, and assume that K satisfies the .< @0; < @0;

< �C/-dap. By Theorem 3.17 (see also the comments after the theorem) for every
pair .A;B/ of .M; 1/-neat structures, there exist �C-many disjoint copies of B in A.

We can decompose A into .A˛/˛<�C such that for every ˛ < �C,
(1) jA˛j < �C and ˛ < ˇ ! A˛ � Aˇ ;
(2) A D

S
˛ A˛;

(3) for ˛ limit, A˛ D
S

˛<ˇ Aˇ ;
(4) for ˛ successor, fix some A � A˛�1 and some B � A, where A;B

are both .M; 1/-neat, and use the .< @0; < @0; < �C/-dap on K to
find the amalgam of .A;B;A˛�1/; let A˛ be that amalgam, and write
A˛ D amalgam.A;B;A˛�1/; and

(5) for all ˛ < �C and for all A � A˛ and B � A, where A;B are both
.M; 1/-neat, there exist �C-many ˇ > ˛ such that Aˇ D amalgam.A;B;
Aˇ�1/.

This decomposition is possible since for all ˛ there are .< �C/-many .M; 1/-neat
A � A˛ and �-many (nonisomorphic) .M; 1/-neat B � A, and we mentioned
already that for every pair .A;B/ there are �C-many disjoint copies of B in A.

Using this decomposition we can make A2 into an .M; �C/-full structure, that
is, assign to every x 2 A n .M [ �C/ some unique k 2 �C such that P.k; x/.
The property that needs work is property (2) of Definition 3.6. Proceed by induction
on ˛, and assume that for all x 2 A˛ there exists k 2 �C such that P.k; x/. We
need to extend P on A˛C1 too. By definition A˛C1 D amalgam.A;B;A˛/, for
some .M; 1/-neat A � A˛ and B � A. In particular, there exists some embedding
i W B ! A˛C1 such that i jA D id and i ŒB�\ A˛ D A. By the inductive hypothesis
and since A � A˛ , A is also an .M; �C/-neat structure, and there are �C-many
different ways to make B into an .M; �C/-neat structure. Fix such a way; that is, fix
a partition of B by elements in �C, and let for all i.b/ 2 i ŒB� n A and all k 2 �C,

P
�
k; i.b/

�
if and only if P.k; b/:

Since by .5/ of the definition of the A˛’s, the same A;B appear �C-many times, we
can ensure that every possible partitioning of B (there are �C-many of them) is used
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at least once. Finally, for all elements (if any) x 2 A˛C1n.A˛ [i ŒB�/ assign P.k; x/
for some arbitrary k 2 �C. It is not hard to see that the definition was cooked in such
a way that A satisfies property (2) of Definition 3.6. and the result follows.

Some observations:
(a) Part (a) of Theorem 3.18 is the converse of part (b) when � D �C. In par-

ticular, there exists an .M; �C/-full structure of size �C if and only if there
exists an .M; 1/-full structure of size �C such that the collection K of all
.M; 1/-happy substructures satisfies the .< @0; < @0; < �

C/-dap.
(b) The theorem holds true if we replace .M; 1/-full by .M; �/-full, where

� � �, in part (a). Similarly, we can replace .M; 1/-full and .M; 1/-happy
by .M; �/-full and .M; �/-happy, respectively, in part (b), where � < �C.

(c) In part (b) we exploited the full strength of the .< @0; < @0; < �
C/-dap. It is

open whether the converse of part (a) holds, that is, whether we can use the
.< @0; < @0; < �/-dap to prove the existence of an .M; �/-full structure of
size �C, where � < �C.

(d) Property (2) in the definition of an .M;N /-full structure (see Defini-
tion 3.6) is equivalent to the .< @0; < @0; < @0/-dap for the class of all
.M;N /-happy structures.

