
Notre Dame Journal of Formal Logic
Volume 55, Number 2, 2014

A Bounded Jump for the Bounded Turing Degrees

Bernard Anderson and Barbara Csima

Abstract We define the bounded jump of A by Ab D ¹x 2 ! j 9i �

xŒ'i .x/ # ^ˆ
A��'i .x/
x .x/ #�º and let Anb denote the nth bounded jump.

We demonstrate several properties of the bounded jump, including the fact
that it is strictly increasing and order-preserving on the bounded Turing (bT)
degrees (also known as the weak truth-table degrees). We show that the
bounded jump is related to the Ershov hierarchy. Indeed, for n � 2 we have
X �bT ;

nb ” X is !n-c.e. ” X �1 ;
nb , extending the classical

result that X �bT ;0 ” X is !-c.e. Finally, we prove that the analogue of
Shoenfield inversion holds for the bounded jump on the bounded Turing degrees.
That is, for every X such that ;b �bT X �bT ;

2b , there is a Y �bT ;b such
that Y b �bT X .

1 Introduction

In computability theory, we are interested in comparing the relative computational
complexities of infinite sets of natural numbers. There are many ways of doing this,
and which method is used often depends on the purpose of the study, or how fine
a comparison is desired. Two sets of the same computational complexity (X � Y

and Y � X) are said to be in the same degree. The computable sets form the lowest
degree for all of the reducibilities we consider here.

Some of the most natural reducibilities are m-reducibility and 1-reducibility. Re-
call that a set A is m-reducible (1-reducible) to a set B if there is a computable
(injective) function f such that for all x, x 2 A iff f .x/ 2 B . The major failing of
these reducibilities is that a set need not be reducible to its complement.

The most commonly studied reducibility is that of Turing reducibility, where A is
Turing reducible to B if there is a program that, with reference to an infinite oracle
tape containing B , computes A. Though each computation of a Turing reduction

Received December 14, 2011; accepted October 2, 2012
2010 Mathematics Subject Classification: Primary 03D30
Keywords: bounded jump, jump, bounded Turing degrees, bT -degrees, wtt degrees
© 2014 by University of Notre Dame 10.1215/00294527-2420660

245

http://www.nd.edu/~ndjfl/
http://www.ams.org/mathscinet/msc/msc2010.html
http://www.nd.edu
http://dx.doi.org/10.1215/00294527-2420660

246 Anderson and Csima

views only finitely much of the oracle tape, there is no computable bound on how
much of the tape can be viewed in a computation.

Many natural Turing reductions have the property that the use of the oracle is
bounded by a computable function. We will refer to such reductions as bounded
Turing reductions and writeA �bT B . This is also commonly known in the literature
as weak truth-table (wtt) reducibility.

A truth-table reduction is a pair of computable functions f and g, such that, for
each x, f .x/ supplies a finite list x1; : : : ; xn of positions of the oracle, and g.x/ pro-
vides a truth table on n variables (a map 2n ! 2). A set A is said to be truth-table
reducible to B if there is a truth-table reduction f; g such that, for every x, x 2 A iff
the row of the truth table g obtained by viewing B on the positions x1; : : : ; xn has
value 1. It is easy to see that A �t t B iff A is Turing reducible to B via a functional
that is total on all oracles. Note that if a functional is total on all oracles, then there
is a computable bound on the use for each input. Bounded Turing reducibility is
weaker than t t -reducibility, and this is where the name “weak truth-table reducibil-
ity” originated. However, since the weakening has nothing to do with the truth table,
we follow the notation of bT , as used in Soare [16], [15].

The halting set is the first natural example of a noncomputable set. The Turing
jump operator works by relativizing the halting set to other oracles. Basic proper-
ties of the Turing jump include that it is strictly increasing with respect to Turing
reducibility and that it maps a single Turing degree into a single 1-degree. This latter
property shows that the Turing jump is a well-defined operator on all of the degree
structures we have mentioned so far.

The strictly increasing property of the Turing jump implies that the Turing jump of
any set must compute the halting set. There are a variety of “jump inversion” results
that show that the range of the Turing jump is maximal (with respect to a restricted
domain). Friedberg jump inversion states that for every X �T ;0 there exists A with
A0 �T X �T A˚ ;

0. Shoenfield [14] demonstrated that for every †2-set X �T ;0
there is a set Y �T ;0 such that Y 0 �T X .

What about jump inversion for strong reducibilities? Mohrherr [9] showed that
for any X �t t ;0, there exists A with A0 � X . Anderson [1] showed that the full
analogue of Friedberg jump inversion holds: for every X �t t ;0, there exists A with
A0 �t t X �t t A ˚ ;

0. Both Mohrherr’s and Anderson’s proofs work with bT in
place of t t . However, Csima, Downey, and Ng [5] have proved that the analogue
of Shoenfield jump inversion fails to hold for the t t and bounded Turing degrees.
Indeed, they showed that there is a †2-set C >t t ;

0 such that for every D �T ;0
we haveD0 6�bT C . The proof exploits the fact that the Turing jump is defined with
respect to Turing (and not bounded Turing) reducibilities.

Our goal for this paper was to develop a jump operator for the bounded Turing
degrees. We wanted this jump to be bounded in its use of the oracle and to hold
all of the properties usually associated with a jump operator (in particular, strictly
increasing and order-preserving). In this paper, we will define such a jump, examine
its properties, and show that it is distinct from already used operators. We will prove
that Shoenfield inversion holds for the bounded Turing degrees with this jump.

The sets that are computable from the nth Turing jump of ; have a very nice
characterization—they are exactly the �0nC1-sets. The nth bounded jumps of ; also

A Bounded Jump for the Bounded Turing Degrees 247

have a natural characterization. In this case, the connection is with the Ershov hier-
archy. For n � 2, the sets that can be bT -computed from (indeed, are t t or 1-below)
the nth iterate of the bounded jump are exactly the !n-c.e. sets.

There have been other jumps for strong reducibilities introduced in the past, and
we discuss some of these in Section 7. It has recently come to our attention that
Coles, Downey, and Laforte [3] had studied an operator similar to our bounded jump
(defined asAb1 in this paper), but unfortunately no written record of their work exists
beyond a proof that their jump is strictly increasing.

2 Notation

We mainly follow the standard notation for computability theory as found in Cooper
[4] and Soare [16], [15]. We let '0; '1; '2; : : : be an effective enumeration of the
partial computable functions and let ˆ0; ˆ1; ˆ2; : : : be an effective enumeration of
the Turing functionals. We assume that our enumerations are acceptable.

We let ;0 D ¹x j 'x.x/ #º; and for an arbitrary set A, let A0 D ¹x j ˆAx .x/ #º.
In the case when the enumeration ¹'nºn2! is such that 'n D ˆ;n, then there is
no confusion with the two definitions of ;0. But under any enumeration, the two
definitions are 1-equivalent.

For a set A, we let A �� x D ¹n 2 A j n � xº. We follow an expression
with a stage number in brackets (i.e., Œs�) to indicate that the stage number applies to
everything in the expression that is indexed by stage.

For sets A and B we write that A �bT B and say that A is bounded Tur-
ing reducible to B , if there exist i and j such that 'j is total and for all x,
A.x/ D ˆ

B��'j .x/

i .x/ #. This agrees with the informal definition of bT given in the
introduction.

3 The Bounded Jump

Definition 1 Given a set A, we define the bounded jump

Ab D
®
x 2 ! j 9i � x

�
'i .x/ # ^ˆ

A��'i .x/
x .x/ #

�¯
:

We let Anb denote the nth bounded jump.

Remark 3.1 We have ;b �1 ;0.

This holds since bounding the use of an empty oracle has no effect. We will use ;b
and ;0 interchangeably from now on.

We consider a more general definition of the bounded jump.

Definition 2 We have Ab0 D ¹he; i; j i 2 ! j 'i .j / # ^ˆA��'i .j /
e .j / #º.

We show that, up to truth-table equivalence, Ab and Ab0 are the same. We will at
times identify one with the other.

Remark 3.2 For any set A we have Ab �t t Ab0 .

This is true since x 2 Ab ” 9i � xŒhx; i; xi 2 Ab0 �.

Theorem 3.3 For any set A we have Ab0 �1 Ab .

