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Weight and Measure in NIP Theories

Anand Pillay

Abstract We initiate an account of Shelah’s notion of “strong dependence”
in terms of generically stable measures, proving a measure analogue (for NIP
theories) of the fact that a stable theory T is “strongly dependent” if and only if
all (finitary) types have almost finite weight.

1 Introduction

Shelah [9] introduced the notion “T is strongly dependent” as an attempt to find an
analogue of superstability for NIP theories. When T is stable, strong dependence is
actually equivalent to “all finitary types have finite weight,” rather than superstability
(see Adler [1]). Here I give a version of this equivalence in the general NIP context
using generically stable measures (see Theorem 1.1).

A strong influence on this work is a talk by Hrushovski in Oberwolfach in January
2010 where he presented some tentative notions of “finite weight” using orthogonal-
ity (in the sense of measure theory) and generically stable measures. Some connec-
tions between strong dependence and suitable notions of weight in the general NIP
context also appear in Onshuus and Usvyatsov [7], but only for types (not measures).

In spite of the appearance of Theorem 1.1 below as a definitive characterization
of strong dependence, we view it as a first and even tentative step, and we will state
some problems and questions.

In the remainder of this introduction, I will give an informal description of the
basic notions, referring to Section 2 for the precise definitions and further references,
and then state the main result Theorem 1.1. I will assume a familiarity with stability
theory, the “stability-theoretic” approach to NIP theories, as well as the notion of a
Keisler measure. References are Pillay [8], Hrushovski, Peterzil, and Pillay [3], and
Hrushovski and Pillay [4], as well as papers of Shelah such as [10]. We will also
be referring to Adler’s paper [1], which gives a nice treatment of the combinatorial
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notions around strong dependence and makes explicit the connection with weight in
the stable case.

Concerning notation, we work in a very saturated model NM of a complete first-
order theory T in language L. There is no harm to work in NM eq, except that at some
point we might want to make definitions concerning a given sort: x; y; z; : : : usually
denote finite tuples of variables. Likewise a; b; c; : : : usually denote finite tuples of
elements, andM0;M; : : : normally denote small elementary substructures of NM .

Recall that T has NIP (or is dependent) if for any indiscernible (over ;)
.ai W i < !/, and formula '.x; b/, the truth value of '.ai ; b/ is eventually constant.
I will make a blanket assumption, at least in this introduction, that T has NIP.

Our working definition of “T is strongly dependent” (or “strongly NIP”) is that
there do not exist formulas '˛.x; ˛/, k˛ < !, and tuples b˛i , for ˛ < !, i < !,
such that for each ˛, ¹'˛.x; b˛i / W i < !º is k˛-inconsistent (every subset of size k˛
is inconsistent), and for each � 2 !! , ¹'˛.x; b˛�.˛// W ˛ < !º is consistent. This is
equivalent to Shelah’s original definition assuming that T has NIP (see Definition 2.1
and Fact 2.3).

When we speak of “global” types or measures we mean over NM . A global Keisler
measure �.x/ is said to be generically stable if �.x/ is both finitely satisfiable in and
definable over some “small” modelM (see Definition 2.10). In fact it follows from
[4] that one can chooseM of “absolutely” small cardinality such as 2jT j. We call a
Keisler measure �.x/ over a small modelM generically stable if �.x/ has a global
nonforking (M -invariant) extension �0.x/ which is generically stable (in which case
�0 is both definable over and finitely satisfiable in M and is the unique global non-
forking extension of �.x/; see Fact 2.11 and Definition 2.12). For �.x/ a generically
stable measure overM we denote by �j NM the unique global nonforking extension of
�. If �.y/ is another generically stable measure overM , we can form the nonforking
amalgam �.x/˝ �.y/, another generically stable measure (in variables .x; y/) over
M , and we have symmetry �.x/ ˝ �.y/ D �.y/ ˝ �.x/ (see Remark 2.13). We
iterate this to form the nonforking amalgam of any set of generically stable measures.
A measure (generically stable or not) !.x; y/ over M which extends �.x/ [ �.y/
will be called a forking amalgam if it is not the nonforking amalgam. We will call
!.x; y/ a strong forking amalgam of �.x/ and �.y/, with respect to �, if for some
formula '.x; y/ over M , !.'.x; y// D 1 but .�j NM/.'.x; b// D 0 for all b 2 NM
(see Definition 2.14). We will relate this notion to orthogonality of measures in Sec-
tion 2, as well as asking about symmetry. But let me remark for now that if T is
stable and !.x; y/ is a complete type over M realized by .a; b/, then ! is a strong
forking amalgam of �.x/ and �.y/ with respect to � if and only if tp.a=bM/ forks
overM (iff tp.b=aM/ forks overM ; see Remark 2.15).