Theorem 3.19 If � 2 CH !1;! , then at least one of the following is the case (see
Definitions 1.3 and 1.4):

1. �C 2 HCH !1;! , or
2. .�C; �/ 2 HCH !1;! , or
3. � 2 HCH !1;! .

Proof Let ' be a complete sentence that witnesses � 2 CH !1;! . In partic-
ular, if M is any model of ', jMj � � and by Corollary 3.12 there are no
.M;N /-full structures of size at least �CC. On the other hand for any M ˆ '

such that jMj D � and any N of size �, there exists an .M;N /-full structure of size
� by Lemma 3.8.

Let M0 be the (unique) countable model of ', let N0 be a model of size @0 such
that L.N0/ D ;, and let A be a .M0;N0/-full structure of size @0. By Lemma 3.10,
A is unique (up to isomorphism), and let  be its Scott sentence. From Lemma 3.13,
N0 is completely homogeneous for A. By Observation 3.7(d), any model of  is
.M; �/-full for some M model of ' and some @0 � � � �C. The proof splits into
three cases.
Case I. There is no .M;N /-full structure of size �C, where M is a model of '.

We observed above that the existence of .M;N /-full structures of size � follows
by Lemma 3.8. Therefore  witnesses that � 2 HCH !1;! .
Case II. There exists an .M; �C/-full structure of size �C.

In this case  witnesses that �C 2 HCH !1;! .
Case III. There exists an .M; �/-full structure of size �C with � � � but no
.M; �C/-full structure of size �C.

In this case  witnesses that .�C; �/ 2 HCH !1;! since the homogeneous part
of the model that corresponds to N0 cannot have size �C, while by Lemma 3.8, it
can have size equal to �.
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Notes (a) Although Cases I, II, and III in the proof of Theorem 3.19 are exclusive
to one another, (1), (2), and (3) in the statement of Theorem 3.19 need not be exclu-
sive to one another. (b) It seems to the author that for a particular � it is independent
of ZFC whether Case I or Case II or Case III holds, but we do not have a proof for
that.
Lemma 3.20 Let � be an infinite cardinal, and let M be a model of size �. If
�! D �, then there is no .M;N /-full structure of size �C.3

Proof Assume that there is an A that is .M;N /-full and has size �C. Then for
every a 2 A n .M [ N /, let fa be the function given by

fa.b/ D m if and only if S.m; a; b/:

This defines a family of functions F D ¹faja 2 A n .M [ N /º that has size �C.
Now, let A0 � A n M be a subset of cardinality !, and consider the restrictions
fajA0

. By assumption there are (�! D �)-many possible distinct such func-
tions. Since jF j D �C, there exists a subset X � F of size �C such that for all
fa; fb 2 X , fajA0 D fbjA0. On the other hand, for any a; b 2 A n .M [ N /,
by (�2M;N ) there exist only finitely many b0; b1; : : : ; bk�1 such that for any
m 2 M, S.m; a; bi / , S.m; b; bi /. In particular, fa.x/ D fb.x/ if and only if
x 2 ¹b0; b1; : : : ; bk�1º, which contradicts the conclusion that any two fa ¤ fb 2 X

agree on A0, a set of size !.

Theorem 3.21 If � 2 CH !1;! and �! D �, then � 2 HCH !1;! .
Proof The theorem is proved by the previous lemma and Case I of (the proof of )
Theorem 3.19.

It is consistent that all limit cardinals of uncountable cofinality satisfy �! D �

(under GCH for instance). In this case, by Theorem 3.21, if � 2 CH !1;! and
cf .�/ > !, then � 2 HCH !1;! . Hence, it is consistent that infinite cardinal �
is in CH !1;! n HCH !1;! only if � has cofinality !.
Conjecture 1 For an infinite cardinal �, � 2 CH !1;! n HCH !1;! if and only if
cf .�/ D !.