248 Anderson and Csima

Proof We define a computable and injective function k by 'k.i;j /.x/ D 'i .j /. We
then define the function g (also computable and injective) by

ˆCg.he;i;j i/.x/ D

´
ˆ
C��'k.i;j/.x/
e .j / 'i .j / #;

" else.
By the padding lemma we may assume without loss of generality that for all e, i ,

and j we have g.he; i; j i/ � k.i; j /.
We now show that he; i; j i 2 Ab0 ” g.he; i; j i/ 2 Ab .
For the forward direction, we use k.i; j / as the witness that g.he; i; j i/ 2 Ab . We

have the following:

he; i; j i 2 Ab0

) 'i .j / # and ˆA��'i .j /
e .j / #

) for any x, 'k.i;j /.x/ # and ˆA��'k.i;j/.x/

g.he;i;j i/
.x/ # [by definitions of g and k]

) 'k.i;j /
�
g
�
he; i; j i

��
#

and ˆA��'k.i;j/.g.he;i;j i//

g.he;i;j i/

�
g
�
he; i; j i

��
#
�
let x D g

�
he; i; j i

��
) 9l � g

�
he; i; j i

��
'l
�
g
�
he; i; j i

��
and ˆA��'l .g.he;i;j i//

g.he;i;j i/

�
g
�
he; i; j i

��
#
��

let l D k.i; j /
�

) g
�
he; i; j i

�
2 Ab :

For the backward direction, we ignore the witness l that g.he; i; j i/ 2 Ab and
rely on the definition of g:

g
�
he; i; j i

�
2 Ab

) 9l � g
�
he; i; j i

��
'l
�
g
�
he; i; j i

��
and ˆA��'l .g.he;i;j i//

g.he;i;j i/

�
g
�
he; i; j i

��
#
�

) 9l � g
�
he; i; j i

��
'l
�
g
�
he; i; j i

��
and 'i .j /

and ˆ.A��'l .g.he;i;j i///��'k.i;j/.g.he;i;j i//
e .j / #

�
[by definition of g]

) 9l � g
�
he; i; j i

��
'l
�
g
�
he; i; j i

��
and 'i .j /

and ˆA��min.'l .g.he;i;j i//;'i .j //
e .j / #

�
) 'i .j / # and ˆA��'i .j /

e .j / #

) he; i; j i 2 Ab0 :

We see later in Remark 5.7 that we cannot strengthen this to Ab �1 Ab0 .
Another possibility is a more “diagonal” definition for the bounded jump.

Definition 3 We have Ab1 D ¹x j 'x.x/ # ^ˆA��'x.x/
x .x/ #º.

We view this definition as less desirable, since it depends heavily on the particular
enumeration ¹'xºx2! of the partial computable functions. Indeed, depending on the
enumeration, one could haveAb1 D ;0 for all setsA, or with a different enumeration,
Ab1 �1 A

b0 .
Finally, we might also consider a simpler bounded jump.

Definition 4 We have Ai D ¹x 2 ! j ˆA��x
x .x/ #º.

However, this definition seems unsatisfactory since it is not strictly increasing.

A Bounded Jump for the Bounded Turing Degrees 249

Remark 3.4 Let A be a set with A �bT ;0. Then A �bT Ai .

Proof We show that Ai �bT A ˚ ;0 for any A. Let f .n/ denote the maximum
over all strings � of length n, of the location of ;0 needed to determine if ˆ�n.n/ #.
Then ;0 �� f .n/ and A �� n suffice to compute Ai .n/.

4 Properties

We summarize some facts about the bounded jump. Let A be any set:
1. ;b �1 ;0.
2. A �1 Ab .
3. Ab �1 A0 (since Ab is c.e. in A).
4. ;0 �t t Ab (as a consequence of Corollary 4.4 below).
5. Ab �T A˚ ;0 (by Proposition 4.1 below).
6. If A �T ;0, then Ab �T A.
7. Let A be such that A0 —T A ˚ ;0 (e.g., any A �T ;0); then A0 —T Ab (so
A0 —bT A

b).
8. Ab —bT A (by Theorem 4.2 below).
9. If A �bT ;0, then Ab —bT A˚ ;0.
The effect of the bounded jump on the Turing degrees is easy to characterize.

Proposition 4.1 Let A be any set. Then Ab �T A˚ ;0.

Proof We wish to determine if a given n is such that 9i � nŒ'i .n/ # ^

ˆ
A��'i .n/
n .n/ #�. We note that the existential quantifier is bounded. Given i � n,

we use ;0 to determine if 'i .n/ #. If it does, we then get � D A �� 'i .n/ from A

and use ;0 to determine if ˆ�n.n/ #. This does not require A0 since the use of A is
bounded. We can then determine if n 2 Ab .

While the bounded jump is not very interesting from the perspective of the Turing
degrees, we hope to show that it follows our intuition for a jump on the bounded
Turing degrees.

We start by showing that the bounded jump is strictly increasing. The proof is a
diagonalization argument using the recursion theorem.

Theorem 4.2 Let A be any set. Then Ab —bT A.

Proof Suppose not. Let � and g witness Ab �bT A. We define a computable
function f by

ˆCf.e/.x/ D

8̂<̂
:
0; x ¤ e or .x D e and �C .e/ D 0/;
ˆCe .e/C 1; x D e and �C .e/ D 1;
" x D e and �C .e/ " :

By the recursion theorem, let M be an infinite computable set such that for all
m 2 M we have ˆCm D ˆC

f.m/
. Let k be such that g D 'k , and pick m 2 M such

that m > k. We note that �A is total, so ˆA
f.m/

is total and thus ˆAm is total.
Suppose �A.m/ D 1. Then ˆAm.m/ D ˆAf.m/.m/ D ˆ

A
m.m/C 1 for a contradic-

tion.
Hence �A.m/ D 0. Thus m … Ab . So for all i � m with 'i .m/ # we have

ˆ
A��'i .m/
m .m/ ". In particular, since k < m and 'k.m/ D g.m/ # we have

250 Anderson and Csima

ˆ
A��g.m/
m .m/ ". ThusˆA��g.m/

f .m/
.m/ " so �A��g.m/.m/ ". This contradicts our choice

of � and g.
We conclude that Ab —bT A.

We next show the bounded jump is order-preserving on the bounded Turing degrees.
The proof is a careful application of the s-m-n theorem.

Theorem 4.3 Let A and B be sets with A �bT B . Then Ab0 �1 Bb0 .

Proof Let ‰ and f witness A �bT B . By the s-m-n Theorem, let h be a strictly
increasing computable function such that 'h.i/.x/ D f .'i .x//. Since f is total,
'h.i/.x/ #” 'i .x/ #.

We define a computable, injective function g by

ˆCg.he;k;j i/.x/ D

´
ˆ
.‰
C��'h.i/.j//��'i .j /

e .j /; k D h.i/ for some i and 'i .j / #;
" else.

We now note that

he; i; j i 2 Ab0 ” 'i .j / # and ˆA��'i .j /
e .j / #;

” 'h.i/.j / # and ˆA��'i .j /
e .j / #;

” 'h.i/.j / # and ˆ.‰
B��'h.i/.j//��'i .j /

e .j / #;

” 'h.i/.j / # and ˆB��'h.i/.j /

g.he;h.i/;j i/
.j / #;

”
˝
g
�˝
e; h.i/; j

˛�
; h.i/; j

˛
2 Bb0 :

Therefore Ab0 �1 Bb0 .

Since for any set X we have Xb0 �t t Xb , we immediately obtain the following
corollary.

Corollary 4.4 Let A and B be sets with A �bT B . Then Ab �t t Bb .

We would also like to show that Ab is not equivalent to A ˚ ;0 for the bounded
Turing degrees. We noted earlier that this holds on the cone above ;0. We can also
demonstrate that this holds elsewhere. We recall two notions of sets being “ordinary”
(see Nies [10] for more information on randomness).

Definition 5 X is n-generic if for every †n-set S � 2! either X meets S (i.e.,
there is an initial segment of X in S) or there is an l 2 ! such that every string �
extending X �� l is such that � … S .

Definition 6 X is n-random if for every uniformly †n-family of sets hUi � 2! j
i 2 !i such that�.Ui / � 2�i for all i , there exists an l such thatX does not meetUl .