Of course we have the notion of a generically stable measure !.xi W i 2 I /

over a small model M in maybe infinitely many variables xi , and in fact ! will be
generically stable if and only if every restriction of ! to finitely many variables is.

Our main result is the following.

Theorem 1.1 Suppose that T has NIP. Then the following are equivalent.

(1) T is not strongly dependent.
(2) There is a model M0 and generically stable measure !.x; y0; y1; y2; : : :/

overM0 with the following properties:
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(i) for each ˛ < !, !˛.x; y˛/ is a strong forking amalgam of �.x/ and
�˛.y˛/, with respect to �˛ , and

(ii) the restriction of ! to .y0; y1; y2; : : :/ is the nonforking amalgamN
˛ �˛.y˛/ of the �˛.y˛/,

where !˛.x; y˛/ is the restriction of ! to variables .x; y˛/, �˛.y˛/ is the
restriction of ! to variable y˛ , and �.x/ is the restriction of ! to variable x.

Tomake the connection with weight in stable theories, let us see what Theorem 1.1(2)
means when T is stable and !.x; y0; y1; : : :/ is a complete type overM0 (which will
of course be a generically stable type by stability of T ). Let .a; b0; b1; : : :/ be a
realization of !. Part (ii) of (2) says that ¹b˛ W ˛ < !º isM0-independent. And part
(i) of (2) says (as remarked above) that tp.a=b˛M0/ forks overM0 for each ˛ < !.
Hence tp.a=M0/ has infinite “preweight” in the strong sense that a forks over M0

with each element of some infiniteM0-independent set. In fact in a stable theory T ,
no type having infinite preweight is equivalent to every type p.x/ having finite weight
in the sense that there is a greatest n such that after possibly passing to a nonforking
extension a realization of p can fork over the base with at most n elements of some
independent sequence (see [8, Chapter 4, Proposition 3.10]).

So Theorem 1.1 is a generalization/analogue of the fact (see [1]) that a stable
theory is strongly dependent if and only if every type has finite weight.

2 Preliminaries

The following definition is due to Shelah [9], and says that �ict.T / D @0.

Definition 2.1 T is strongly dependent (or strongly NIP) if there do not exist
formulas '˛.x; y˛/ 2 L for ˛ < ! and .b˛i /˛<!;i<! such that for every � 2 !! , the
set of formulas ¹'˛.x; b˛�.˛// W ˛ < !º [ ¹:'˛.x; b

˛
i / W ˛ < !; i < !; i ¤ �.˛/º is

consistent.

Remark 2.2

(i) T is strongly NIP; then T is NIP.
(ii) We can relativize the notion strong NIP to a sort S by specifying that the

variable x in Definition 2.1 is of sort S .
(iii) In Definition 2.1 we could allow the '˛ to have parameters (by incorporating

the parameters into the b˛).

Fact 2.3 Assume that T has NIP. The following are equivalent. (Also, sort by
sort as far as the x variable is concerned.)

(1) T is strongly NIP in the sense of Definition 2.1.
(2) It is not the case that there exist formulas '˛.x; y˛/ for ˛ < !, b˛i for ˛ < !

and i < !, and k˛ < ! for each ˛ < ! such that
(i) for each ˛, ¹'˛.x; b˛i / W i < !º is k˛-inconsistent, and
(ii) for each “path” � 2 !! , ¹'˛.x; b˛�.˛// W ˛ < !º is consistent.