4 Powers

Here we investigate powers of the form �� , where �; � are characterizable. The main
theorem is Theorem 4.6: If � is in CH !1;! , then �! is in HCH !1;! . The idea
behind the construction is similar to Malitz’s proof that 2! 2 HCH !1;! in [6].
Theorem 4.1 (Baumgartner [1]) If � 2 HCH !1;! , then 2� 2 HCH !1;! .
In particular, if � � � and � 2 HCH !1;! , then �� 2 HCH !1;! .

We can also adapt the proof of Theorem 4.1 to prove the following.
Theorem 4.2 If �; � are infinite cardinals such that � � � � 2� and .�; �/ 2

HCH !1;! , then 2� 2 HCH !1;! .
An easy induction gives the following.
Lemma 4.3 For every ˛ < !1, there is a sentence �˛ in a language that contains
the binary symbol < such that

M ˆ �˛ if and only if .M I<M / Š .˛I 2/:

The first goal is to prove the following theorem.
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Theorem 4.4 If � 2 HCH !1;! , then �! 2 CH !1;! .

Proof First note that � is homogeneously characterizable, while �! is just charac-
terizable. Since � 2 HCH !1;! , there exists a complete sentence '� in a language
that contains a predicate symbol P� such that .'�; P�/ homogeneously character-
ize � (see Definition 1.3). That is,

� '� does not have models of power greater than �;
� if M is the (unique) countable model of '�, then P� is infinite and com-

pletely homogeneous for M; and
� there is a model A of '� such that PA

�
has cardinality �.

Now let L be the signature that contains all symbols in '� as well as new symbols
K.�/, F.�/, V.�; �/, R.�; �/, E.�; �; �/, and <. The idea is to build a rooted tree of height
! where at every level we allow at most �-splitting. V.�; �/ captures the set of vertices,
with V.n; �/ being the set of vertices of height n < !. For vertices x; y, R.x; y/
holds if and only if x and y are adjacent vertices, with y being a descendant of x
(i.e., there is some n such that V.n; x/, V.n C 1; y/, and x; y are connected). F.�/
will capture the set of maximal branches through the tree. If F.f /, we will think
of f as a function with domain ! and f .n/ will be in V.n; �/. E.f; n; y/ indicates
that f .n/ D y, and we will just write f .n/ D y for short.

The difficulty is to express �-splitting, and this is where we use the full power
of the fact that � is in HCH !1;! . To every vertex y, we assign a structure
My D M.y; �/, and we stipulate that My together with the set of all the descendants
of y satisfy '�. Thus, they must have size at most �. It takes some argument to prove
that this yields a complete sentence (see Claim 3).

Consider the conjunction of the following sentences.
(1) .KI</ Š .!I 2/. This we can say by using Lemma 4.3.

So, we will freely write 0; 1; : : : ; n; nC 1; : : : for the elements of K.
(2) Let V D

S
n2K V.n; �/. Then K [ F [ V [y2V M.y; �/ partition the whole

space. All of them are infinite, except V.0; �/.
(3) (a) V.n; y/ implies that n 2 K. Write y 2 V.n/ for V.n; y/.

(b) For n ¤ m 2 K, V.n/ \ V.m/ D ;.
(c) V.0/ D ¹aº, where a can be anything. This will be the root of the tree.

(4) (a) If F.f /, we will write f 2 F .
(b) If E.f; n; y/, then f 2 F , n 2 K and y 2 V.n/. We will write

f .n/ D y instead of E.f; n; y/.
(c) We have 8n 2 K8f 2 F 9Šy 2 V.n/; f .n/ D y. That is, every f 2 F

is a function with domain ! and such that f .n/ 2 V.n/, for every n.
(d) We have 8f ¤ g 2 F 9n 2 K, f .n/ ¤ g.n/.