We show that if A is 3-generic or 4-random, then Ab —bT A˚ ;0. In the proof, we
will assume toward a contradiction that ‰ and f witness Ab0 �bT A˚ ;0. We will
then use the recursion theorem to find a computable set whose elements n are such
that f .n/ C 1 2 A ” n 2 Ab0 . Since A �� f .n/ computes Ab0.n/, we have
A.f .n/ C 1/ predicted by A �� f .n/. This regularity property can then be used to
show that A is not 3-generic or 4-random, for a contradiction.

Theorem 4.5 Let A be 3-generic. Then Ab —bT A˚ ;0.

A Bounded Jump for the Bounded Turing Degrees 251

Proof Suppose not. Then Ab0 �bT A ˚ ;0. Let ‰ and f be such that
‰A��f .n/˚;0��f .n/.n/ D Ab0.n/ for all n.

For any e, let 'ge.i/.j / D f .he; i; j i/ C 1. By the recursion theorem, let Ze
be an infinite computable set such that for all m 2 Ze we have 'ge.m/ D 'm.
We choose ge and Ze such that they are uniformly computable. Let t be a com-
putable function such that for all e we have t .e/ 2 Ze . Then for all e; j 2 !,
't.e/.j / D 'ge.t.e//.j / D f .he; t.e/; j i/C 1. In particular, 't.e/ is total.

We define a computable function h by

ˆCh.e/.j / D

´
1; C.'t.e/.j // D 1;

" else.

By the recursion theorem, let H be an infinite computable set such that for all
m 2 H we have ˆC

h.m/
D ˆCm.

We then have for every n 2 H that

ˆCn .j / D

´
1; C.f .hn; t.n/; j i C 1// D 1;

" else.

Hence for every n 2 H we have˝
n; t.n/; j

˛
2 Ab0 ” 't.n/.j / # ^ˆ

A��'t.n/.j /
n .j / #;

” ˆA��f .hn;t.n/;j i/C1
n .j / #;

” A
�
f
�˝
n; t.n/; j

˛�
C 1

�
D 1:

Thus for n 2 H we have
‰A��f .hn;t.n/;j i/˚;0��f .hn;t.n/;j i/

�˝
n; t.n/; j

˛�
D 1

” A
�
f
�˝
n; t.n/; j

˛�
C 1

�
D 1:

We define a set S by
S D

®
� 2 2! j 9j9n 2 H

�
length.�/ > f

�˝
n; t.n/; j

˛�
and

‰���f .hn;t.n/;j i/˚;0��f .hn;t.n/;j i/
�˝
n; t.n/; j

˛�
#¤ �

�
f
�˝
n; t.n/; j

˛�
C 1

�
or diverges

�¯
:

We note that S is †2.;0/, and so S is †3. Since A is 3-generic and A does not
meet S , there is an m such that for all � extending A �� m we have � … S . However,
any string � can be extended to one in S by picking a value for �.f .hn; t.n/; j i/C1/
that disagrees with the prediction of ‰ (if it converges) for some sufficiently large
n 2 H and j . This is a contradiction, so we conclude that Ab —bT A˚ ;0.

A similar proof can be used to show that if A is 4-random, then Ab —bT A ˚ ;0.
Hence, for the bounded Turing degrees, the class of sets where Ab is equivalent to
A˚ ;0 has measure zero.

Corollary 4.6 Let A be 4-random. Then Ab —bT A˚ ;0.

Proof Suppose not. Then Ab0 �bT A ˚ ;0. Let ‰ and f be such that
‰A��f .n/˚;0��f .n/.n/ D Ab0.n/ for all n.

Let t , H , and S be as in the proof of Theorem 4.5. Since f , t , and H are
computable, we can find a computable, strictly increasing function l such that for all
m 2 ! we have l.m/ D f .hn; t.n/; j i/ for some j and some n 2 H .

252 Anderson and Csima

For each i 2 ! let Ui D ¹� j � … S and length.�/ D l.i/C 1º. We note that the
Ui are uniformly …3 since S is †3 and l is computable. Since A does not meet S ,
we know that A meets every Ui .

We note from the definition of S that if � is any string of length l.m/ for somem,
then at least one of � O 0 and � O 1 is in S . We also note S is closed under extensions,
so if � … Ui , length.�/ � l.i/, and � extends � , then � … Uj for any j � i .
Hence �.Ui / � 2�i . We conclude that A is not 4-random, for a contradiction. Thus
Ab —bT A˚ ;

0.

5 Ershov Hierarchy

The iterates of the jump correspond to completeness in the arithmetic hierarchy;
the nth jump is †n-complete. We will show that the iterates of the bounded jump
correspond to completeness in the Ershov hierarchy.

Fix a canonical, computable coding of the ordinals less than !! . Since we do
not use ordinals above !! in this paper, the details of the coding are not significant.
We say that a function on an ordinal ˛ is (partial) computable if the corresponding
function on codes for the ordinal ˛ is (partial) computable.

For ˛ � !, we say that a set A is ˛-c.e. if there is a partial computable
 W ! � ˛ ! ¹0; 1º such that for every n 2 !, there exists a ˇ < ˛ where
 .n; ˇ/ # and A.n/ D .n; / where is least such that .n; / # (see Jockusch
and Shore [8]).

It is a well-known result that X �bT ;0 ” X �t t ;
0 ” X is !-c.e.

(see [10]). Using the bounded jump, this is X �bT ;b ” X �t t ;
b ” X is

!-c.e. We wish to extend this observation to higher powers of !. In fact, we are able
to establish a slightly stronger result.

Theorem 5.1 For any set X and n � 2 we have that X �bT ;nb ” X is
!n-c.e. ” X �1 ;

nb .

A set A is a t t -cylinder if for all X we have X �t t A) X �1 A (see Odifreddi
[11]).

Corollary 5.2 For all n � 2 we have that ;nb is a t t -cylinder.

The theorem follows from the lemmas below. We first introduce some nota-
tion. Let Cc denote commutative addition of ordinals (term-wise sum of co-
efficients of ordinals in Cantor normal form; see Ash and Knight [2]). We
will use two properties of commutative addition. First, given ˛1 � � �˛n and
ˇ1 � � �ˇn such that ˇi � ˛i for all i � n and ˇj < ˛j for some j � n, then
ˇ1 Cc ˇ2 Cc � � � Cc ˇn < ˛1 Cc ˛2 Cc � � � Cc ˛n. Also, if for some we have
˛i < !

 for all i , then ˛1 Cc ˛2 Cc � � � Cc ˛n < ! .
We start by proving that being !k-c.e. is closed downward in the bounded Turing

degrees. For the proof, we suppose that ˆ and f witness A �bT B and witnesses
thatB is !k-c.e. We will then build � to witness thatA is !k-c.e. In order to estimate
A.n/, we will estimate B �� f .n/ using .i; ˛i / for i � f .n/ and record the output
of ˆ on this estimate at �.n; ˛1 Cc � � � Cc ˛f .n//.

Lemma 5.3 Let k > 0, and let A and B be sets such that A �bT B and B is
!k-c.e. Then A is !k-c.e.

A Bounded Jump for the Bounded Turing Degrees 253

Proof Let ˆ and f witness A �bT B , and let witness that B is !k-c.e. We
will define a function � to witness that A is !k-c.e. by stages as follows. Fix n. (We
simultaneously follow the same procedure for each n.)

At each stage s, for i � f .n/, let ˛si be the least ordinal such that s.i; ˛
s
i / #, if it

exists. Define a string �s.˛s0; : : : ; ˛sf .n// of length f .n/ by letting �s.i/ D s.i; ˛
s
i /.

Let s0 be the least stage where ˛s0i are defined for all i � f .n/. Set

�.n; ˛
s0
0 Cc � � � Cc ˛

s0
f .n/

/ D ˆ
�s0 .˛

s0
0
;:::;˛

s0
f.n/

/
.n/:

Note that ˛s00 Cc � � � Cc ˛
s0
f .n/

< !k .
At stage s C 1 > s0, if ˛sC1i < ˛si for some i � f .n/, then define

�.n; ˛sC10 Cc � � � Cc ˛
sC1
f .n/

/ D ˆ
�sC1.˛

sC1
0

;:::;˛
sC1
f.n/

/
.n/:

This is possible since ˛sC10 Cc � � � Cc ˛
sC1
f .n/

< ˛s0 Cc � � � Cc ˛
s
f .n/

.
It is clear that � is partial recursive. Let n be arbitrary, and for i � f .n/ let ˇi be

least such that .i; ˇi / #. Let D ˇ0 Cc � � � Cc ˇf .n/. Then is the least such that
�.n; / # and �.n; / D A.n/. Thus � witnesses A is !k-c.e.