(3) Just like (2) but with a further clause that
(iii) for each ˛, the sequence .b˛i W i < !/ is indiscernible over

S
ˇ¤˛¹b

ˇ
i W

i < !º.

Proof This is contained in [1] (see Propositions 10, 13 there, and see [7] for (3)).
Again, one can allow parameters in the formulas in (2) and (3).
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We now pass to Keisler measures and generically stable measures as well as notions
specific to this paper. When we speak of a formula '.x/ forking over a set of param-
eters we mean in the sense of Shelah; namely, '.x/ implies a finite disjunction of
formulas each of which divides over A.

A Keisler measure �.x/ (sometimes also written in earlier papers as �x) overA is
a finitely additive probability measure on the Boolean algebra of formulas '.x/ over
A up to equivalence (or of A-definable sets in sort x). Such � can be identified with
a regular Borel probability measure on the Stone space Sx.A/ of complete types over
A in variable x. By a global Keisler measure we mean a Keisler measure over NM .

Definition 2.4 Let �.x/ be a Keisler measure over B , and let A � B . We say
that � does not fork over A (or is a nonforking extension of �jA) if any formula '.x/
over B with positive �-measure does not fork over A.

Remark 2.5

(i) It is easy to show, as in the case of types, that if � is a Keisler measure over
B which does not fork over A � B , then � has an extension over any C � B
(in particular, over NM ) which does not fork over A.

(ii) If �.x/ is a Keisler measure over a model M , then � does not fork over M
and hence by (i) has a global nonforking extension.

Fact 2.6 (see [4]) Assume that T has NIP. If �.x/ is a global Keisler measure and
M0 is a small model, then the following are equivalent:

(i) � does not fork overM0,
(ii) � is Aut. NM=M0/-invariant,
(iii) � is Borel definable overM0.

The meaning of (iii) is that for any L-formula '.x; y/, and b 2 NM , �.'.x; b//
depends in a Borel way on tp.b=M0/ in the sense that the function from Sy.M0/ to
Œ0; 1� taking tp.b=M0/ to �.'.x; b// is Borel. A global measure �x satisfying (i) or
(ii) or (iii) for some smallM0 is called invariant.

At this point we will make a blanket assumption that T has NIP.

Definition 2.7 Let �.x/ be a global invariant Keisler measure (so it comes
equipped with a Borel defining schema over some small model M0). Let �.y/ be
any global Keisler measure. Then �.x/˝ �.y/ denotes the following global Keisler
measure (in variables xy). Let '.x; y/ be a formula over NM . Let M be a small
model containing M0 and the parameters from '; so � is Borel definable over M .
For any type q.y/ 2 S.M/, let f�;'.q/ D �.'.x; b// for some (any) b realizing q.
Then define �.x/ ˝ �.y/.'.x; y// to be

R
Sy.M/

f'.q/ d.�jM/, where �jM is the
restriction of �.y/ to a Keisler measure over M which we identify with a regular
Borel probability measure on Sy.M/. It is not hard to see that our definition of
.�.x/˝ �.y//.'.x; y// above does not depend on the choice of the modelM .

Remark 2.8 If �.x/ and �.y/ are both global Aut. NM=M0/-invariant mea-
sures, then so are �.x/ ˝ �.y/ and �.y/ ˝ �.x/. Moreover from Hrushovski,
Pillay, and Simon [6], if at least one of �.x/; �.y/ is generically stable, then
�.x/˝ �.y/ D �.y/˝ �.x/.

From Definition 2.7, we deduce the notion of a “Morley sequence” in � where �.x/
is an invariant global type.



Weight and Measure in NIP Theories 571

Definition 2.9 Let �.x/ be an invariant global type.
(i) Let �.1/.x1/ D �.x1/, and for n > let �.n/.x1; : : : ; xn/ D �.xn/˝�.n�1/ �

.x1; : : : ; xn�1/.
(ii) Let �.!/.x1; x2; : : :/ D

S
n �

.n/.x1; : : : ; xn/.

Definition 2.10 Let �.x/ be a global Keisler measure, and let M0 be a small
model.

