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On Existence in Set Theory, Part II:
Relative Productivity

Rodrigo A. Freire

Abstract The present paper continues the investigation initiated in an earlier
work. After a short introduction, the notion of relative productivity is defined
and a technical apparatus is developed in order to evaluate the classification of the
axioms previously obtained. Some results on the semilattice of simple relative
degrees are proved at the end of Section 2. Section 3 adds some concluding
remarks.

1 Introduction

The analysis of existence assertions in Part I (see [1]) is founded on the notion of
productivity: an existence assertion is either productive or admits unconditional de-
gree 0. The productivity of a (valid) sentence is, roughly, its power of producing
sets. This existential power can be measured by the closure property that a domain
should have in order to fulfill the existence requirement of the sentence. The plau-
sibility of this identification rests on the intuition that if a valid sentence is not valid
in all domains with a specific closure property, then that failure is caused by an in-
sufficiency of the closure property. This identification is interesting because there is
a natural hierarchy of closure properties for domains, gradually increasing from no
closure property, closure under taking elements, closure under taking elements and
subsets, closure under not increasing rank, and so forth, to closure under everything
and giving rise to a linear structure of degrees of existence requirement. If a sentence
is valid in the universe, the domain that corresponds to the highest closure degree,
then one may ask how much closure of the universe is actually required by its va-
lidity. Using this apparatus, one can evaluate the axioms of ZFC, and the result is
a refinement of the standard view about these axioms. For example, the axiom of
regularity has no existential power, while the instances of replacement, in general,
have strong existence requirements.
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Although there is general agreement between the standard view and the results ob-
tained in [1], there is also at least one point of divergence: the extensionality axiom.
According to the standard view, extensionality has no existential import. The results
presented in [1] show a different picture: the existential power of extensionality is
indeed very weak, but it is not zero. The transitivity of a domain suffices to fulfill
the existential demands of extensionality, but it is also required: if the domain is not
transitive then extensionality may not hold. The following examples provide some
proofs of (mathematically) interesting existential statements in which extensionality
is used. (The first two were already hinted at in [1].)

Example 1 We have Cantor’s proof that there exists a transcendental number: the
set of algebraic numbers is countable, and the set of all real numbers is not. Therefore
these two sets are different, and, by extensionality, there is a real number which is
not algebraic. The use of extensionality can be eliminated; the diagonal method may
be used to construct a transcendental number.

Example 2 Denote by A the set of orderings in }.}.!//, and denote by B the set
of well-orderings in }.}.!//. If A ¤ B , then there is an ordering in }.}.!// which
is not a well-ordering in }.}.!//. This is a theorem of ZF; it is almost an instance
of extensionality, and ZFC cannot provide an abstraction term for this existential
theorem (see Levy [2, p. 173]).

Example 3 If ˛ is an ordinal and ˛ ¤ Æ˛ , then there is an element in V˛ which
is not in L˛ . This is a theorem of ZFC: assuming the hypothesis, it follows that L˛
and V˛ are not equipotent. Since L˛ � V˛ , there is, by extensionality, an element in
V˛ which is not in L˛ .

The examples above confirm that the existential power of extensionality is indeed
very limited but not zero. This is a point of divergence from the standard view, and
there may be other points of divergence. According to the results in the first part, the
axiom of the empty set is not different from the assertion 9x.x D x/: it excludes
the empty domain, but it makes no further requirement for nonempty domains. The
standard view seems not to equate these two assertions. The axiom of infinity is
another possible point of disagreement. One could say that the classification in [1]
overestimates the existence requirement of the axiom of infinity; it is in fact an exis-
tence assertion but may not be as strong as indicated by the classification presented
in [1].

The disagreement with the standard view is not in itself a great problem; it was
already pointed out in [1] that one of the defects of the standard view is that it lacks
justification for its distinctions. Moreover, the standard view is not accurate or stable
enough so that a comparison can be made to the theory developed in [1]. However,
the analysis presented there is supposed not to have the same defects of the standard
view and must be justified on solid grounds. This is one of the purposes of the present
article.

The productivity of a valid sentence is classified according to seven linearly or-
dered degrees of existence requirement: 0; 1; 2; 3; 4; 4!; 5. These are the absolute
degrees of existence requirement: they measure the amount of closure (in a natural
hierarchy of closure properties) that is sufficient for the validity of a sentence in a
domain. The fact that the productivity of a sentence is a semantic notion, and must
be evaluated by the semantic behavior of the sentence, implies that the productivity
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of a sentence is stable under logical deduction. In order to evaluate the classification
of the axioms according to the absolute degrees obtained in [1], one could (i) enrich
the structure of absolute degrees in a way that is coherent with the notion of produc-
tivity, (ii) reclassify the axioms according to the new structure, and (iii) see if the
old classification persists in the new structure. The simple relative degrees defined
in Section 2, Definition 23, form an enriched structure coherent with the notion of
productivity, and Theorem 20 shows that the old classification of the axioms persists
in the new structure, with the exception of the axiom of infinity.

2 Relative Degrees

Let T � be the theory obtained from ZFC by the introduction of unquantifiable class
variables, as described in [2] (in the first chapter), and by adding the appropriate
relation and function symbols. T � is a conservative extension of ZFC. Let '.I /
be a formula in T �, in which I is a class variable, and such that there are no free
variables in '.I / besides I . Furthermore, '.I / may contain introduced symbols of
T �, such as the constant !. One may think of '.I / as a context, or a condition on the
interpretations I , and the degrees of existence requirement in [1] can be relativized
to this context: just relativize each item in the relevant definition to the context '.I /.
For example, the sentence A is said to admit degree 1 of existence requirement rela-
tive to the context '.I / if, under the assumption of '.I /, A holds in every transitive
2-interpretation of L.ZF/. The following definition makes precise the notion of de-
gree of existence requirement relative to a context.