We next prove that if A is !k-c.e., then Ab is !kC1-c.e. Combined with the previous
lemma this will give us that X �bT ;nb) X is !n-c.e.

For the proof, we will let witness that A is !k-c.e. and will define � to witness
that Ab is !kC1-c.e. We will start with �.n; !k �n/ D 0, and each time we witness a
new, longer 'i .n/ # for some i � n we will move down to a new !k-level. At a fixed
level, we will record estimates of Ab based on estimates of A �� 'i .n/ in a manner
similar to Lemma 5.3.

Lemma 5.4 Let k > 0, and let A be a set such that A is !k-c.e. Then Ab is
!kC1-c.e.

Proof Let witness that A is !k-c.e. We will define a function � to witness that
Ab is !kC1-c.e. Fix n. (We simultaneously follow the same procedure for each n.)

For an ordinal ˇ, let u.ˇ/ be the coefficient of the units digit of ˇ in Cantor normal
form. We again let ˛si be the least ordinal such that s.i; ˛

s
i / #, if it exists, and define

a string �s.˛s0; : : : ; ˛sm/ of length m by letting �s.i/ D s.i; ˛
s
i /. Indeed, we will

assume without loss of generality that ˛si is defined at each stage s by running the
computation for longer than s steps if necessary.

Let r.l; ˛s0; : : : ; ˛sm/ D !k � l Cc ˛
s
0 Cc � � � Cc ˛

s
m Cc u.˛

s
0 Cc � � � Cc ˛

s
m/.

Note that if all ˛si < !k , then r.l; ˛0; : : : ; ˛m/ < !kC1. Note also that if
ˇi � ˛i for all i � m and l 0 � l , and if one of the inequalities is strict, then
r.l 0; ˇ0; : : : ; ˇm/C 2 < r.l; ˛0; : : : ; ˛m/C 1.

We let �.n; !k � n/ D 0 and set bookkeeping variables l0 D n and m0 D 0.
Every time we see 'i .n/ #> m for some i � n we will decrease l by one and let
m D 'i .n/. We note this can happen at most n many times.

At stage s C 1, if 'i;sC1.n/ #> ms for some i � n, define lsC1 D ls � 1, and let
msC1 D 'i .n/. Otherwise, let lsC1 D ls and msC1 D ms .

If lsC1 < ls or if ˛sC1i < ˛si for some i � msC1, then let �.n; r.l; ˛0; : : : ; ˛m/C
2/Œs C 1� D 0.

If ˆ�.l;˛0;:::;˛m/n .n/ # Œs C 1�, then set �.n; r.l; ˛0; : : : ; ˛m/C 1/Œs C 1� D 1.
This completes the construction.

254 Anderson and Csima

We note that � is partial recursive. Let n be arbitrary, and let m be the largest
value of 'i .n/ for i � n such that 'i .n/ #. For j � m, let ˇj be the least such that
 .j; ˇj / #. Let l be the least such that for some ı < !k we have �.n; !k � l C ı/ #.
Then �.n; r.l; ˇ0 � � �ˇm/C 2/ D 0 and �.n; r.l; ˇ0 � � �ˇm/C 1/ #D 1 iff n 2 Ab .
For all � r.l; ˇ0 � � �ˇm/ we have �.n; / ". Therefore � witnesses that Ab is
!kC1-c.e.

We note that the proofs for the above lemmas hold for any ordinal ! such that
0 < ! < !CK1 .

To complete the proof of the theorem, we wish to show that if A is !k-c.e., then
A �1 ;

kb . We start by proving the statement for k D 2.
For the proof, suppose that witnesses that A is !2-c.e. Let n 2 !, and let m

be the first such that we see .n; ! � mC j / # for some j . To determine if n 2 A,
we need to know enough of ;b to answer the †1-questions 9j Œ .n; ! � i C j / #�
for each i < m. In each case, if the answer is yes, first witnessed by ! � i C k, we
then need to know if .n; ! � i C j / # for all j < k. There is no computable bound
which can be determined in advance stating how much of ;b is needed to answer all
of these questions. However, we can in advance bound the indices of the computable
functions needed to determine how much of ;b will be used. Hence we can bound
the amount of ;2b required to have enough access to ;b to answer these questions.

Lemma 5.5 Let A be a set such that A is !2-c.e. Then A �1 ;2b .

Proof Let witness that A is !2-c.e. We will define several functions, ending in
a computable f such that n 2 A ” f .n/ 2 ;2b .

Let g be a computable function such that g.n/ D i , where the first time we
observe .n; ˛/ # is ˛ D ! � i C j for some j . Let q.i; n/ be the first m observed
such that .n; ! � i C m/ #. The function q is partial computable since it may be
there is no such m for the given i .

Let Qh.i; x; n/ denote the spot of ;b which answers the question 9m � xŒ .n;

! � i C m/ #�. Let Qr.n; i/ denote the spot of ;b which answers the question
9mŒ .n; ! � i C m/ #�. We then let h.i; n/ D max¹ Qh.i; x; n/ j x � q.i; n/º

and r.n/ D max¹Qr.n; x/ j x � g.n/º. The functions Qh; Qr , and r are computable, and
h is partial computable, converging wherever q does.

Let p.n/ be the least i such that for some m we have .n; ! � i Cm/ #. We can
compute p.n/ from ;b �� r.n/. We note that h.p.n/; n/ exists, and we can determine
if n 2 A from ;b �� max¹r.n/; h.p.n/; n/º.

Let v be a computable function defined by 'v.i;n/.y/ D h.i; n/ C r.n/ (y is a
dummy variable). Let u.n/ D max¹v.i; n/ j i � g.n/º. The function u is com-
putable, and if we let j D v.p.n/; n/, then j � u.n/, the function 'j .y/ #, and
;b �� 'j .y/ suffices to determine if n 2 A (for any y).

We now define f .n/ > u.n/ to be such that (for any y) ˆ;b
f .n/

.y/ runs the cal-
culation to determine if n 2 A and converges iff n 2 A. Explicitly, we define
f .n/ > u.n/ such that ˆC

f.n/
.y/ is the partial computable function determined by

the following steps. First, we let x � g.n/ be least such that C. Qr.n; x// D 1. Next,
we let t be first such that we observe .n; ! � x C t / #. We then let z � t be least
such that C. Qh.x; z; n// D 1. Finally, we say that ˆC

f.n/
.y/ # if .n; ! � xC z/ D 1

A Bounded Jump for the Bounded Turing Degrees 255

and ˆC
f.n/

.y/ " if .n; ! � x C z/ D 0 (or if any of the above steps cannot be
completed).

We note that f is computable, and if C is a sufficiently long initial segment of
;b , then n 2 A iff ˆC

f.n/
.y/ #. Recall that for any n, there exists j � u.n/ < f .n/

such that 'j .y/ #, and ;b �� 'j .y/ suffices to run the calculations to determine if
n 2 A.

We observe that

f .n/ 2 ;2b ” 9i � f .n/
�
'i
�
f .n/

�
^ˆ

;b��'i .f .n//

f .n/

�
f .n/

�
#
�

” n 2 A:

Hence f witnesses A �1 ;2b .

We use a similar method to prove the statement for all k.

Lemma 5.6 Let k > 1, and let A be a set such that A is !k-c.e. Then A �1 ;kb .

Proof We prove the statement by induction on k. The base case (k D 2) is given
by Lemma 5.5. For the inductive case, we assume that the statement holds for k and
wish to show that it holds for k C 1. We note for the procedure given in Lemma 5.5
that an index for f can be computed uniformly from an index for .

The proof for the inductive case proceeds along the same lines as the proof for
the base case. Let witness that A is !kC1-c.e. Let g be a computable function
such that g.n/ D i where the first time we observe .n; ˛/ # is !k � i C ˛ for some
˛ < !k . Let p.n/ be the least i such that for some ˛ we have .n; !k � i C ˛/ #.

Let �i .n; ˛/ D .n; !k � i C ˛/ for all ˛ < !k . We define a partial computable
sequence of functions ei .n/ as follows. To compute ei .n/ we first search for any ˛
such that �i .n; ˛/ #. If there is none, then we must have ei .n/ ". If the search halts,
then let

Q�.m; ˛/ D

´
�i .m; ˛/; m D n;

0 else.