(i) � is said to be definable over M0 if �.x/ is Aut. NM=M0/-invariant and,
moreover, for each '.x; y/ 2 L (or even in L.M0/) the function taking
tp.b=M0/ 2 Sy.M0/ to �.'.x; b// 2 Œ0; 1� is continuous.

(ii) �.x/ is said to be finitely satisfiable inM0 if every formula '.x/ with param-
eters from NM which has positive �-measure is realized by an element (i.e.,
tuple) fromM0.

(iii) �.x/ is said to be generically stable if for some small M0, �.x/ is both
definable over and finitely satisfiable inM0.

Fact 2.11 (see [6])

(i) Suppose that �.x/ is a Keisler measure over a small modelM0 and that some
global nonforking extension (i.e., Aut. NM=M0/-invariant global extension)
�0.x/ of �.x/ is generically stable. Then �0.x/ is the unique global non-
forking extension of �0, and �0 is both definable over and finitely satisfiable
inM0.

(ii) Suppose that �.x/ is a global generically stable Keisler measure. Then there
is a modelM0 of cardinality at most 2jT j such that � does not fork overM0.

Definition 2.12 Let �.x/ be a Keisler measure over a small modelM0.
(i) We will say that �.x/ is generically stable if some global nonforking exten-

sion �0.x/ is generically stable.
(ii) Suppose that �.x/ is generically stable (as in (i)), and suppose that �.y/ is

any Keisler measure over M0. We define the Keisler measure �.x/ ˝ �.y/
(overM0 and in variables xy) as follows: For any formula '.x; y/ overM0,
�.x/˝ �.y/.'.x; y// D

R
Sy.M0/

f�0;'.q/ d� where �0 is the unique global
nonforking extension of � (given by Fact 2.11(i)), and as in Definition 2.7,
f�0;'.q/ D �

0.'.x; b// for some (any) realization b of q.

Remark 2.13 Suppose that M0 is a small model, �.x/ is a generically stable
measure overM0 (in the sense of Definition 2.12 (i)), and �.y/ is an arbitrary Keisler
measure overM0.

(i) �.x/˝ �.y/ (as defined in 2.12(ii)) coincides with .�0 ˝ �0.y//jM0 (in the
sense of Definition 2.7) where �0 is the unique global nonforking extension
of � and �0 is any global extension of �.

(ii) If �.y/ is also generically stable, then �.x/ ˝ �.y/ D �.y/ ˝ �.x/. (This
uses Remark 2.8.)

Here is the main new notion in this section.

Definition 2.14 Let M0 be a small model, let �.x/ be a generically stable mea-
sure over M0, let �.y/ be an arbitrary measure over M0, and let !.x; y/ be a mea-
sure overM0 whose restrictions to the x-variables and y-variables, respectively, are
�.x/, �.y/. Let �0.x/ be the unique global nonforking extension of �.x/. We say
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that !.x; y/ is a strong forking amalgam of �.x/ and �.y/ with respect to �.x/ if,
for some formula '.x; y/ over M0, !.'.x; y// D 1, but �0.'.x; b// D 0 for all
b 2 NM .

Let us first remark that for types in stable theories, a strong forking amalgam is
simply a forking amalgam (and the reader can check that this also goes through for
generically stable types).

Remark 2.15 Suppose that T is stable. Let p.x/; q.y/, and r.x; y/ � p.x/ [

q.y/ be complete types over a model M0. Let .a; b/ realize r.x; y/. Then r.x; y/
is a strong forking amalgam of p.x/ and q.y/ with respect to p.x/ if and only if
it is a strong forking amalgam of p.x/ and q.y/ with respect to q.y/ if and only if
tp.a=M0b/ forks overM0 (if and only if tp.b=M0a/ forks overM0).

Proof If tp.a=M0b/ forks overM0, then tp.a=M0b/ ¤ pjM0b (the unique non-
forking extension of p overM0b), so for some formula '.x; y/ overM0, ˆ '.a; b/

but :'.x; b/ 2 pjM0b. Let  .y/ over M0 be the '.x; y/-definition of p. So
ˆ : .b/, whereby the formula �.x; y/ W '.x; y/ ^ : .y/ is in r.x; y/, and for
each b0 2 NM , :�.x; b0/ 2 p.x/j NM .

