Baire Categoricity and Σ_{1}^{0}-Induction

Stephen G. Simpson

Abstract

We investigate the reverse-mathematical status of a version of the Baire category theorem known as BCT. In a 1993 paper Brown and Simpson showed that BCT is provable in RCA_{0}. We now show that BCT is equivalent to $R C A_{0}$ over $R C A_{0}^{*}$.

Consider the following version of the Baire category theorem.
Definition 1 Let BCT be the statement that, in any complete separable metric space, the intersection of any countable sequence of dense open sets is dense. Thus BCT is essentially the usual statement of the Baire category theorem for complete separable metric spaces.

The purpose of this paper is to prove a new result concerning the reverse-mathematical status of BCT. From Brown and Simpson [1, Theorem 2.1] we already know that $B C T$ is provable in $R C A_{0}$. Here, of course, $R C A_{0}$ is the usual base theory for reverse mathematics (see [5]), consisting of Δ_{1}^{0}-comprehension plus Σ_{1}^{0}-induction. We now prove that BCT is logically equivalent to $R C A_{0}$ over the weaker base theory $R C A_{0}^{*}$. The system RCA ${ }_{0}^{*}$ was first introduced in Simpson and Smith [6]. Two recent papers making use of RCA_{0}^{*} are Simpson and Yokoyama [8] and Yokoyama [10].

In addition to BCT itself, we consider the following special case of BCT.
Definition 2 The Cantor space is the space $\{0,1\}^{\mathbb{N}}$ of infinite sequences of 0 's and 1 's. We endow $\{0,1\}$ with the discrete topology and $\{0,1\}^{\mathbb{N}}$ with the product topology. Let $\operatorname{BCT}\left(\{0,1\}^{\mathbb{N}}\right)$ be the statement that BCT holds for the Cantor space.

More precisely, let $\{0,1\}^{*}$ be the set of finite sequences of 0 's and 1 's. For $\sigma \in\{0,1\}^{*}$ and $X \in\{0,1\}^{\mathbb{N}}$, we write $\sigma \subset X$ to mean that σ is an initial segment of X. We also write $\llbracket \sigma \rrbracket=\left\{X \in\{0,1\}^{\mathbb{N}} \mid \sigma \subset X\right\}$. Note that the sets $\llbracket \sigma \rrbracket$

Received April 17, 2012; accepted June 13, 2012
2010 Mathematics Subject Classification: Primary 03B30; Secondary 03F25, 54E52
Keywords: reverse mathematics, second-order arithmetic, Baire category theorem, RCA_{0}, RCA $_{0}^{*}, \Sigma_{1}^{0}$-induction
© 2014 by University of Notre Dame 10.1215/00294527-2377887
where $\sigma \in\{0,1\}^{*}$ form a basis for the topology of $\{0,1\}^{\mathbb{N}}$. For $\sigma, \tau \in\{0,1\}^{*}$, we write $\sigma \subset \tau$ to mean that σ is a proper initial segment of τ. We say that $D \subseteq\{0,1\}^{*}$ is dense in $\{0,1\}^{*}$ if for all $\sigma \in\{0,1\}^{*}$ there exists $\tau \in D$ such that $\sigma \subset \tau$. Thus the dense open sets in $\{0,1\}^{\mathbb{N}}$ are just the sets of the form $\llbracket D \rrbracket=\bigcup_{\tau \in D} \llbracket \tau \rrbracket$, where D is dense in $\{0,1\}^{*}$. We say that $X \in\{0,1\}^{\mathbb{N}}$ meets D if there exists $\tau \in D$ such that $\tau \subset X$. Within $\operatorname{RCA}_{0}^{*}$ let $\operatorname{BCT}\left(\{0,1\}^{\mathbb{N}}\right)$ be the statement that for all sequences of dense sets $D_{i} \subseteq\{0,1\}^{*}, i \in \mathbb{N}$, and all $\sigma \in\{0,1\}^{*}$ there exists $X \in\{0,1\}^{\mathbb{N}}$ such that $\sigma \subset X$ and X meets D_{i} for each $i \in \mathbb{N}$.