Definition 4 Let T � be the theory described above, and let '.I / be a context
in T �. The sentence A in L.ZF/ is said to admit the following relative degrees of
existence requirement:
� degree 0 of existence requirement relative to the context '.I / in T � if, un-

der the assumption of '.I /, the sentence A holds in every (nonempty) 2-
interpretation of L.ZF/ in T , that is, if

T � ` '.I / ^ 9x.x 2 I /! AI I

� degree 1 of existence requirement relative to the context '.I / in T � if,
under the assumption of '.I /, the sentence A holds in every transitive
2-interpretation of L.ZF/ in T , that is, if

T � ` '.I / ^ 9x.x 2 I / ^ 8x8y
�
x 2 I ^ y 2 x ! y 2 I

�
! AI I

� degree 2 of existence requirement relative to the context '.I / in T � if, un-
der the assumption of '.I /, the sentence A holds in every supertransitive
2-interpretation of L.ZF/ in T , that is, if

T � ` '.I / ^ 9x.x 2 I / ^ 8x8y
�
x 2 I ^ .y 2 x _ y � x/! y 2 I

�
! AI I

� degree 3 of existence requirement relative to the context '.I / in T � if, under
the assumption of '.I /, the sentence A holds in every 2-interpretation of
L.ZF/ in T that is a level V˛ , that is, if

T � ` '.I / ^ 9x.x 2 I / ^ Ord.˛/ ^ 8x.x 2 I $ x 2 V˛/! AI ;

in which Ord.˛/ stands for “˛ is an ordinal”;
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� degree 4 of existence requirement relative to the context '.I / in T � if, under
the assumption of '.I /, the sentence A holds in every 2-interpretation of
L.ZF/ in T that is a level V˛ for ˛ a limit ordinal, that is, if
T � ` '.I / ^ 9x.x 2 I / ^ LimOrd.˛/ ^ 8x.x 2 I $ x 2 V˛/! AI ;

in which LimOrd.˛/ stands for “˛ is a limit ordinal”;
� degree 4! of existence requirement relative to the context '.I / in T � if,
under the assumption of '.I /, the sentence A holds in every 2-interpretation
of L.ZF/ in T that is a level V˛ for ˛ a limit ordinal greater than !, that is, if
T � ` '.I / ^ LimOrd.˛/ ^ ! < ˛ ^ 8x.x 2 I $ x 2 V˛/! AI I

� degree 5 of existence requirement relative to the context '.I / in T � if, under
the assumption of '.I /, the sentence A holds in the identity interpretation V
of L.ZF/ in T , that is, if

T � ` '.I / ^ 8x.x 2 I /! AI :

Remark 5 All clauses in Definition 4, with the exception of the clause for degree
0, are of the form T � ` '.I / ^ C d .I / ! AI , in which C d .I / depends on the de-
gree d and expresses the corresponding closure property of I . Definition 4 is slightly
different from the corresponding definition in [1]: in the former the clauses are for-
mulas in the extended language of T �, while in the latter the clauses are schemas.
It is assumed, tacitly, that V has all closure properties, that is, the formula C d .I / is
such that for each d 2 ¹0; 1; 2; 3; 4; 4!; 5º, T � ` C d .V/.

Remark 6 The absolute productivity can be recovered in Definition 4 by a tau-
tological context such as 8x.x D x/: if the sentence A in L.ZF/ admits degree d
relative to 8x.x D x/ according to Definition 4, then A admits (absolute) degree
d according to the original definition in [1]. This is an immediate corollary of the
conservation theorem [2, Theorem I.4.6], except that for degrees 3, 4, 4!, and 5 one
must consider a slight reformulation of the original definition in [1] and remember
that in the original definition the hypothesis 9x.x 2 I / is implicit.1 Moreover, if the
sentence A is B ! C , then A admits (absolute) degree d of existence requirement
if and only if C admits degree d of existence requirement relative to the context BI .

Remark 7 All the results in [1, Section 2] admit a relativized version: the relative
degrees are linearly ordered by strength; a sentence A in L.ZF/ admits a relative
degree if and only if T � ` '.I /! A; if ` A! B , and A admits degree d relative
to '.I /, then B also admits degree d relative to '.I /; and so forth. The convention
for contexts makes clear that the class variable I is the only variable that may occur
free in a context. When there is no risk of ambiguity, the variable I will not be
indicated, and a context will be denoted simply by ', '0, and so forth. If ' ! A is a
theorem of T �, then the least degree of existence requirement relative to ' admitted
by A is denoted by r.A j '/. If r.A j '/ is defined, then it is called the existence
requirement of A relative to '.

Remark 8 Since one can consider the degree of existence requirement of the sen-
tence A relative to the context A, Definition 4 also subsumes part of the analysis of
stronger theories set forth in [1].

Let P denote the set of all pairs .d; '/, in which d is an absolute degree and ' is a
context in T . There are two natural preorderings in P related to Definition 4:



On Existence in Set Theory, Part II 95

(1) .d; '/ �1 .d 0; '0/ if and only if d � d 0 and T � ` .'0 ^ C d
0

.I //! ';
(2) .d; '/ �2 .d 0; '0/ if and only if d � d 0 and T � ` '0 ! '.
It follows by definition that �2��1. Lemma 9 shows that P is preordered by

strength of relative productivity by both relations �1 and �2.
Lemma 9 Consider A a sentence in L.ZF/. If .d; '/ �1 .d 0; '0/ or .d; '/ �2
.d 0; '0/, and if A admits degree d of existence requirement relative to the context '
in T �, then A admits degree d 0 of existence requirement relative to the context '0 in
T �.
Proof Suppose that .d; '/ �1 .d 0; '0/. In this case, T � ` .'0 ^ C d 0

.I // ! '

and d � d 0. Since T � ` C d 0

.I / ! C d .I /, if A admits degree d of existence
requirement relative to the context ' in T �, then T � ` ' ^C d .I /! AI . It follows
that A admits degree d 0 of existence requirement relative to the context '0 in T �.