Another observation is that in the last clause of Definition 2.14 it suffices to assume
that �.'.x; b// D 0 for all b 2M0.

Remark 2.16 Let �0.x/ be a global Keisler measure which is definable over the
small modelM0. Let '.x; y/ be overM0. Suppose �0.'.x; b// D 0 for all b 2M0;
then �0.'.x; b// D 0 for all b 2 NM .

Proof Suppose for a contradiction that �0.'.x; b// D r > 0 for some b 2 NM .
Let 0 < s < r . Then ¹b0 2 NM W �.'.x; b0// > sº is defined by a disjunctionW
 i .y/where the  i are overM0. Now b satisfies some  i ; hence there is b0 2M0

satisfying  i , a contradiction.

Let us briefly make the connection with the notion of orthogonality of (sets) of mea-
sures from Berger [2]. For simplicity fix a topological space X , and let M.X/ be the
family of Borel probability measures on X . If M1;M2 � M.X/ are disjoint, then
M1 is said to be orthogonal to M2 if for some Borel subset B of X , �.B/ D 0 for
all � 2 M1 and �.B/ D 1 for all � 2 M2. One could restrict one’s attention to
rather special B such as open, closed, and then say thatM1 andM2 are orthogonal
with respect to open, closed, and so on.

Remark 2.17 Let �.x/, �.y/ be Keisler measures overM0 with �.x/ generically
stable, and let !.x; y/ overM0 extend �.x/[�.y/. Then !.x; y/ is a strong forking
amalgam with respect to �.x/ if and only if ¹!.x; y/º is orthogonal with respect to
clopens to the set ¹�.x/˝ �.y/ W �.y/ any generically stable measure overM0º.

Proof That left implies right is immediate. Suppose that !.x; y/.'.x; y/ D 1 but
�0.'.x; b// D 0 for all b 2 NM (where �0 is the unique global nonforking extension
of �). Then f�0;'.q/ D 0 for all q 2 Sy.M0/, so from Definition 2.12(ii) we see
that .�.x/˝ �.y//.'.x; y// D 0 for any �.y/ overM0, generically stable or not.

Conversely, suppose that !.'.x; y// D 1 but �.x/ ˝ �.y/.'.x; y// D 0 for all
generically stable measures �.y/ over M0. In particular, considering �.y/ of the
form tp.b=M0/ for b 2 M0, it follows (from Definition 2.12) that �.'.x; b// D 0
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for all b 2 M0. By Remark 2.16 this implies that �0.'.x; b// D 0 for all b 2 NM , so
!.x; y/ is a strong forking amalgam with respect to �.x/.

We are not sure of the status of the following question. A positive answer would
make the theory we develop here more robust.

Question 2.18 Suppose that �.x/; �.y/, and !.x; y/ � �.x/ [ �.y/ are all
generically stable measures over M0. Is it the case that !.x; y/ is a strong forking
amalgam of �.x/ and �.y/ with respect to �.x/ if and only if !.x; y/ is a strong
forking amalgam of �.x/ and �.y/ with respect to �.y/?

Finally in this section we state a couple of results which will play important roles in
the proof of Theorem 1.1. First recall the notion weakly random.

Definition 2.19 Let �.x/ be a Keisler measure overM (where now x may be an
infinite tuple of variables, andM may be the “monster model” NM ).

(i) A complete type p.x/ 2 Sx.M/ is said to be weakly random for �.x/ if
every formula in p has positive �-measure.

(ii) Assuming that M is a small model, then a tuple c (of appropriate length) is
said to be weakly random overM for � if tp.c=M/ is weakly random for �.

The first result is the following lemma.

Lemma 2.20 Suppose that �.x/ is a global generically stable measure and
'.x; y/ is a formula over NM . Then the following are equivalent:

(i) �.'.x; b// D 0 for all b 2 NM ,
(ii) for some n, �.n/

�
9y .'.x1; y/ ^ � � � ^ '.xn; y//

�
D 0,

(iii) for some n, for any weakly random type p.x/ for �, p.n/.x1; : : : ; xn/ implies
:9y .'.x1; y/ ^ � � � ^ '.xn; y//.