Theorem 1 The following are pairwise equivalent over RCA_{0}^{*} :

1. RCA_{0},
2. BCT ,
3. $\operatorname{BCT}\left(\{0,1\}^{\mathbb{N}}\right)$,
4. for all finite sequences of dense sets $D_{i} \subseteq\{0,1\}^{*}, 1 \leq i \leq n$, there exists $X \in\{0,1\}^{\mathbb{N}}$ such that X meets D_{i} for each $i=1, \ldots, n$.
Proof We reason in RCA_{0}^{*}. The implication $1 \Rightarrow 2$ is already known (see [1, Theorem 2.1]). The implications $2 \Rightarrow 3$ and $3 \Rightarrow 4$ are obvious.

It remains to prove $4 \Rightarrow 1$. For this purpose we use the following lemma from [8]. Within RCA_{0}^{*} a set $C \subseteq \mathbb{N}$ is defined to be infinite if it is not finite, or equivalently, it is unbounded, that is, $\forall n \exists c(n<c \in C)$.

Lemma 1 Over RCA_{0}^{*} the following are equivalent:

1. RCA_{0},
2. each infinite subset of \mathbb{N} includes arbitrarily large finite subsets.

Proof This is [8, Lemma 3.2].
We now prove $4 \Rightarrow 1$. Assume 4. By Lemma 1 it suffices to prove that each infinite subset of \mathbb{N} includes arbitrarily large finite subsets. Given an infinite set $C \subseteq \mathbb{N}$, for each $i \in \mathbb{N}$ let D_{i} be the set of strings in $\{0,1\}^{*}$ of the form

$$
\begin{equation*}
\sigma^{\wedge}\langle 1\rangle^{\wedge}\langle\underbrace{0, \ldots, 0}_{c}\rangle^{\wedge}\langle 1\rangle^{\wedge}\langle\underbrace{0, \ldots, 0}_{i}\rangle^{\wedge}\langle 1\rangle \tag{1}
\end{equation*}
$$

where $c \in C$ and c is greater than the length of σ. The sequence of sets $\left\langle D_{i} \mid i \in \mathbb{N}\right\rangle$ exists by Δ_{1}^{0} - comprehension. Since C is infinite, each D_{i} is dense in $\{0,1\}^{*}$. Given $n \in \mathbb{N}$, apply 4 to obtain $X \in\{0,1\}^{\mathbb{N}}$ such that X meets D_{i} for each $i=1, \ldots, n$. By Σ_{1}^{0}-bounding (see [6]) plus Δ_{1}^{0}-comprehension, there exists a finite sequence of strings $\tau_{i}, 1 \leq i \leq n$, such that $\tau_{i} \in D_{i}$ and $\tau_{i} \subset X$ for each $i=1, \ldots, n$. Consider the finite sequence c_{1}, \ldots, c_{n}, where τ_{i} is as in (1) with $c=c_{i}$. For $i \neq j$, we have $\tau_{i} \neq \tau_{j}$; hence $\tau_{i} \subset \tau_{j}$ or $\tau_{j} \subset \tau_{i}$; hence $c_{i}<c_{j}$ or $c_{j}>c_{i}$; hence $c_{i} \neq c_{j}$. Thus $\left\{c_{1}, \ldots, c_{n}\right\}$ is a finite subset of C of cardinality n.
Theorem $2 \quad \mathrm{BCT}$ is not Π_{1}^{0}-conservative over RCA_{0}^{*}.
Proof Recall from [5, Section X.4] and [6] that RCA ${ }_{0}^{*}$ is RCA_{0} with Σ_{1}^{0}-induction weakened to Σ_{0}^{0}-induction plus natural number exponentiation, that is, the assertion that m^{n} exists for all $m, n \in \mathbb{N}$. It is known that RCA_{0}^{*} is Π_{2}^{0}-equivalent to elementary function arithmetic (see [6]) and hence is much weaker than $R C A_{0}$, which is $\Pi_{2}^{0}{ }^{-}$ equivalent to primitive recursive arithmetic (see [5, Section IX.3]). Since primitive recursive arithmetic proves the consistency of elementary function arithmetic (see,
e.g., [4], [5, Theorems II.8.11, IX.3.16]), it follows that $R C A_{0}$ is not Π_{1}^{0}-conservative over RCA ${ }_{0}^{*}$. This fact together with Theorem 1 gives Theorem 2.