If .d; '/ �2 .d 0; '0/, then T � ` '0 ! '. Now the argument above shows that A
admits degree d 0 of existence requirement relative to the context '0 in T �.

Consider the equivalence relations defined below:
.d; '/ �i .d

0; '0/ if and only if .d; '/ �i .d 0; '0/ and .d 0; '0/ �i .d; '/; i D 1; 2:
Although �2��1, these equivalence relations are different. In fact, if ' is the
extensionality axiom and '0 is a tautology, then .1; '/ �1 .1; '0/, but .1; '/ and
.1; '0/ are not equivalent according to �2.2 Denote by Qi the quotient of P by the
equivalence relation �i , for i D 1; 2. The ordering induced by �i in Qi is denoted
by the same symbol �i , for i D 1; 2.
Proposition 10 The set Q2 ordered by �2 is a lattice and is isomorphic to
the direct product of the lattice .D;�/ of absolute degrees with Bop

0 .T
�/, the 0th

Lindenbaum–Tarski algebra of T � with the opposite ordering.
Proof Let jBop

0 .T
�/j denote the domain of Bop

0 .T
�/. The map

F W P �! D �
ˇ̌
B

op
0 .T

�/
ˇ̌
; .d; '/ 7!

�
d; Œ'�

�
is surjective and is a homomorphism of preordered sets. The required isomorphism
is obtained by passing F to the quotient.

Proposition 10 shows that Q2 is not quite adequate to capture the notion of relative
degrees. The structure of relative degrees is supposed to come from the interaction
between the structure of absolute degrees on one side and the structure of contexts
on the other. Proposition 10 shows that in Q2 there is little, if any, interaction. The
structure of Q1 is much more interesting and more adequately captures the interac-
tion between absolute degrees and contexts.
Proposition 11 The setQ1 ordered by �1 is a lattice. In this lattice sup and inf ,
> and ? are given by the following formulas:

sup
��
.d; '/

�
1
;
�
.d 0; '0/

�
1

�
D

��
max.d; d 0/; ' ^ '0

��
1
;

inf
��
.d; '/

�
1
;
�
.d 0; '0/

�
1

�
D

�
.min.d; d 0/; .' _ '0/ ^

�
' _ C d

0

.I /
�
^

�
'0 _ C d .I /

��
1
;

> D
�
.5; ' ^ :'/

�
1
;

? D
�
.0; ' _ :'/

�
1
;

in which Œ.d; '/�1 denote the class of .d; '/ according to�1.
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Proof This is straightforward. Suppose that .d; '/ �1 .e;  / and that .d 0; '0/ �1
.e;  /. This means that max.d; d 0/ � e and that

T � `  ^ C e.I /! ' and T � `  ^ C e.I /! '0:

Therefore, T � `  ^C e.I /! '^'0 and .max.d; d 0/; '^'0/ �1 .e;  /. Since
.d; '/ �1 .max.d; d 0/; ' ^ '0/ and .d 0; '0/ �1 .max.d; d 0/; ' ^ '0/, it follows that

sup
��
.d; '/

�
1
;
�
.d 0; '0/

�
1

�
D

��
max.d; d 0/; ' ^ '0

��
1
:

In order to establish the formula for inf, suppose that .e;  / �1 .d; '/ and that
.e;  / �1 .d

0; '0/. This means that e � min.d; d 0/ and that

T � ` ' ^ C d .I /!  and T � ` '0 ^ C d
0

.I /!  :

Therefore, T � ` .' ^ C d .I // _ .'0 ^ C d 0

.I //!  . Equivalently,

T � ` .' _ '0/ ^
�
' _ C d

0

.I /
�
^

�
'0 _ C d .I /

�
^

�
C d .I / _ C d

0

.I /
�
!  :

The inequality

.e;  / �1
�
min.d; d 0/; .' _ '0/ ^

�
' _ C d

0

.I /
�
^

�
'0 _ C d .I /

��
follows from the fact that T � ` .C d .I / _ C d 0

.I //$ Cmin.d;d 0/.I /. Since

T � ` .' _ '0/ ^
�
' _ C d

0

.I /
�
^

�
'0 _ C d .I /

�
^ Cmin.d;d 0/.I /! '

and

T � ` .' _ '0/ ^
�
' _ C d

0

.I /
�
^

�
'0 _ C d .I /

�
^ Cmin.d;d 0/.I /! '0;

it follows that

inf
��
.d; '/

�
1
;
�
.d 0; '0/

�
1

�
D

��
min.d; d 0/; .'_'0/^

�
'_C d

0

.I /
�
^

�
'0_C d .I /

���
1
:

Using the formulas for sup and inf, it is easy to prove the formulas for > and ?.

The lattices .Q1;�1/ and .Q2;�2/ provide two different notions of relative degrees
of productivity. It has already been remarked that in .Q2;�2/ there is little interac-
tion between the structure of absolute degrees and the structure of contexts, while
in .Q1;�1/ there is a stronger interaction. Later in this section, a third natural pre-
ordering �0 in P will be introduced, together with the associated partially ordered
quotient .Q0;�0/, giving rise to a third notion of relative degree.