Proof That (i) implies (ii) is due to Hrushovski, Pillay, and Simon [5, Proposi-
tion 2.1]. That (ii) implies (iii) is [5, Lemma 1.2]. And that (iii) implies (i) is im-
mediate. (If �.'.x; b// > 0, let p.x/ be a weakly random type for � containing
'.x; b/. Then '.x1; b/ ^ � � �'.xn; b/ 2 p.n/.x1; : : : ; xn/; hence (iii) fails.)

The second result is the following proposition.

Proposition 2.21 Suppose that �1.y1/; : : : ; �n.yn/ are global Keisler measures,
all invariant over a small model M0. Let �.y1; : : : ; yn/ be the nonforking product
�1 ˝ � � � ˝ �n. Let B.y1; : : : ; yn/ be a Borel set overM0 with �-measure 1. Then
there are sequences I˛ D .b˛i W i < !/ for ˛ D 1; : : : ; n such that

(i) each I˛ is weakly random for .�˛/.!/jM0,
(ii) for all .c1; : : : ; cn/ 2 I1 � � � � � In, .c1; : : : ; cn/ 2 B .

Proof We argue by induction on n. For n D 1, let x be the variable y1. Then the
intersection of all theB.xi / for i < ! and the closed set consisting of the intersection
of allM0-definable sets of �.!/1 -measure 1, is a Borel subset of the type space over
M0 in variables .x1; x2; : : :/ of �.!/1 -measure 1 and hence contains a point, and any
realization is the required I1.

Assume this is true for n. Let B.y1; : : : ; ynC1/ be a Borel set overM0 of � mea-
sure 1, where � D �1˝� � �˝�nC1. By Borel definability of invariant measures, and
the definition of the nonforking product measure, ¹.c2; : : : ; cnC1/ W �1.B.y1; c2;



574 Anand Pillay

: : : ; cnC1// D 1º is a Borel set C.y2; : : : ; ynC1/ over M0 of .�2 ˝ � � � ˝ �nC1/-
measure 1. By induction hypothesis we find I2; : : : ; InC1 satisfying (i) and (ii)
of the proposition for C in place of B . Now again let x be the variable y1.
Consider the countable set of conditions B.xi ; c2; : : : ; cnC1/ for i < ! and
.c2; : : : ; cnC1/ 2 I2 � � � � � InC1. The intersection of all of these is a Borel set
in variables .x1; x2; : : :/ which has �.!/1 -measure 1. The intersection of this with
the set of all formulas over M0 of �.!/1 -measure 1 again has a point, which is the
required I1.

3 Average Measures

One direction of the proof of Theorem 1.1 will make heavy use of a special class
of generically stable measures, which we call average measures and which were
introduced in [6]. So we will give the definition again here and record a few facts
concerning nonforking products (or amalgams) which will be needed later.

Definition 3.1 By an indiscernible segment we mean something of the form
¹ai W i 2 Œ0; 1�º which is indiscernible with respect to the usual ordering on Œ0; 1�.

As pointed out in [6], such an indiscernible segment I gives rise to a global generi-
cally stable measure �I . For any formula (with parameters) '.x/ the set of i 2 Œ0; 1�
such that ˆ '.ai / is a finite union of intervals and points and so has a Lebesgue
measure, which we define to be �I .'.x//. Noting that �I is both finitely satisfiable
in and definable over I , we see that �I is a global generically stable measure, which
is, moreover, by [6, Proposition 3.3], the unique nonforking extension of �I jI .

Definition 3.2

(i) By a global average measure we mean something of the form �I for I an
indiscernible segment.

(ii) ForM0 a small model, by an average measure overM0 we mean something
of the form �I jM0 where �I is a global average measure which does not fork
overM0 (or is Aut. NM=M0/-invariant).

Remark 3.3 A generically stable type is the same thing as an average measure
which happens to be a type.