(5) (a) We have 8y; z.R.y; z/ ) 9Šn 2 K.y 2 V.n/ ^ z 2 V.nC 1///.
(b) For all y, the set ¹z j R.y; z/º is infinite.
(c) We have 8n 2 K8z 2 V.n C 1/9ŠyR.y; z/. By (a), this y must be in

V.n/.
(d) We have 8y1 ¤ y28z.R.y1; z/ ) :R.y2; z//, that is, R.y1; �/ and

R.y2; �/ are disjoint.
(e) We have 8n 2 K8f 2 F.R.f .n/; f .nC 1///.
(f ) We have 8n 2 K8y0; y1; : : : ; yn; .y0 D a

V
i�nR.yi ; yiC1// )

91f 2 F.
V

i�n f .i/ D yi //, that is, every finite “branch” can be
extended to a maximal branch in infinitely many ways.
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(6) (a) We have 8y 2 V M.y; �/ [R.y; �/ ˆ '�.
(b) We have 8y 2 V 8x 2 M.y; �/ [R.y; �/, .P�.x/ , R.y; x//.

The above two sentences express the fact that M.y; �/ together with
R.y; �/ satisfy '� and R.y; �/ is the part of the model given by the ho-
mogeneous predicate P�. This restricts the size of R.y; �/ to at most �.
Since R.y; �/ is the homogeneous part of the model, in the countable
case, every permutation of it can be extended to an automorphism of the
whole model. We will use this in what follows.

The goal now is to show that a structure that satisfies (1)–(6) characterizes �! .

Claim 1 If M ˆ (1)–(6), then jMj � �! .

Proof First we prove by induction on n 2 K that jV.n/j � �n.
For n D 0, jV.0/j D j¹aºj D 1 D �0. Assume that jV.n/j � �n, and let

z 2 V.nC 1/. By 5(a), there is a unique y 2 V.n/ such that R.y; z/. So,

V.nC 1/ D

[
y2V.n/

R.y; �/:

By 5(d), all these R.y; �/ are disjoint, and by (6) all of them have size at most �.
Thus, ˇ̌

V.nC 1/
ˇ̌

D

X
y2V.n/

ˇ̌
R.y; �/

ˇ̌
�

X
y2V.n/

� D
ˇ̌
V.n/

ˇ̌
� � � �nC1;

as we want. Therefore j
S

n2K V.n/j � �<! D �.
Since, for every f 2 F , f is a function from K to

S
n2K V.n/, jF j � �! . Also,

for every y, M.y; �/ has size at most �. So,

jMj � jKj C jF j C

ˇ̌̌ [
n2K

V.n/
ˇ̌̌
C

ˇ̌̌[
y

M.y; �/
ˇ̌̌

� ! C �!
C �C � � � D �! :

Claim 2 There is M ˆ (1)–(6) and jMj D �! .

Proof Take the full �-tree .T;R/ of height !, with f 2 F being its maximal
branches. The rest follows.

Claim 3 If M1;M2 are both countable models of (1)–(6), then there is an iso-
morphism i W M1 Š M2.

Proof First of all we observe that .K.M1/I</ Š .!I 2/ Š .K.M2/I</, so that
we do not have to worry about K.

Subclaim 1 For all n 2 K and for all y 2 V.n/, there is f 2 F with f .n/ D y.

Proof By 5(c) and by induction on n, if y 2 V.n/, there is a (unique) sequence
y0 D a; y1; : : : ; yn�1; yn D y such that

V
i<nR.yi ; yiC1/. By 5(f ) there is some

f that “extends” this sequence; that is, for all i � n, f .i/ D yi . In particular,
f .n/ D y.

Subclaim 2 For all f1 ¤ f2 2 F , there exists n > 0 such that 8m < n.f1.m/ D

f2.m// and 8m0 � n.f1.m
0/ ¤ f2.m

0//. We call this n the splitting point of f1; f2,
n D s:p.f1; f2/.
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Proof Since f1 ¤ f2, there exists n0 so that f1.n
0/ ¤ f2.n

0/. Let n be the
least such. By 3(c), n > 0. Assume also that there exists m0 > n such that
f1.m

0/ D f2.m
0/. Again, let m be the least such. Then, y1 D f1.m � 1/ ¤ y2 D

f2.m�1/. Therefore, by 5(d),R.y1; �/\R.y2; �/ D ;, and by 5(e), f1.m/ 2 R.y1; �/

and f2.m/ 2 R.y2; �/ with f1.m/ D f2.m/, a contradiction.