Let B be such that Q� witnesses that B is !k-c.e., and let Qf be given by applying the
induction hypothesis to B . We then let ei .n/ D Qf .n/.

Let v be a computable function defined by 'v.i;n/.y/ D ei .n/ (y is a dummy
variable). Let u.n/ D max¹v.i; n/ j i � g.n/º. The function u is computable, and
if we let j D v.p.n/; n/, then j � u.n/, the function 'j .y/ #, and ;kb �� 'j .y/

suffice to determine ep.n/.n/ and hence if n 2 A (for any y).
We define f .n/ > u.n/ to be such that (for any y), ˆ;kb

f .n/
.y/ calculates if n 2 A,

and converges iff n 2 A. Explicitly, we define f .n/ > u.n/ such that ˆC
f.n/

.y/

is the partial computable function determined by the following steps. Let l be such
that ˆ;kb

l
.m/ D p.m/. We then have ˆC

f.n/
.y/ converge iff ˆC

l
.n/ converges and

eˆC
l
.n/.n/ 2 C . As in the proof of Lemma 5.5, f witnesses A �1 ;.kC1/b , com-

pleting the induction.
Therefore for all k � 2 we have that A is !k-c.e.) A �1 ;

kb .

We proved earlier that for any set A we had Ab0 �1 Ab and Ab �t t Ab0 . However,
we can use the results above to show that Ab and Ab0 are not always 1-equivalent.

Remark 5.7 We have ;2b —1 .;b/b0 .

256 Anderson and Csima

Proof Suppose ;2b �1 .;b/b0 . Let A be a properly !2-c.e. set. By Theorem 5.1,
we have A �1 ;2b , so A �1 .;b/b0 .

Using an argument similar to the proof of Lemma 5.4, we can show that .;b/b0 is
.! C 1/-c.e. Indeed, while 'i .j / " we believe he; i; j i … .;b/b0 , and once 'i .j / #,
since ;b is c.e., we can approximate .;b/b0.he; i; j i/ with at most 2.'i .j //-many
changes. It is not hard to see that for any sets B and C and any ordinal ˛, if B �1 C
and C is ˛-c.e., then B is ˛-c.e. Hence A is .! C 1/-c.e., contradicting A being
properly !2-c.e. We conclude that ;2b —1 .;b/b0 .

6 Inversions

We examine what type of inverses exist for the bounded jump. Anderson [1] proved
that strong jump inversion holds for the truth-table degrees. For any set X �t t ;0
there is a set Y such that X �t t Y 0 �t t Y ˚ ;0. It follows as a corollary that strong
bounded jump inversion holds for the truth-table degrees.

Corollary 6.1 Let X �t t ;b . Then there exists Y such that Y b �t t X �t t Y ˚
;b .

Proof Let X be given, and let Y be given by strong jump inversion for the
truth-table degrees. Then Y 0 �t t X �t t Y ˚ ;b , and from Section 4 we have
Y ˚ ;b �t t Y

b and Y b �t t Y 0. We conclude that Y b �t t X �t t Y ˚ ;b .

A close examination of the proof in [1] reveals that an equivalent statement also
holds for the bounded Turing degrees. For any set X �bT ;0 there is a set Y such
that X �bT Y 0 �bT Y ˚ ;0. If we apply the proof of Corollary 6.1, we get that for
any set X �bT ;b there is a set Y such that X �bT Y b �bT Y ˚ ;b .

As noted earlier, Shoenfield jump inversion (see [14]) holds for the Turing degrees
with the Turing jump; for every †2-set X �T ;0 there is a Y �T ;0 such that
Y 0 �T X . Csima, Downey, and Ng [5] showed that it does not hold for the bounded
Turing degrees with the Turing jump.

We prove that Shoenfield jump inversion holds for the bounded Turing degrees
with the bounded jump. In this example, the behavior of the bounded jump on the
bounded Turing degrees more closely resembles the behavior of the Turing jump on
the Turing degrees.

Theorem 6.2 Let B be such that ;b �bT B �bT ;
2b . Then there is a set

A �bT ;
b such that Ab �bT B .

Proof Suppose ;b �bT B �bT ;2b . Let witness that B is !2-c.e. We build an
!-c.e. set A (so A �bT ;b) such that Ab �bT B .

We will define A using a stage by stage construction. We will ensure that A is
!-c.e. via the function f .x/ D x C 1. Before we start, we define a computable
function g. We will have g witness that B �1 Ab .

For each n 2 !, let in be the first i that we find such that .n; ! � i C j / #,
for some j . The definition of guarantees such an i exists, so the in are uniformly
computable. We define an approximation Bs for B similarly. Fix n, and let t be
the least such that t .n; ˛/ #, for some ˛. Given s, let Qs D max.t; s/, and let
Bs.n/ D .n; ˇ/, where ˇ is the least such that Qs.n; ˇ/ #.

We define a computable function h to help define g. Let g.�1/ D �1. Let
h.n/ D

Pn�1
kD0 h.k/C

Pg.n�1/

kD1
.k
2�k
2
/C in. Let g.n/ be such that between g.n� 1/

A Bounded Jump for the Bounded Turing Degrees 257

and g.n/ there are h.n/-many partial computable functions 'k.n;0/; : : : ; 'k.n;h.n/�1/
that we control by the recursion theorem, and such that we control ˆg.n/ by the
recursion theorem. The formal definitions of g, h, and k are given at the end of the
proof of Lemma 6.7.

We will make use of markers labeled xin with i � in, called n-markers, which will
move stage by stage but reach a limit. At some stage s, we might say that a marker xin
becomes defined. The marker then maintains its value, unless it becomes undefined
at a later stage. If it at an even later stage becomes redefined, then it will have a new,
larger value. At any moment, there will be at most one n-marker defined for each n.
There will be a computable bound on the total number of times all n-markers will be
defined/redefined, namely, h.n/.

In each stage of the construction we will make numerous changes to the approx-
imation of the set A. To ease notation, when we write “A” in the construction, we
actually mean the most current approximation of A at that moment of the construc-
tion. By “As” we mean the approximation A at the end of stage s. Without loss of
generality, we assume that if s.n; ! � i C j / #, then the stage s > j C 1.

Stage s
Step 1. If some 'e;s.x/ # for the first time at stage s, with e � x � g.k/, then for

all m > k, extract all xlm from A, and declare them undefined.
Step 2. Let n � s be the least such that xin is defined but A.xin/ ¤ Bs.n/, or such

that .n; ˛/ # for some ˛ but there is no marker defined for n. Let ! � i C j be the
least such that s.n; ! � i C j / #.

(a) If xin is undefined, then we perform the following steps. Define xin D s. Ex-
tract all xlm withm > n and all xkn with k > i fromA, and declare them unde-
fined. Define 'k.n;r/.g.n// #D xin for some r , and declareˆ� O 1

g.n/
.g.n// # for

every string � of length xin�1. Note that by our assumption, jC1 < s D xin.
There will always be some r with 'k.n;r/.g.n//Œs�1� " by our careful count-
ing of h.n/.

(b) If needed, change As.xin/ to ensure xin 2 As iff n 2 Bs (so that g.n/ 2 Abs iff
n 2 Bs).

This completes the construction.

Lemma 6.3 A is !-c.e.

Proof If at stage s we did not set s D xin for any n, then s was never enumerated
into A. If at stage s we set s D xin, then xin is enumerated into A and can be
removed/enumerated into A at most j -many more times by step 1 of the construction
(where j is the least such that s.n; ! � iCj / #). By convention j � s, so certainly
s is enumerated/removed from A at most .s C 1/-many times.

Lemma 6.4 For each n and each i � in, xin D lim xinŒs� exists, where we allow
“undefined” as a possibility. Moreover, for each n, if Q{n D �i.9j /Œ .n; ! � iCj / #�
then xin is defined iff i D Q{n, and x

Q{n
n 2 A ” n 2 B . Finally, for each n, the total

number of times any n-marker is defined or redefined, summing over all i � in, is at
most h.n/.