One may ask what relative degrees, in one sense or another, are admitted by a
sentence in L.ZF/. Of course, for any sentence A there is a context ' such that A
admits degree 0 of existence requirement relative to '; just take ' to beA^.I D V/,
or just AI . This means that A admits all relative degrees Œ.d; AI /�, for d D 0; : : : ; 5,
no matter which specific notion of relative degree is used. Therefore, the class of all
contexts gives rise to a trivial notion of reducibility: everything is reducible to zero
in this class. Definition 12 below specifies a subclass of contexts that corresponds to
a nontrivial notion of reducibility, and that will be valuable in the evaluation of the
productivity of the axioms of ZFC.

Definition 12 The formula ' is called a simple context if it is a context of the
form

9x1 � � � 9xn
�
'.x1; : : : ; xn/ ^ x1 2 I ^ � � � ^ xn 2 I

�
;
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in which it is assumed that n is a natural number (possibly zero), all free variables
of ' are included in the list x1; : : : ; xn (I does not occur in '), and, assuming the
consistency of ZF, ZFC ° :9x1 � � � 9xn'.
Remark 13 The context ' of the form

9x1 � � � 9xn
�
'.x1; : : : ; xn/ ^ x1 2 I ^ � � � ^ xn 2 I

�
can appear as

9 Nx
�
'. Nx/ ^ Nx 2 I

�
:

If more than one context is under consideration, for example, ' and '0, then they can
appear as

9 Nx
�
'. Nx/ ^ Nx 2 I

�
and 9 Ny

�
'0. Ny/ ^ Ny 2 I

�
;

respectively.
Remark 14 The condition ZFC ° :9 Nx' in Definition 12 implies that 9 Nx' is con-
sistent with ZFC, and, by the conservation theorem [2, Theorem I.4.6], it is equiva-
lent to T � ° :9 Nx'.
The notion of simple context will be used to evaluate the classification of the ax-
ioms according to the absolute degrees obtained in [1]. In the introduction, it was
remarked that in order to evaluate that classification one could (i) enrich the struc-
ture of absolute degrees in a way that is coherent with the notion of productivity, (ii)
reclassify the axioms according to the new structure, and (iii) see if the old classifi-
cation persists in the new structure. Definition 12 is the first step toward (i), (ii), and
(iii).

Before doing so, however, it should be remarked that the notion of simple context
is coherent with the notion of productivity; in fact, productivity is the capacity of
producing new sets from given sets in nonempty domains. This existential power
should not be lost by the restriction to nonempty domains that contain some sets
x1; : : : ; xn, satisfying some consistent property. Simple contexts cannot raise the
closure degree: satisfying a simple context is not sufficient to guarantee that a domain
is transitive, or that a transitive domain is supertransitive, and so forth.3 The rest of
this section is devoted to the classification of the axioms of ZFC according to this
structure. In the end of the section, four results on the structure of relative degrees of
the form Œ.d; '/�1, where ' is simple, are included.
Definition 15 Suppose that the sentence A admits a degree of existence require-
ment. The sentence A is simply reducible if there is a simple context ' such that
r.A j '/ � r.A/. The sentence A is simply reducible to degree d if there is a simple
context ' such that A admits degree d of existence requirement relative to ' and
d � r.A/. The sentence A is simply irreducible if it is not simply reducible.
Remark 16 If the sentence A is such that 0 � r.A/, then A is simply reducible if
and only if A is simply reducible to the degree immediately preceding r.A/. In case
it is relevant to indicate both the degree and context that gives the reduction, one may
say that A is simply reducible to degree d under '.
In [1, Part I], one encounters the following result: if A admits a degree of existence
requirement and A is of the form 8x1 � � � 8xnB , in which all quantifiers in B are
bounded, then A admits degree 1. Proposition 17 complements this result: with-
out alternating unbounded quantifiers one cannot obtain simply irreducible existence
requirements greater than 1.
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Proposition 17 If A is a sentence of L.ZF/, ZFC ° :A and A is of the form
9x1 � � � 9xnB , in which all quantifiers inB are bounded, then there is a simple context
' such that A admits degree 1 relative to '.

Proof Take ' to be the context 9x1 � � � 9xn.B ^ x1 2 I ^ � � � ^ xn 2 I /. The
closure condition C 1.I / implies that AI $ '.

The aim of the following results is to show that the axioms of ZFC� Inf (ZFC minus
the axiom of infinity) are simply irreducible and that the axiom of infinity is simply
reducible to degree 1.

Lemma 18 If ' is a simple context, then there is a natural number N such that
T � ° ' ! N 2 I .

Proof Suppose that ' is

9x1 � � � 9xn
�
'.x1; : : : ; xn/ ^ x1 2 I ^ � � � ^ xn 2 I

�
:

Suppose, on the contrary, that for each N it holds that T � ` ' ! N 2 I . In this
case, for each N ,

T � ` 9 Nx
�
'. Nx/ ^ Nx 2 ¹y1; : : : ; ynº

�
! N 2 ¹y1; : : : ; ynº:

Since T � ` '. Ny/ ! 9Nx.'. Nx/ ^ Nx 2 ¹y1; : : : ; ynº/, it follows that for each N ,
T � ` '. Ny/! N 2 ¹y1; : : : ; ynº. In particular,

T � ` '. Ny/!
�
0 2 ¹y1; : : : ; ynº ^ � � � ^ S

n0 2 ¹y1; : : : ; ynº
�
;

and hence T � ` :'. Ny/, contradicting the hypothesis that ' is a simple context.