We will, now, define i W M1 Š M2 by induction, so that, if F.M1/ D ¹f1; : : : ;

fn; : : :º and F.M2/ D ¹g1; : : : ; gn; : : :º, then fn (together with all the values
y D fn.m/) is included in the domain of i at step 2n, while at step 2nC 1 we make
sure to include gn (and all the corresponding values). We do this in a way that the
relations R; V and the structures M.y; �/ are preserved.
Step 2n: Say that i has been defined on

X D
®
f1; : : : ; fn�1; i

�1.g1/; : : : ; i
�1.gn�1/

¯
so far and that fn is not in X . Let f 2 X such that

m D s:p.f; fn/ � s:p.f 0; fn/; for all f 0 2 X .

By inductive assumption, all the images (under i ) of the values y0 D f .0/ D fn.0/;

: : : ; ym�1 D f .m � 1/ D fn.m � 1/ have already been defined. Let zj D i.yj /,
for j < m. In M2 it holds by 5(e) that

V
j <m�1R.zj ; zj C1/. By 5(b), there are

infinitely many values in R.zm�1; �/. Choose one of them, zm, that is different than
all of i.f1/.m/; : : : ; i.fn�1/.m/ and g1.m/; : : : ; gn�1.m/, and set i.fn.m// D zm.
By 5(f ), there is a function g 2 F.M2/ that “extends” .z0; : : : ; zm/. Let i.fn/ D g,
and for m0 > m, let i.fn.m

0// D g.m0/. Obviously g is different than all of
i.f1/; : : : ; i.fn�1/ and g1; : : : ; gn�1, and by 4(c) and 5, R; V are preserved.
Step 2nC 1: Similarly.

Eventually, we will have included in the domain of i the whole F.M1/ and in the
range of i all of F.M2/. By Subclaim 1, this also means that V.n;M1/; V .n;M2/

are included in the domain and the range of i , respectively. As we mentioned, R and
V are preserved and i becomes an isomorphism given that we can extend i on each
of the structures M.y; �/.

To this end, let y 2 M1 and z D i.y/. By 6(a),M.y;M1/[R.y;M1/ ˆ '� and
M.z;M2/[R.z;M2/ ˆ '�. By the completeness assumption on '� and since both
M1;M2 are countable, there is j W M.y;M1/[R.y;M1/ Š M.z;M2/[R.z;M2/.
The problem is that i; j may not agree on R.y;M1/. In either case, there exists a
permutation � of R.y;M1/ such that for all y0 2 R.y;M1/,

j
�
�.y0/

�
D i.y0/:

By P� being a homogeneous predicate, every such � will induce an automorphism
of M.y;M1/ [R.y;M1/, call it j� . Then for every y0 2 R.y;M1/,

j
�
j�.y

0/
�

D j
�
�.y0/

�
D i.y0/:

So, we can extend i on the whole of M.y;M1/ [R.y;M1/ by

i.y0/ D j.j�.y
0/:

Since j is onto M.z;M2/ [R.z;M2/, we conclude that i W M1 Š M2.

The three previous claims complete the proof.
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Note Obviously, if we could characterize !1 by an L!1;!-sentence, then we
would also get characterizability of �!1 , etc. But this is not possible. The inabil-
ity to characterize well-founded linear orderings also makes the obvious attempt to
characterize �� fail.

Theorem 4.5 If �! > � and .�C; �/ 2 HCH !1;! (see Definition 1.4), then
�! 2 CH !1;! .