Proof An n-marker xin can only become defined (redefined) via step 2(a) of the
construction. Thus at the stage when xin is defined (redefined), i is the least such that
 s.n; ! � i C j / #. At the moment that xin is defined (redefined), any xkn with k > i

258 Anderson and Csima

that may have been defined is undefined, and since k > i , will never be redefined at
a later stage. That is, at any stage of the construction, there is at most one i with xin
defined, and, as a function of the stages, the index i of the n-markers that are defined
is nonincreasing. Since there is only one defined n-marker at any given stage, the
total number of times that an n-marker is undefined by step 1 of the construction is
bounded by

Pg.n�1/

kD1
.k
2�k
2
/. Let Oh.m/ be the total number of stages where an m-

marker is defined (redefined). A 0-marker cannot be undefined by step 1. In step 2, a
0-marker can only be undefined if a new 0-marker, with lower index, is defined. Thus
Oh.0/ D i0 D h.0/. Similarly, Oh.n/ D

Pg.n�1/

kD1
.k
2�k
2
/C in C

Pn
kD0 h.k/ D h.n/.

Finally, consider xQ{nn . Let s be a stage by which all m-markers with m � n have
reached their limits, and such that At �� x

Q{n
n D As �� x

Q{n
n for all t � s. Note that

by definition of Q{n, we have that xQ{nn is defined at stage s. Then by step 2(b) of the
construction we have that xQ{nn 2 A iff n 2 B .

Lemma 6.5 We have B �1 Ab .

Proof We claim that n 2 B iff g.n/ 2 Ab . Consider the stage s when xQ{nn was
defined for the last time. At this stage, we set 'k.n;r/.g.n// #D xQ{nn for some r , and
declare ˆ� O 1

g.n/
.g.n// # for all � of length xQ{n � 1. Since k.n; r/ < x

Q{n
n , we have that

if xQ{nn 2 A, then g.n/ 2 Ab . Conversely, we only ever define ˆg.n/.g.n// to halt
in step 2(a) of the construction, and with an oracle that includes an n-marker. Since
all n-markers besides xQ{nn were extracted from A at stage s, we have that if xQ{nn … A,
then g.n/ … Ab . Now by Lemma 6.4 we have xQ{nn 2 A iff n 2 B , so that n 2 B iff
g.n/ 2 Ab , as desired.

Lemma 6.6 We have Ab �bT B .

Proof Recall that x 2 Ab ” 9e � xŒˆ
A��'e.x/
x .x/ #�. Recall also that

;b �bT B . Let n be the least such that x < g.n/.
Let k be the total number of different oracles that appear to witness x 2 Ab during

the approximation of A. That is, k is maximal such that

9s1 � � � 9sk9�1 � � � 9�k
�
�i ¤ �j ^ 9e � x

�
'e;si .x/ # ^ �i D Asi �� 'e;si .x/

�
^ˆ�ix;si .x/ #

�
: (1)

According to step 1 of the construction, whenever some 'e.x/ # with e � x,
all m-markers with m > g.n/ are extracted from A. So, if x 2 Ab , then the only
nonzero entries in the part of the oracle A that is used in the computation are those
that arise from m-markers with m � n. Since the total number of times m-markers
can be redefined is bounded by h.m/, and since each marker can either be in or out of
A, the number k of possible oracles is computably bounded. (It is certainly bounded
by 2

Pn
lD0 h.l/.) That is, we can bT -compute k from ;b and hence B using questions

of the form (1).
For each m � n, using at most im-many questions of the form

.9x1/ � � � .9xl /
�
xpC1 < xp ^ .9j / .m; ! � xp C j / #

�
;

we can bT -compute Q{m from ;b and hence B .

A Bounded Jump for the Bounded Turing Degrees 259

Similarly, we can bT -compute from ;b , and hence from B , the number of pairs
e � y � g.n/ such that 'e.y/ #. Thus we can bT -compute from B the stage s, by
which point if e � y � g.n/ and 'e.y/ #, then 'e;s.y/ #.

We can certainly bT -compute from B the initial segment B �� n.
We now put the above facts together to compute whether x 2 Ab . If k D 0,

then there is never any stage where it appears that x 2 Ab , so x … Ab . So suppose
k ¤ 0. Run the approximation of A to find the k-many different possible oracles
which might witness x 2 Ab . We know that the only possible nonzero entries in the
correct oracle come from x

Q{m
m with m � n, and that xQ{mm 2 A iff m 2 B . Now since

we have bT -computed from B all the Q{m for m � n, we can run the approximation
of A until the least stage t greater than s where markers of the form x

Q{m
m are defined

for all m � n. The location of xQ{mm at stage t is its final location. Now, using B �� n,
we have computed the true initial segment of A that is relevant for deciding whether
x 2 Ab . If this oracle extends any of the k-many halting oracles that we found, then
x 2 Ab . Otherwise, x … Ab .

Lemma 6.7 The functions g, h, and k used in the construction exist.

Proof Let ‰m;n;q and �n;q denote the operations that are referred to in the main
construction as 'k.m;n/ and ˆg.n/, respectively, when the role of g.n/ in the con-
struction (when not in the form ˆg.n/) is played by 'q.n/. We wish to find g, h, and
k which satisfy the less than and greater than constraints in the main proof, and a
number i such that 'k.m;n/ D ‰m;n;i , ˆg.n/ D �n;i , and g.n/ D 'i .n/ for all m; n.

By the padding lemma, for each n;m; q let Kn;m;q be an infinite, uniformly com-
putable set such that for all l 2 Kn;m;q we have 'l D ‰n;m;q . Similarly, for all n; q
let Gn;q be an infinite, uniformly computable set such that for all l 2 Gn;q we have
ˆl D �n;q .

We now define a uniformly computable procedure (in a parameter q) which we
will label ‚q . The procedure will use simultaneous induction to define three com-
putable functions, Qg, Qh, and Qk.

We start the procedure by saying Qg.�1/ D �1. Given Qg and Qh up to n� 1, we de-
fine Qh.n/ as we did in the main theorem, Qh.n/ D

Pn�1
tD0
Qh.t/C

P Qg.n�1/
tD1 . t

2�t
2
/C in.

Next, for each m such that 0 � m < Qh.n/ we assign the least possible element of
Kn;m;q as the value of Qk.n;m/ such that we satisfy Qg.n � 1/ < Qk.n; 0/ < Qk.n; 1/ <
� � � < Qk.n; Qh.n/ � 1/. Finally we assign the least element of Gn;q bigger than
Qk.n; Qh.n/ � 1/ as the value of Qg.n/. This completes our induction and the proce-
dure ‚q .

We note that if Qg, Qh, and Qk come from procedure ‚q , then they meet the less
than and greater than constraints in the main proof, and for all m; n we have
' Qk.n;m/ D ‰n;m;q and ˆ Qg.n/ D �n;q .

Define a computable, injective function w by letting 'w.q/.x/ D Qg.x/, where
Qg comes from procedure ‚q . Let i be given by the recursion theorem applied
to w. Finally, let g, h, and k be given by Qg, Qh, and Qk from procedure ‚i . Then
'k.m;n/ D ‰m;n;i , ˆg.n/ D �n;i , and 'i D 'w.i/ D g, as desired.

We note that the proof above cannot be modified to find an A such that Ab �t t B .

260 Anderson and Csima

7 Other Jump Operators

In 1979, Gerla [7] proposed jump operators for the truth-table and bounded truth-
table degrees. We wish to compare his observations on these operators with some of
the results shown so far for the bounded jump. Since the original article is available
only in Italian, we briefly summarize the definitions and highlight a few of the results
from the paper.

We start with some basic definitions used in studying the truth-table degrees (see
Rogers [12]).

Definition 7 A t t -condition is a finite sequence x1 � � � xk 2 ! and a function
˛ W 2k ! 2. We say that it is satisfied by A if ˛.A.x1/ � � �A.xk// D 1. We define
At t D ¹x j x is a t t -condition satisfied by Aº.

We note that At t �t t A and A �1 At t . Gerla [7] uses At t to define jumps At t and
Abk for the truth-table degrees and bounded truth-table degrees of norm k, respec-
tively.

Definition 8 We have At t D ¹x j 'x.x/ #2 At tº and Abk D ¹x j 'x.x/ #2
At t ^ 'x.x/ � kº.

The behavior of At t and Abk on the truth-table and bounded truth-table degrees
shares several similarities with that of A0 on the Turing degrees. We state a few of
the many results below.