Remark 19 The notation Sn0 is used in order to distinguish between (the metathe-
oretical number) n and the corresponding number in T �. The symbol S denotes the
successor function symbol. The proof of Lemma 18 shows that if n is the number of
free variables in ', then there is a number N � Sn0 such that T � ° ' ! N 2 I .
Moreover, T � cannot prove that the simple context ' implies that I is infinite.

Theorem 20 The axioms of ZFC � Inf are not simply reducible. The axiom of
infinity is simply reducible; if A is

9x
�
9y 2 x

�
8z.z … y/

�
^ 8y 2 x

�
9z 2 x

�
8w.w 2 z $ w 2 y _ w D y/

���
and ' is the simple context 9x.x D ! ^ x 2 I /, then r.A j '/ D 1.

Proof Clearly, if A admits degree 0 of existence requirement, then A is simply
irreducible. Therefore, only the productive axioms are considered.

Beginning with the axiom of infinity, the sentence A in the statement is of the
form 9xB . Fix I , and suppose that ' ^ C 1.I /, in which ' is the simple context
9x.x D ! ^ x 2 I /. Since ! 2 I and I is transitive, it follows that n 2 I , for
any natural number n. It is now clear that Bx Œ!�I holds. From this and the fact that
! 2 I , it follows that AI holds. The proof of Lemma 18 shows that a simple context
cannot imply that I is infinite, and hence the axiom of infinity is not simply reducible
to degree 0.

There are instances of the axiom of replacement that are not simply reducible. In
fact, it is a theorem of ZFC that every well-ordered set is isomorphic to a unique
ordinal, and hence this is a theorem of a finite part � of ZFC. Let A1; : : : ; Ak be the
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instances of replacement in � . Suppose that, for a fixed I , there is a simple context
' of the form

9x1 � � � 9xn
�
'.x1; : : : ; xn/ ^ x1 2 I ^ � � � ^ xn 2 I

�
such that T � proves all instances of replacement A1; : : : ; Ak relativized to I , under
the hypothesis of ' ^ C 4!.I /. Since

T � ` '.y1; : : : ; yn/! 9x1 � � � 9xn'.x1; : : : ; xn/

and T � ` 9˛ > !.LimOrd.˛/ ^ y1 2 V˛C˛ ^ � � � ^ yn 2 V˛C˛/, it follows that
T � ` '. Ny/! 9˛9 Nx

�
'. Nx/ ^ Nx 2 V˛C˛

�
^ C 4!.V˛C˛/:

Therefore, T � ` '. Ny/ ! 9˛ > !.LimOrd.˛/ ^ AV˛C˛

i /, for all instances Ai ,
i D 1; : : : ; k, of replacement. But ˛ C ˛ is a limit ordinal greater than !, and all
axioms ofZC hold in V˛C˛ . Since 2�˛ ordered lexicographically is a well-ordered
set in V˛C˛ and 2 � ˛ is isomorphic to ˛ C ˛, it follows that T � C 9 Ny'. Ny/ proves
that there is an ordinal ˛ such that ˛ C ˛ 2 V˛C˛ , contradicting the hypothesis that
' is a simple context.

Similarly, the other axioms are not simply reducible. As shown in the argument
for the nonreducibility of replacement, a simple context ' requires only the existence
in I of some sets x1; : : : ; xn satisfying '. The axiom A, such that 0 � r.A/, is
simply reducible to the degree immediately preceding r.A/ under ' if A holds in
any domain I containing x1; : : : ; xn and such that C d .I /. For extensionality this is
impossible; in this case, r.A/ D 1, and it suffices to take I D ¹x1; : : : ; xn; y; zº such
that y ¤ z and for every w 2 y [ z, w … I . For separation, r.A/ D 2 and it suffices
to take I to be the transitive closure of ¹¹x1; : : : ; xnºº. In fact, if xi is of maximal
rank, then ¹xiº is not in I . For the power set (and pairing), r.A/ D 4 and it suffices
to take I D V˛C1 such that ˛ is greater than the rank of ¹x1; : : : ; xnº. For the choice
set (and union), r.A/ D 3. Fix ˛ C 1 greater than the rank ¹x1; : : : ; xnº, and take
I D V˛C1 [ ¹¹˛º; ¹¹˛ºº; ¹¹¹˛ººº; ¹¹˛º; ¹¹˛ºººº. The set ¹˛; ¹˛ºº is not in I .

Remark 21 There are, in the literature, formulations of the axiom of infinity that
are not logically equivalent. For example, the version of this axiom in [2] is different
from the sentence evaluated above. One could also simply assert that there is an
infinite set. However, all of these sentences are simply reducible to degree 1. If ' is
the simple context 9x.x D V! ^ x 2 I /, then the axiom of infinity, as formulated in
[2], admits degree 1 relative to '. Furthermore, if I is transitive and ! 2 I , then !
is an infinite set in I .

Remark 22 If A admits degree 4! of existence requirement relative to a simple
context of the form 9 Nx.'. Nx/ ^ Nx 2 I /, then A also admits degree 4 relative to the
simple context 9 Nx9y.'. Nx/ ^ y D ! ^ Nx 2 I ^ y 2 I /.

Theorem 20 shows that, with the exception of the axiom of infinity, the classification
achieved in [1] persists in the structure of simple relative degrees. This theorem also
shows that the axiom of infinity makes very weak existential demands on domains,
except for requiring that ! is in the domain. This seems to be in agreement with the
intuitive understanding of this axiom.

The previous results regarding simple reducibility suggest the identification of
strongly productive assertions with sentences that do not admit degree 1 and that
are not simply reducible to degree 1. This seems to be a reasonable definition of the
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intuitive notion of strongly productive assertion. In this sense, the strongly productive
axioms of ZFC are separation, power set, choice, replacement, union, and pairing.