Proof Work as in the proof of Theorem 4.4; but Claim 1 is now slightly different.
Under the new assumption, for every vertex y, My D M.y; �/ may have size up to
�C. On the other hand, by the definition of .�C; �/ 2 HCH !1;! , the homogeneous
part has size at most �. In particular, for every y, R.y; �/ has size at most � and the
�-splitting is not affected. Since �! � �C, Claim 1 holds true.

We can actually do a bit better.

Theorem 4.6 If � 2 CH !1;! , then �! 2 HCH !1;! .

Proof First observe that � is now characterizable and that �! is homogeneous char-
acterizable. So, the assumption of the theorem is slightly weaker than Theorem 4.4,
and the conclusion is slightly stronger.

Applying Theorem 3.21 to �! , we conclude that �! 2 HCH !1;! if and only if
�! 2 CH !1;! . So, it suffices to prove that �! 2 CH !1;! . If � is in HCH !1;! ,
then we can use Theorem 4.4. So, assume that � is not in HCH !1;! for the rest of
the proof. In particular, by Theorem 3.21, �! > �. We split the proof into two cases
given by cases (1) and (2) of Theorem 3.19:

(1) �C 2 HCH !1;! : by the Hausdorff formula,

.�C/! D �C
� �!

D �!

and use Theorem 4.4.
(2) .�C; �/ 2 HCH !1;! : then use Theorem 4.5.

Corollary 4.7 If � is an infinite cardinal and �� 2 CH !1;! , then �� 2

HCH !1;! .

Corollary 4.8 CH !1;! and HCH !1;! are both closed under countable prod-
ucts.

Proof We have Y
n

@˛n
D

�
sup

n
@˛n

�@0 :

Theorem 4.9 If @
@ˇ
˛ 2 CH !1;! , then for all 
 < !1,

@
@ˇ

˛C
 2 HCH !1;! ;

that is, if one power of @˛ is in CH !1;! , the same is true for the powers of a whole
cluster of cardinals.

Proof First observe that by Corollary 4.7, if @
@ˇ

˛C
 is in CH !1;! , then it is also
in HCH !1;! . So, we do not worry about homogeneity. We proceed by induction
on 
 .

If 
 D 
1 C 1, a successor ordinal, then by the Hausdorff formula again

@
@ˇ

˛C
1C1 D @˛C
1C1 � @
@ˇ

˛C
1
:
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The second factor is in HCH !1;! by inductive hypothesis and if @
@ˇ

˛C
1C1 D @
@ˇ

˛C
1
,

we can conclude that @
@ˇ

˛C
1C1 is also in HCH !1;! . If on the other hand
@

@ˇ

˛C
1C1 > @
@ˇ

˛C
1
, then it must be the case that @

@ˇ

˛C
1C1 D @˛C
1C1 and
@

@ˇ

˛C
1
D @˛C
1

. By the inductive hypothesis, @
@ˇ

˛C
1
is in CH !1;! , and the same is

true for @˛C
1
. We conclude that @˛C
1C1 2 CH !1;! by Theorem 3.1.

If 
 D �, 
 ¤ 0, a countable limit ordinal, then cf .˛ C 
/ D cf .
/ D ! and
@˛C
 D supn @˛C
n

, for an increasing sequence of 
n’s. Then,

@
@ˇ

˛C
 D
�
lim

n
@

@ˇ

˛C
n

�cf .˛C
/
D

�
lim

n
@

@ˇ

˛C
n

�@0
D

Y
n

�
@

@ˇ

˛C
n

�
2 HCH !1;! ;

by the inductive assumption and Corollary 4.8.

In particular, for ˛ D 0 we conclude that

@
@ˇ

 2 HCH !1;! for all 
 < !1 if and only if 2@ˇ 2 HCH !1;! :

So, it is natural to ask the following.

Question 1 When does it hold that 2@ˇ 2 HCH !1;!? In Part II we will concern
ourselves with exactly this question. The importance of closure under the powerset
operation is also stressed by the next theorem.