Theorem 7.1 (Gerla [7]) Let k be a number, and let A and B be sets:
1. At t —t t A, Abk —bk A;
2. A �t t B) At t �1 Bt t ;
3. A <1 Abk �1 Ab.kC1/ �1 At t �1 A0;
4. ;bk �1 ;t t �1 ;0.

We demonstrated earlier the connection between the bounded jump and the Ershov
hierarchy. We see that the finite levels of the Ershov hierarchy share a similar (but
weaker) connection with Abk .

Theorem 7.2 (Gerla [7]) Let A be n-c.e., and let B �1 Abk . Then B is .nkC 1/-
c.e.

Let ;n.bk/ denote the nth iteration of the bk-jump of the empty set. It follows from
the theorem that if A �1 ;n.bk/, then A is .1C k C k2 C � � � C kn�1/-c.e. (see [7]).

Since Gerla’s truth-table jump is designed for a stronger reducibility, we expect
it to be weaker than the bounded jump. We prove that for every set A we have
At t �1 A

b , but there are many sets X such that Xb —bT Xt t .

Proposition 7.3 We have At t �1 Ab0 .

Proof Let f and ˆk witness that At t �bT A. We define computable, injective
functions h and j . Let 'h.e/.z/ D f .'e.e//.

Define j by ˆC
j.e/

.z/ # iff 'e.e/ # and 'e.e/ 2 ˆCk .
Let z represent an arbitrary dummy variable. We note the following:

x 2 At t ” 'x.x/ #2 A
t t

” 'x.x/ #2 ˆ
A
k

A Bounded Jump for the Bounded Turing Degrees 261

” 'x.x/ #2 ˆ
A��f .'x.x//

k

” 'x.x/ #2 ˆ
A��'h.x/.z/

k

” ˆ
A��'h.x/.z/

j.x/
.z/ #

”
˝
j.x/; h.x/; z

˛
2 Ab0 :

Thus At t �1 Ab0 .

Corollary 7.4 We have At t �1 Ab .

Theorem 7.5 There is a c.e. set A such that Ab —bT At t .

Proof First note that if we have a computable approximation to a set A, then this
induces an obvious approximation for At t . Namely, if 'x;s.x/ ", then x … At t Œs�,
and if 'x;s.x/ #, then x 2 At t Œs� ” 'x.x/ 2 AŒs�

t t . We also have an approx-
imation for Ab by x 2 AbŒs� ” 9i � xŒ'i;s.x/ # ^ˆ

A��'i;s.x/
x .x/ # Œs��. We

note that if A is c.e., then these are both �02-approximations.
For k 2 !, let l.k; s/ D max¹'x;s.x/ j x � k ^ 'x;s.x/ #º. Note that for s < t ,

if A �� l.k; s/Œs� D A �� l.k; s/Œt �, then At t �� kŒs� D At t �� kŒt � unless 'x;t .x/ #
for some x � k such that 'x;s.x/ ".

We now proceed with the construction of A. We must meet for all n 2 ! the
requirement

Rn W .:8x/
�
'�2.n/.x/ # ^ˆ

Att��'�2.n/.x/

�1.n/
.x/ D Ab.x/

�
;

where �1 and �2 are projection functions for some canonical pairing function.
To ease notation, we will use the following convention. We write ˆi for ˆ�1.i/.

For ' we distinguish between two cases. We write 'i .xi / for '�2.i/.xi /. However,
'y.y/ maintains its usual meaning for any y.

Let e0 < e1 < e2 < � � � be a computable list such that we control 'ei and ˆei
by the recursion theorem. A formal definition can be accomplished by the methods
used in Lemma 6.7.

We will use a set of movable markers xi for i 2 ! such that for all i we have
xi D ej for some j . We will also make use of a restraint function r . We start with
r.n/Œ0� D 0 for all n.

Stage 0. Let x0 D e0.
Stage s C 1. For each m let r.m/Œs C 1� D max¹'x;sC1.x/ j x � 'l .xl /Œs� for

some l < mº. (We say that r.m/Œs C 1� D 0 if this set is empty.) Let k be the least
such that r.k/Œs C 1� > r.k/Œs�. (If no such k exists, use k D s.) Undefine all xm
with m � k.

Case 1. There is no n < k such that xn is defined and ˆAtt��'n.xn/n .xn/Œs� #D

Ab.xn/Œs�.
We then let m be the least such that xm is not defined, and define xm to be the

least ei that has not been used in the construction. (Proceed to the next stage.)
Case 2. Else.
We then let n < k be least such that xn is defined and ˆAtt��'n.xn/n .xn/Œs� #D

Ab.xn/Œs�. Undefine all xm with m > n. If it has not yet been defined (with the
current value of xn), let 'xn.xn/ D r.n/Œs C 1�Cmax¹Asº C 'n.xn/.

Subcase 2A. We have Ab.xn/Œs� D 0.
Set ˆAs��'xn .xn/

xn .xn/ #, so that Ab.xn/Œs C 1� D 1.

262 Anderson and Csima

Subcase 2B. Ab.xn/Œs� D 1.
Choose the least x > r.n/ such that x … AŒs�, and enumerate x 2 AŒs C 1�.

We demonstrate later that we have x � 'xn.xn/, so that this will cause
Ab.xn/Œs C 1� D 0.

This completes the construction of A.
It is easy to see that the set constructed is c.e. We claim that for each n,

xn D lims xnŒs� exists and provides a witness for Rn. We say that a requirement Rn
receives attention if we perform case 2 of the construction for some xn.

Lemma 7.6 For each n, xn D lims xnŒs� exists and provides a witness for Rn.
Moreover, the requirement Rn receives attention at most finitely often.

Proof Since x0 is never undefined, it reaches its limit at stage 0. Assume that xl
with l < m have reached their limit, and if 'l .xl / #, then it has already done so.
Then the value r.m/ can increase at most max¹'l .xl / j l < mº-many more times,
and so there must be a stage after which xm is never undefined.

Assume for a contradiction that xn is the least such that ˆAtt��'n.xn/n .xn/ #D

Ab.xn/. Let s be the least stage after which no xm with m < n requires atten-
tion and r.n/ has reached its limit. So at stage s C 1 of the construction, xn
is defined and is never again undefined. Since ˆAtt��'n.xn/n .xn/ #D Ab.xn/,
there is a least stage s0 > s C 1 such that ˆAtt��'n.xn/n .xn/Œs0� #D Ab.xn/Œs0�.
Since s0 is the first stage where Rn requires attention with this value of xn,
we define 'xn.xn/ D r.n/ C max¹As0�1º C 'n.xn/ at stage s0, and we have
Ab.xn/Œs0 � 1� D 0. So at stage s0 of the construction, we set ˆ

As0��'xn .xn/
xn .xn/ #,

so that Ab.xn/Œs0� D 1. Note that at stage s0 there are at least 'n.xn/-many numbers
greater than r.n/ and less than 'xn.xn/ available to enumerate into A.

Let s0 < s1 < s2 < � � � be all the further stages of the construction where
Rn receives attention. We will show that for all even k an element is enu-
merated into ;0 �� 'n.xn/ at some stage t with sk < t � skC1. It follows
that the sequence s0; s1; : : : must be finite, contradicting the assumption that
ˆ
Att��'n.xn/
n .xn/ #D Ab.xn/. We will also show inductively that there is suffi-

cient room to enumerate elements into A between r.n/ and 'xn.xn/, as claimed
earlier.

Let k be even, and assume for our induction that there are at least .'n.xn/ � k
2
/-

many numbers greater than r.n/ and less than 'xn.xn/ available to enumerate intoA.
Without loss of generality, suppose that at stage sk we ensured Ab.xn/Œsk � D 1.
Since all requirements Rm with m < n have stopped acting, no requirement
Rm with m � n enumerated into A at any stage sk � t � skC1. Further-
more, since r.m/ � 'xn.xn/ for all m > n, no requirement Rm enumerates
into A �� 'xn.xn/ at any stage sk � t < skC1. Hence Ab.xn/ŒskC1 � 1� D 1 and
ˆ
Att��'n.xn/
n .xn/ŒskC1�1� D 1. SoAt t �� 'n.xn/Œsk�1� ¤ At t �� 'n.xn/ŒskC1�1�.
Using our observation from the start of the proof of the theorem, to demonstrate

that there is a y � 'n.xn/ such that 'y;sk .y/ " but 'y;skC1
.y/ #, it suffices to show

A �� l.'n.xn/; sk � 1/Œsk � 1� D A �� l.'n.xn/; skC1 � 1/ŒskC1 � 1�. Between
stages sk � 1 and skC1 � 1, the construction only runs subcase 2 for a requirement
Rm with m > n. Hence no element is enumerated into A �� r.n C 1/. Since
r.nC1/ � l.'n.xn/; sk�1/we haveA �� l.'n.xn/; sk�1/Œsk�1� D A �� l.'n.xn/;

A Bounded Jump for the Bounded Turing Degrees 263

skC1 � 1/ŒskC1 � 1�, as desired. Thus some y � 'n.xn/ was added to ;0 between
stages sk and skC1.