Definition 23 The classes Œ.d; '/�1, in which ' is a simple context, are called
simple relative degrees, and the set of all such classes is denoted by S. According to
Proposition 24 below, S with the induced ordering �1 is an upper semilattice.

This section ends with the following results on the structure of .S;�1/.

Proposition 24 Denote by Œ.d; '/�1 and Œ.d; '/�2 the classes of .d; '/ according
to�1 and�2, respectively.

(1) The classes Œ.d; '/�2, in which ' is a simple context, form a sublattice of
.Q2;�2/.

(2) The classes Œ.d; '/�1, in which ' is a simple context, form an upper sub-
semilattice of .Q1;�1/ with the least element ? and such that for any two
elements there is a lower bound in the semilattice.

Proof .1/: Suppose that ' and '0 are simple contexts of the form

9x1 � � � 9xn
�
'.x1; : : : ; xn/ ^ x1 2 I ^ � � � ^ xn 2 I

�
and

9y1 � � � 9ym
�
'0.y1; : : : ; ym/ ^ y1 2 I ^ � � � ^ ym 2 I

�
; respectively:

The conjunction ' ^ '0 is logically equivalent to the simple context

9x1 � � � 9xn9y1 � � � 9ym
�
'.x1; : : : ; xn/ ^ '

0.y1; : : : ; ym/ ^ x1 2 I ^ � � � ^ ym 2 I
�
:

Assuming that I is nonempty, the disjunction ' _ '0 is equivalent to the simple
context

9x1 � � � 9xn9y1 � � � 9ym
��
'.x1; : : : ; xn/_'

0.y1; : : : ; ym/
�
^x1 2 I ^ � � � ^ym 2 I

�
:

.2/: This follows from .1/ and the fact that �2��1.

The semilattice S is an enrichment of the structure of absolute degrees that is coherent
with the notion of productivity. The use of this enriched structure in the evaluation
of the productivity of a sentence gives more accurate results.

Proposition 25 The semilattice .S;�1/ is not a lattice.

Proof Suppose that','0, and'00 are simple contexts, thatT � ° '0 ^C 4!.I /! ',
and that .0; '00/ is a lower bound for .0; '/ and .4!; '0/ according to �1. In this
setting, T � ° '00 ! '.

From Lemma 18, it follows that there is a natural numberN such that T � ° '00 !

N 2 I . Now if  is the simple context

9 Nx9 Ny9z
��
'. Nx/ _ z D N

�
^ '00. Ny/ ^ Nx 2 I ^ Ny 2 I ^ z 2 I

�
;

then .0; '00/ �1 .0;  /, and .0;  / is still a lower bound for .0; '/ and .4!; '0/.
Since T � ° '00 ! ', it follows that .0; '00/ and .0;  / are not equivalent according
to�1. It follows that .0; '/ and .4!; '0/ have no greatest lower bound in S.

Proposition 25 shows that S is not a lattice. However, for each fixed d , the set of all
classes Œ.d; '/� contained in S is a closed subset of .Q1;�1/ under the operations of
inf and sup.
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Proposition 26 The map H W S �! S described below is a homomorphism of
semilattices:
� Œ.d; '/�1 7! Œ.d; '/�1, if d is not 4!;
� Œ.4!; '/�1 7! Œ.4; 9 Nx9z.'. Nx/ ^ z D ! ^ Nx 2 I ^ z 2 I //�1, where ' is
9 Nx.'. Nx/ ^ Nx 2 I /.

Proof It is necessary to prove that H preserves the supremum of two simple rela-
tive degrees. The only case that requires proof is the case in which at least one of the
degrees is of the form Œ.4!; '/�1.

Let Œ.4!; '/�1 and Œ.d; '0/�1 be simple relative degrees. By Proposition 11,

sup
��
.4!; '/

�
1
;
�
.d; '0/

�
1

�
D

��
max.4!; d/; ' ^ '0

��
1
:

It is necessary to prove that

sup
�
H

��
.4!; '/

�
1

�
;H

��
.d; '0/

�
1

��
D H

���
max.4!; d/; ' ^ '0

��
1

�
: (1)

If d � 4!, then equation (1) above becomes

sup
���
4; 9 Nx9z

�
'. Nx/ ^ z D ! ^ Nx 2 I ^ z 2 I

���
1
;
�
.d; '0/

�
1

�
D

��
4; 9 Nx9 Ny9z

�
'. Nx/ ^ '0. Ny/ ^ z D ! ^ Nx 2 I ^ Ny 2 I ^ z 2 I

���
1
;

where ' is 9 Nx.'. Nx/ ^ Nx 2 I / and '0 is 9 Ny.'0. Ny/ ^ Ny 2 I /. In order to prove this
equation, suppose that .4; 9 Nx9z.'. Nx/ ^ z D ! ^ Nx 2 I ^ z 2 I // �1 .e;  / and
.d; '0/ �1 .e;  /. Since d � 4!, it follows that 4 � e. Furthermore,

T � `  ^ C e.I /! 9Nx9z
�
'. Nx/ ^ z D ! ^ Nx 2 I ^ z 2 I

�
and

T � `  ^ C e.I /! '0:

By the fact that '0 is 9 Ny.'0. Ny/ ^ Ny 2 I /, it follows that

T � `  ^ C e.I /! 9Nx9 Ny9z
�
'. Nx/ ^ '0. Ny/ ^ z D ! ^ Nx 2 I ^ Ny 2 I ^ z 2 I

�
;

and .4; 9 Nx9 Ny9z.'. Nx/ ^ '0. Ny/ ^ z D ! ^ Nx 2 I ^ Ny 2 I ^ z 2 I // �1 .e;  /.
Clearly, .4; 9 Nx9 Ny9z.'. Nx/ ^ '0. Ny/ ^ z D ! ^ Nx 2 I ^ Ny 2 I ^ z 2 I // is an upper
bound of .4; 9 Nx9z.'. Nx/ ^ z D ! ^ Nx 2 I ^ z 2 I // and .d; '0/, and hence it is the
least upper bound.