Theorem 4.10 If C is the smallest set of characterizable cardinals that contains
@0 and is closed under successors, countable unions, countable products, and pow-
erset, then it is also closed under powers.

Proof First observe that the following holds.

Claim 4 If @
@ˇ
˛ 2 C , then for all 
 < !1, @

@ˇ

˛C
 2 C .

Proof This is proved as in the proof of Theorem 4.9 with the obvious modifica-
tions.

Recall from Definition 1.5 that @˛ is the head of a cluster in C if there are no ˇ; 

such that @ˇ 2 C , 
 < !1, and @˛ D @ˇC
 .

So, it suffices to prove that if @˛;@ˇ 2 C , then @
@ˇ
˛ 2 C , for all @˛-heads of

clusters.
If @˛ � @ˇ , then @

@ˇ
˛ D 2@ˇ 2 C . So, assume that @˛ > @ˇ � @0, and proceed

by induction on ˛.
Since @˛ is the head of a cluster and by the way that C was defined, @˛ is either

a countable union, or a countable product of smaller cardinals, or the powerset of a
smaller cardinal.
Case I. We have @˛ D supn @˛n

.
Then

@
@ˇ
˛ D

�
lim

n
@

@ˇ
˛n

�!
:

For every n, @
@ˇ
˛n

2 C by the inductive hypothesis, and the result follows by closure
under countable products.
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Case II. We have @˛ D
Q

n @˛n
D .supn @˛n

/@0 .
If @˛ D supn @˛n

, then we fall under Case I. So, assume that @˛ > supn @˛n
.

Then
@

@ˇ
˛ D

�
sup

n
@˛n

�@ˇ ;

and the result follows.
Case III. We have @˛ D 2@
 , some @
 2 C .

Then @
@ˇ
˛ D 2@
 �@ˇ .

Question 2 How much of the characterizable cardinals does C capture?

If we have GCH, then obviously it captures everything. But are there any models
of ZFC which contain cardinals outside of C? We do not know the answer to this
question. If the answer is negative, that is, C D CH !1;! , then we can tell all
characterizable cardinals of a model quite easily. If the answer is positive, that is,
C ¤ CH !1;! , then there exist cardinals outside of C and it would be interesting to
find such examples.

The question whether C D CH !1;! is also closely related to the following con-
jecture of Shelah.

Conjecture 2 (Shelah) If @!1
< 2@0 , then every L!1;!-sentence with a model in

power @!1
has a model in power 2@0 .

If the above conjecture is true and @!1
< 2@0 , then there is no characterizable cardi-

nal � such that @!1
� � < 2@0 .

5 Some Counterexamples

We provide some counterexamples to show that � 2 CH !1;! does not imply
cf .�/ 2 CH !1;! , and �C 2 CH !1;! does not imply � 2 CH !1;! .

Theorem 5.1 CH !1;! is not closed under predecessor or cofinality.

Proof We have to construct a counterexample. Shelah in [8] constructed a model
where 2@0 > @!1

and where no cardinal � with @!1
� � < 2@0 is characterizable.

We say that in this case @!1
is the local Hanf number below 2@0 . This was done by

adding @!1
-many Cohen reals to a ground model that satisfies GCH.

If we demand a little bit more here, we can take for instance that 2@0 D @!1C1.
Then @!1C1 is characterizable, while @!1

is not. This proves the first part of the
theorem.

Now, if we let 2@0 D @!!1C1
, then we get

cf .2@0/ D cf .@!!1C1
/ D @!1C1;

which, again, is not a characterizable cardinal. This gives the second part of the
theorem.

6 Reformulations and Open Questions

In this section we formulate a few open questions about .M;N /-full structures in
terms of functions.