Remarks

1. Beyond RCA_{0}^{*} one may consider even weaker base theories for reverse mathematics. In this direction there is the following result of Fernandes [2]: BCT is Π_{1}^{1}-conservative over Σ_{1}^{b}-NIA $+\nabla_{1}^{b}$-CA. Note that Σ_{1}^{b} - $\mathrm{NIA}+\nabla_{1}^{b}$-CA is "feasible"; that is, it does not include natural number exponentiation.
2. Actually, Fernandes [2] showed that BCT is conservative over Σ_{1}^{b}-NIA $+\nabla_{1}^{b}$ CA not only for Π_{1}^{1}-sentences but also for sentences of the form $(\forall X)(\exists$ unique $Y) \Phi$, where Φ is arithmetical. And Yamazaki [9] showed that $\Pi_{\infty^{-}}^{0}$ BCT is conservative over RCA ${ }_{0}$ for this same class of sentences, which arose previously in connection with Tanaka's conjecture (see [7, Theorem 4.18]).
3. Our Theorems 1 and 2 were inspired by Fernandes [2, Proposition 1] and Hirschfeldt, Shore, and Slaman [3, Theorem 4.3].

References

[1] Brown, D. K., and S. G. Simpson, "The Baire category theorem in weak subsystems of second-order arithmetic," Journal of Symbolic Logic, vol. 58 (1993), pp. 557-78. Zbl 0794.03085. MR 1233924. DOI 10.2307/2275219. 75, 76
[2] Fernandes, A. M., "The Baire category theorem over a feasible base theory," pp. 16474 in Reverse Mathematics 2001, edited by S. G. Simpson, vol. 21 of Lecture Notes in Logic, Association for Symbolic Logic, La Jolla, Calif., 2005. MR 2185432.77
[3] Hirschfeldt, D. R., R. A. Shore, and T. A. Slaman, "The atomic model theorem and type omitting," Transactions of the American Mathematical Society, vol. 361 (2009), pp. 5805-37. Zbl 1184.03005. MR 2529915. DOI 10.1090/S0002-9947-09-04847-8. 77
[4] Sieg, W., "Fragments of arithmetic," Annals of Pure and Applied Logic, vol. 28 (1985), pp. 33-71. Zbl 0558.03029. MR 0776285. DOI 10.1016/0168-0072(85)90030-2. 77
[5] Simpson, S. G., Subsystems of Second Order Arithmetic. Perspectives in Mathematical Logic. Springer, Berlin, 1999. MR 1723993; 2nd edition, Perspectives in Logic, Association for Symbolic Logic, Cambridge University Press, New York, 2009. MR 2517689. 75, 76, 77
[6] Simpson, S. G., and R. L. Smith, "Factorization of polynomials and Σ_{1}^{0} induction," Annals of Pure and Applied Logic, vol. 31 (1986), pp. 289-306. Zbl 0603.03019. MR 0854297. DOI 10.1016/0168-0072(86)90 074-6. 75, 76
[7] Simpson, S. G., K. Tanaka, and T. Yamazaki, "Some conservation results on weak König's lemma," Annals of Pure and Applied Logic, vol. 118 (2002), pp. 87-114. Zbl 1016.03064. MR 1933397. DOI 10.1016/S0168-0072(01)00121-X. 77
[8] Simpson, S. G., and K. Yokoyama, "Reverse mathematics and Peano categoricity," Annals of Pure and Applied Logic, vol. 164 (2013), pp. 284-93. MR 3001547. DOI 10.1016/j.apal.2012.10.014. 75, 76
[9] Yamazaki, T., "Some more conservation results on the Baire category theorem," Mathematical Logic Quarterly, vol. 46 (2000), pp. 105-10. Zbl 0942.03061. MR 1736654. DOI 10.1002/(SICI)1521-3870(200001)46:1<105::AID-MALQ105>3.0.CO;2-2. 77
[10] Yokoyama, K., "On the strength of Ramsey's theorem without Σ_{1} induction," Mathematical Logic Quarterly, vol. 59 (2013), pp. 108-111. Zbl 1267.03031. MR 3032429. DOI 10.1002/malq. 201200047.75

Department of Mathematics
Pennsylvania State University
University Park
State College, Pennsylvania 16802
USA
t20@psu.edu
http://www.personal.psu.edu/t20