If d D 4!, then a minor variation of the above argument will work. Assume that
d D 5. In this case, equation (1) becomes

sup
���
4; 9 Nx9z

�
'. Nx/ ^ z D ! ^ Nx 2 I ^ z 2 I

���
1
;
�
.5; '0/

�
1

�
D

�
.5; ' ^ '0/

�
1
;

where ' is 9 Nx.'. Nx/ ^ Nx 2 I /. Since

T � ` 9 Nx9z
�
'. Nx/ ^ z D ! ^ Nx 2 I ^ z 2 I

�
! 9Nx

�
'. Nx/ ^ Nx 2 I

�
and

T � ` ' ^ C 5.I /! 9Nx9z
�
'. Nx/ ^ z D ! ^ Nx 2 I ^ z 2 I

�
;

it follows that equation (1) holds in this case also.
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Remark 27 Proposition 26 shows that simple relative degrees corresponding to
4! can be eliminated from S without loss of structure. In fact, this is very simple:
one can express that ! 2 I with a simple context, and this can be combined with
degree 4. Although the introduction of the absolute degree 4! is well motivated,
and this degree represents a natural closure property, in the relative setting one can
simulate the degree 4! with the combination of degree 4 and simple contexts. There-
fore, there is no reason to keep the distinction between the simple relative degrees
Œ.4!; 9 Nx.'. Nx/ ^ Nx 2 I //�1 and Œ.4; 9 Nx9z.'. Nx/ ^ z D ! ^ Nx 2 I ^ z 2 I //�1.
The axiom of infinity is the only axiom with existence requirement 4!. It is not an
accident that it is simply reducible: the nontrivial information of Theorem 20 is that
it is simply reducible to degree 1.

There is yet another natural preordering on the set P of pairs .d; '/, in which d is
an absolute degree and ' is a context:

.d; '/ �0 .d
0; '0/ if and only if T � ` '0 ^ C d

0

.I /! ' ^ C d .I /:

If .d; '/ �0 .d 0; '0/ and if the sentence A admits degree d of existence require-
ment relative to the context ' in T �, then A admits degree d 0 of existence require-
ment relative to the context '0 in T �. Moreover, �1��0.

Once more, one can consider a canonical equivalence relation �0 associated to
the preordering �0, and the quotient of P by �0. This quotient can be denoted by
Q0, and the partial ordering induced by �0 on it can be denoted by the same symbol
�0. From �1��0 it follows that �1��0. Furthermore, if .d; '/ �0 .d 0; '0/ and
d � d 0, then .d; '/ �1 .d 0; '0/. On the other hand, if .d; '/ �0 .d 0; '0/ and d 0 � d ,
then .d; '/ �1 .d; '0/ and .d; '0/ �0 .d 0; '0/.

Let R denote the subset ofQ0 whose elements are the classes Œ.d; '/�0, in which
' is a simple context, and let HŒS� denote the homomorphic image of S under the
homomorphismH defined in Proposition 26.

Proposition 28 If ' and '0 are simple contexts, then .d; '/ �0 .d 0; '0/ if and
only ifH.Œ.d; '/�1/ D H.Œ.d 0; '0/�1/. Moreover, R is isomorphic toHŒS�.

Proof Suppose that H.Œ.d; '/�1/ D H.Œ.d 0; '0/�1/. If d and d 0 are both dif-
ferent from 4!, then Œ.d; '/�1 D Œ.d 0; '0/�1. Since �1��0, it follows that
Œ.d; '/�0 D Œ.d 0; '0/�0. If max.d; d 0/ D 4!, then H.Œ.d; '/�1/ D Œ.4;  /�1,
H.Œ.d 0; '0/�1/ D Œ.4;  0/�1, and Œ.4;  /�1 D Œ.4;  0/�1, in which  is (the
simple context equivalent to) ' ^ ! 2 I and  0 is '0 ^ .! 2 I /. Therefore,
Œ.4;  /�0 D Œ.4;  

0/�0, and hence Œ.4; '/�0 D Œ.4; '0/�0.
Now, suppose that .d; '/ �0 .d 0; '0/. If d ¤ d 0, then one of d; d 0 is 4 and

the other is 4!. In fact, if .d; '/ �0 .d 0; '0/ and the sentence A admits degree d 0
relative to '0, then A admits degree d relative to '. If A is an axiom of ZFC and
r.A/ D max.d; d 0/, then r.A j ' ^ '0/ D min.d; d 0/, and hence A is simply re-
ducible. By Theorem 20, max.d; d 0/ D 4!. Suppose that d 0 D max.d; d 0/ D 4!.
By hypothesis, T � ` ' ^ C d .I / ! C 4!.I /, where ' is a simple context; d � 4
would then cause the simple reducibility of the power set axiom. Again, by Theo-
rem 20, d D 4.