Lemma 6.1 Let �; �; � be cardinals with � � �C, and let M be a model of size �.
The following are equivalent.
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(1) There exists an .M; �/-full structure A of size �.
(2) There exists a function f W �2 n ¹.˛; ˛/ j ˛ < �º ! �, and there exists a

coloring function c W � ! � such that
(a) for every ˛; ˇ < �, f .˛; ˇ/ D f .ˇ; ˛/,
(b) for every ˛; ˇ < �, the set T .˛; ˇ/ D ¹
 < � j f .˛; 
/ D f .ˇ; 
/º is

finite,
(c) for every finite X � �, there exists some finite Y � � which is closed

under T ; that is, for all ˛; ˇ 2 Y , T .˛; ˇ/ 2 Y ,
(d) for every finite Y;Z � � with Y � Z and for every g W Z2 n ¹.˛; ˛/ j

˛ 2 Zº such that g.y1; y2/ D f .y1; y2/, for all y1 ¤ y2 2 Y , there
exists a one-to-one mapping i W Z ! � such that i jY D id and for all
z1 ¤ z2 2 Z, g.z1; z2/ D f .i.z1/; i.z2//, and

(e) (d) holds true even ifZ (and Y ) is colored; that is, there exists a coloring
function d W Z ! � such that d.y/ D c.y/ for all y 2 Y , and we
require now that i has to satisfy the extra assumption for all z 2 Z,
d.z/ D c.i.z//.

Proof 4Let A be an .M; �/-full structure of size �. Since jMj D �, without loss
of generality we can assume that the universe of M is actually �, and we identify all
m 2 M with elements of �. By Observation 3.7(c), jA n .M [ N /j D �, and we
will identify all elements of A n .M [ N / with elements of �. Let

f .˛; ˇ/ D 
 if and only if A ˆ S.
; ˛; ˇ/

and
c.˛/ D ˇ if and only if A ˆ P.ˇ; ˛/:

It is not hard to see that under this definition 2(b) follows from .�2M;N /, 2(c) is a
reformulation of .M; �/-happiness, and 2(d) and 2(e) are reformulations of part (2)
of the definition of .M; �/-fullness (see Definition 3.6).

For the inverse direction we work similarly.

Notes

(i) It follows from 2(d) that f is onto �. Otherwise, let ˛ 2 � n range.f /, and
define a new finite function g on some finite Z such that g.z1; z2/ D ˛,
for some z1 ¤ z2 2 Z. By 2(d), there exists some i W Z ! � such that
˛ D g.z1; z2/ D f .i.z1/; i.z2//, a contradiction.

(ii) In particular, f being onto � implies that � � �.
(iii) Working similarly to (i) and using 2(e), we can prove that the coloring func-

tion c is onto �. In particular, � � �. The details are left to the reader.

Definition 6.2 A function that satisfies 2(a)–2(e) of Lemma 6.1 will be called a
.�; �; �/-full function.

If f is a .�; �; �/-full function, then by Lemma 3.9 we infer that � � �C. Combin-
ing with the fact that � � � we remain with only two possibilities: either � D � or
� D �C.

Open Question 1 Given an infinite cardinal � and � � �C, find the maximum �

such that there exists a .�; �; �/-full function.
As we mentioned this maximum � is either � or �C, and we have examples for

either case. If �! D �, then by Lemma 3.20, there are no .�; �; �C/-full func-
tions. In particular, the maximum � equals �. If � D @0, then it follows from [3,



550 Ioannis Souldatos

Corollary 3.2] that there exists an .@0;@0;@1/-full function, which implies that the
maximum � is @1 in this case.

Open Question 2 Does the existence of a .�; 1; �C/-full function imply the exis-
tence of a .�; �; �C/-full function for some infinite � � �C? The cases � D � and
� D �C are the most interesting ones.

Notes

1. In the last section, this question appears reformulated as Open Question 2.

2. A here actually refers to .A n ¹1º/ [ �C, but as in part (a), we will just write A for
convenience.

3. The idea of this proof was communicated to the author by professor Magidor.

4. The way we define f in this proof is similar to the way we defined the family of functions
F in the proof of Lemma 3.20.

5. Professor Hjorth died unexpectedly in January 2011.
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