At stage skC1 the least x > r.n/ such that x … AŒskC1 � 1� was enumer-
ated into AŒskC1�. By the induction hypothesis, we had x � 'xn.xn/, so that
Ab.xn/ŒskC1� D 0. Note that at stage skC1 C 1 there are at least .'n.xn/ � k

2
� 1/-

many numbers greater than r.n/ and less than 'xn.xn/ available to enumerate intoA.
At stage skC2, we acted because ˆAtt��'n.xn/n .xn/ŒskC2 � 1� #D A

b.xn/ŒskC2 �

1� D 0. We set ˆ
AskC2

��'xn .xn/

xn .xn/ #, so that Ab.xn/ŒskC2� D 1. There was no
enumeration into A below r.n C 1/ at any stage skC1 < t � skC2, so that at stage
skC2 C 1 there are at least .'n.xn/ � k

2
� 1/-many numbers greater than r.n/ and

less than 'xn.xn/ available to enumerate into A. This completes our induction.
Since we can only reach a stage sk with k even if a number less than 'n.xn/

enters ;0, and since we have left room to enumerate into A in the desired interval at
each such stage, it follows that there can be only finitely many stages sk , as desired.

A similar proof can be used to show that every 2-generic A is such that
Ab —bT At t .

Finally, we note that the minijump operator developed by Ershov [6] works on the
pm-degrees in a manner similar to At t on the truth-table degrees (see [11, Volume
II, p. 732]).

8 Further Study

There is considerable room left to explore in the study of the bounded jump. We
can examine to what degree do important results for the Turing jump on the Turing
degrees also hold for the bounded jump on the bounded Turing degrees, particularly
in cases where these results do not hold for the Turing jump on the bounded Turing
degrees.

For example, Sacks [13] proved that for every †2-set X �T ;0 there is a c.e. set
Y such that Y 0 �T X . Csima, Downey, and Ng [5] proved that Sacks jump inversion
does not hold for the Turing jump on the bounded Turing degrees. We do not know
if Theorem 6.2 holds if we add the requirement that Y is c.e.

We can also look at concepts related to the Turing jump. We say that a set X is
bounded high if Xb �bT ;2b and bounded low if Xb �bT ;b . We can then attempt
to characterize which sets are bounded high and bounded low. Finally, the jumps
for the truth-table and bounded truth-table degrees developed by Gerla [7] could be
considered in more detail.

References

[1] Anderson, B. A., “Automorphisms of the truth-table degrees are fixed on a
cone,” Journal of Symbolic Logic, vol. 74 (2009), pp. 679–88. MR 2518818.
DOI 10.2178/jsl/1243948334. 246, 256

[2] Ash, C. J., and J. Knight, Computable Structures and the Hyperarithmetical Hierarchy,
vol. 144 of Studies in Logic and the Foundations of Mathematics, North-Holland, Ams-
terdam, 2000. MR 1767842. 252

[3] Coles, R., R. Downey, and G. Laforte, personal communication, May 2010. 247

http://www.ams.org/mathscinet-getitem?mr=2518818
http://dx.doi.org/10.2178/jsl/1243948334
http://www.ams.org/mathscinet-getitem?mr=1767842

264 Anderson and Csima

[4] Cooper, B., Computability Theory, Chapman and Hall/CRC, Boca Raton, Fla., 2004.
MR 2017461. 247

[5] Csima, B., R. Downey, and K. M. Ng, “Limits on jump inversion for strong re-
ducibilities,” Journal of Symbolic Logic, vol. 76 (2011), pp. 1287–96. MR 2895396.
DOI 10.2178/jsl/1318338849. 246, 256, 263

[6] Ershov, Y. L., “On a hierarchy of sets, III,” Algebra and Logic, vol. 9 (1970), pp. 20–31.
263

[7] Gerla, G., “Una generalizzazione della gerarchia di Ershov,” Bollettino della Unione
Matematica Italiana (9), vol. 16-B (1979), pp. 765–78. 260, 263

[8] Jockusch, Jr., C. G., and R. A. Shore, “Pseudojump operators, II: Transfinite iterations,
hierarchies, and minimal covers,” Journal of Symbolic Logic, vol. 49 (1984), pp. 1205–
36. MR 0771789. DOI 10.2307/2274273. 252

[9] Mohrherr, J., “Density of a final segment of the truth-table degrees,” Pacific Journal of
Mathematics, vol. 115 (1984), pp. 409–19. MR 0765197. 246

[10] Nies, A., Computability and Randomness, vol. 51 of Oxford Logic Guides, Oxford Uni-
versity Press, Oxford, 2009. MR 2548883.
DOI 10.1093/acprof:oso/9780199230761.001.0001. 250, 252

[11] Odifreddi, P. G., Classical Recursion Theory, Vol. II, vol. 143 of Studies in Logic and
the Foundations of Mathematics, North-Holland, Amsterdam, 1999. 252, 263

[12] Rogers, Jr., H., Theory of Recursive Functions and Effective Computability, 2nd edition,
MIT Press, Cambridge, Mass., 1987. MR 0224462. 260

[13] Sacks, G. E., “Recursive enumerability and the jump operator,” Transactions of the Amer-
ican Mathematical Society, vol. 108 (1963), pp. 223–39. MR 0155747. 263

[14] Shoenfield, J. R., “On degrees of unsolvability”, Annals of Mathematics (2), vol. 69
(1959), pp. 644–53. MR 0105355. 246, 256

[15] Soare, R. I., Recursively Enumerable Sets and Degrees: A Study of Computable Func-
tions and Computably Generated Sets, Perspectives in Mathematical Logic, Springer,
Berlin, 1987. MR 0882921. 246, 247

[16] Soare, R. I., Computability Theory and Applications, forthcoming, Springer-Verlag,
preprint. 246, 247

Acknowledgments

B. Csima was partially supported by Natural Sciences and Engineering Research Council
of Canada Discovery Grant 312501. B. Csima would like to thank the Max Planck
Institute for Mathematics, Bonn, Germany, for a productive visit.

Anderson
Division of Mathematics and Natural Sciences
Gordon State College
419 College Drive
Barnesville, Georgia 30204
USA
banderson@gordonstate.edu
www.gordonstate.edu/Faculty/banderson

Csima
Department of Pure Mathematics
University of Waterloo
200 University Avenue W
Waterloo, Ontario N2L 3G1
Canada
csima@uwaterloo.ca
www.math.uwaterloo.ca/~csima

http://www.ams.org/mathscinet-getitem?mr=2017461
http://www.ams.org/mathscinet-getitem?mr=2895396
http://dx.doi.org/10.2178/jsl/1318338849
http://www.ams.org/mathscinet-getitem?mr=0771789
http://dx.doi.org/10.2307/2274273
http://www.ams.org/mathscinet-getitem?mr=0765197
http://www.ams.org/mathscinet-getitem?mr=2548883
http://dx.doi.org/10.1093/acprof:oso/9780199230761.001.0001
http://www.ams.org/mathscinet-getitem?mr=0224462
http://www.ams.org/mathscinet-getitem?mr=0155747
http://www.ams.org/mathscinet-getitem?mr=0105355
http://www.ams.org/mathscinet-getitem?mr=0882921
mailto:banderson@gordonstate.edu
http://www.gordonstate.edu/Faculty/banderson
mailto:csima@uwaterloo.ca
http://www.math.uwaterloo.ca/~csima

	1 Introduction
	2 Notation
	3 The Bounded Jump
	4 Properties
	5 Ershov Hierarchy
	6 Inversions
	7 Other Jump Operators
	8 Further Study
	References
	Acknowledgments
	Author's addresses