For the second claim, consider the map G W S �! R, Œ.d; '/�1 7! Œ.d; '/�0.
Since �1��0, the map G is well defined. From the fact that �1��0, it follows
that G is a homomorphism. By the first claim, the congruence associated with G
equals the congruence associated with H . Moreover, G and H are easily seen to be
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strong homomorphisms of partially ordered sets, in the sense defined in Mal’cev [3,
p. 45]: if H.Œ.d; '/�1/ �1 H.Œ.d 0; '0/�1/ and d � d 0, then Œ.d; '/�1 �1 Œ.d 0; '0/�1.
On the other hand, if d 0 � d , then, as shown above, d D 4! and d 0 D 4. In
this case, Œ.d; '/�1 �1 Œ.d; '0/�1 and H.Œ.d; '0/�1/ D H.Œ.d 0; '0/�1/, and H is a
strong homomorphism. The fact that G is a strong homomorphism follows from the
(already proved) fact4 that if .d; '/ �0 .d 0; '0/, then there is a pair .e;  / such that
 is a simple context, .d; '/ �1 .e;  /, and .e;  / �0 .d 0; '0/. The result follows
from the homomorphism theorem in [3, pp. 45–46].

Remark 29 The introduction of R explored the possibility of identification of
pairs with different absolute degrees. Proposition 28 shows that the identification
of .4!; '/ with .4; ' ^ .! 2 I // is the only one achieved by R. The proof of this
proposition shows that it is not possible to have a similar identification with other de-
grees and simple contexts. In fact, such an identification would cause the reducibility
of an axiom that was proved to be simply irreducible. It follows that the semilattice
HŒS� (or R) is very canonical for evaluating productivity: two natural paths from P

lead toHŒS�.

3 Final Remarks

The main contribution of this work on the foundations of set theory is not in a partic-
ular result but rests in the conceptual apparatus developed for a systematic study of
existence and related notions. This second part has focused on the notion of relative
productivity, and the classification of the axioms of ZFC in the semilattices S and
R of simple relative degrees was achieved. Nevertheless, the apparatus can also be
used to analyze the existential import of other principles independent of ZFC.

The notion of absolute productivity can be recovered in Definition 4 of produc-
tivity relative to a context: it suffices to use a tautological context. This formulation
of absolute productivity is slightly different from the corresponding formulation in
[1]. Although these formulations are only equivalent for definable domains I (see
Remark 6), the results are independent of the specific formulation. One can even
employ stronger set theories with classes and give model-theoretic formulations for
the notions of productivity and relative productivity. In this case, the proofs will no
longer be finitary, but the same results will be accomplished.

One of the reasons for considering relative degrees was stated in the introduction:
an enrichment of the structure of degrees of existence requirement can be used to
evaluate the classification of the axioms obtained in [1]. However, that is by no
means the only reason for considering relative degrees. In fact, the classification in
the semilattice S, or in R, more accurately captures the productivity of a statement
in general and is not intended to work for axioms only. This improvement in the
evaluation of productivity already appears among the axioms: the classification of
the axiom of infinity according to both S and R seems to be more correct than the
classification in terms of absolute degrees.

There is a further motivation for the introduction of relative degrees, the evalua-
tion of the productivity of combinatorial principles. One difficulty in evaluating the
productivity of combinatorial principles is that the statement of these principles may
already require a great deal of structure: it may require the existence of @1, of }.!/,
and so forth. It hardly seems adequate to just rewrite these statements as equiva-
lent sentences in L.ZF/ and evaluate these sentences in terms of absolute degrees.
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A more satisfactory approach would be achieved by taking the required structure for
granted and evaluating how much productivity the principle adds over this structure.
This can be done by restricting the domains in the evaluation of degrees to the ones
that already contain the sets that must exist for the statement to be meaningful, that
is, by evaluating the degree of existence requirement of the statement relative to an
appropriate context.

Of course, not every context is coherent with the notion of productivity; every
sentence admits degree 0 relative to some context. This justifies the focus on simple
contexts. The simple contexts naturally lead to the simple relative degrees and to
the semilattices S and R. This is a great improvement on the finite linear order of
absolute degrees. In fact, the semilattice R, which is isomorphic to HŒS�, the ho-
momorphic image of S under the homomorphism H of Proposition 26, is, arguably
(see Remark 29), the correct structure for evaluating the productivity of sentences in
set theory. However, the simple contexts are not the only relevant kind of context for
relative productivity. Relative productivity can be used to compare the productivity
of sentences in more than one way.

The results obtained in the present paper reinforce and extend the analysis in
Part I. The main point of disagreement between the standard view and the analy-
sis contained in this two-part work concerns the extensionality axiom. Extensionality
asserts that if two sets are different, then there is an element in their symmetric differ-
ence. The validity of this assertion requires that, if two sets exist, then their elements
also exist. Of course this is a very minor requirement, and transitivity is sufficient
to fulfill this demand in a domain of existence. However, there is some requirement,
and this demand is not fulfilled without transitivity. Furthermore, transitivity is not
a first-order property, and one cannot just include this requirement in the axiom to
solve the problem.

This second part has remained faithful to the semantic spirit of the first part. Only
semantical definitions have stability under deduction and are not changed by syn-
tactical variations. The understanding of the existence requirements of a sentence
cannot come from its syntactical appearance alone. Rather, one should look at the
semantical behavior of the sentence in domains of existence. This continues to hold
in the relative setting.

Notes

1. The present article deals only with nonempty domains. The hypothesis 9x.x 2 I / will
be omitted, but one must keep in mind that, throughout this paper, I is supposed to be
nonempty.

2. For degree 0 these relations coincide: .0; '/ �1 .d 0; '0/ if and only if .0; '/ �2 .d 0; '0/.

3. The only exception is that the closure condition C 4.I / can be raised to C 4!.I / by
conjunction with a simple context (see Proposition 26).

4. This fact is proved shortly after the introduction of the relation �0, in the next-to-last
paragraph before the statement of Proposition 28.
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