We now introduce some data and notation relevant for the proposition below. Let
us suppose that for ˛ < �, I˛ D .b˛i W i 2 Œ0; 1�/ is an indiscernible segment and
that the I˛’s are mutually indiscernible in the sense that each I˛ is indiscernible overS
ˇ¤˛ Iˇ . For i 2 Œ0; 1� let ci be the sequence .b˛i W ˛ < �/. It is then easy to see

that K D .ci W i 2 Œ0; 1�/ is also an indiscernible segment (of possibly infinite tuples
if � � !). So we have the average measure �K , as well as the average measures �I˛
for each ˛. As one might expect, with these assumptions and notation we have the
following.

Proposition 3.4 �K (in variables .x˛ W ˛ < �/) is the nonforking productN
˛<� �I˛ .x˛/ of the �I˛ .x˛/.

Proof It is clearly enough to prove the proposition when � D 2 (e.g., by finite
character together with induction). So let us rename I0 as I and I1 as J , as well
as renaming x0 as x and x1 as y. Also let us write I as .ai W i 2 Œ0; 1�/, and let
J D .bi W i 2 Œ0; 1�/. We still let ci denote .ai ; bi /.
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We aim to prove that �K.x; y/jK coincides with .�I .x/˝ �J .y//jK. As both
global measures �K and �I ˝�J are generically stable andK-invariant, it will then
follow from [4, Proposition 3.3] that �K D �I ˝ �J .

So let us fix a formula '.x; y; c/ over K where c witnesses the parameters in '
and without loss of generality c D .ci1 ; : : : ; cik / with i1 < i2 < � � � < ik 2 Œ0; 1�.

Claim 1 Let i ¤ i1; : : : ; ik . Then either
(a) for all j 2 Œ0; 1� except possibly i1; : : : ; ik we haveˆ '.aj ; bi ; c/ , or
(b) for all j 2 Œ0; 1� except possibly i1; : : : ; ik we haveˆ :'.aj ; bi ; c/.

Proof This holds by indiscernibility of I over J .

Claim 2 �J .¹b 2 NM W 0 < �I .'.x; b; c// < 1º/ D 0.

Proof Note that by definability of �I over I , ¹b 2 NM W 0 < �.'.x; b; c// < 1º

is defined by a disjunction
W
�2‚ �.y/ of formulas �.y/ over I . If by way of con-

tradiction some � 2 ‚ has �J -measure > 0, then by definition of �J , there are
infinitely many i 2 Œ0; 1� such thatˆ �.bi /. For each such i , �I .'.x; bi ; c// ¤ 0; 1.
On the other hand, we know that �I .'.x; bi ; c// is the Lebesgue measure of
¹j 2 Œ0; 1� Wˆ '.aj ; bi ; c/º. We clearly have a contradiction to Claim 1.

By Claim 2 and the definition of the product measure, .�I ˝ �J /.'.x; y; c// D
�J .¹b 2 NM W �I .'.x; b; c// D 1º/. Now Z D ¹b 2 NM W �I .'.x; b; c// D 1º is
type definable over Ic by definability of �I over I , say, by

V
 2‰  .y/, where each

 .y/ is over Ic. Now �J . .y// is the Lebesgue measure of ¹i 2 Œ0; 1� Wˆ  .bi /º,
and by indiscernibility of J over I , for i ¤ j1; : : : ; jk , whether or not ˆ  .bi /

depends on the order type of i with respect to j1; : : : ; jk in Œ0; 1�. In any case, we see
that �J .Z/ equals the Lebesgue measure of ¹i ¤ j1; : : : ; jk W �.'.x; bi ; c// D 1º

which is moreover a union of intervals with endpoints from 0; j1; : : : ; jk ; 1. By
Claim 1, this coincides with the Lebesgue measure of ¹i ¤ j1; : : : ; jk Wˆ '.ai ; bi ;

c/ºwhich by definition of �K.x; y/ is precisely �K.'.x; y; c//. We have shown that
�K jK coincides with .�I ˝ �J /jK, which proves the proposition.

Finally, for the record we note the obvious.

Lemma 3.5 Suppose that I D .ai W i 2 Œ0; 1�/ is an indiscernible segment over
A. Let '.x; y/ be a formula over A. Then the following are equivalent:

(i) �I .'.x; b// D 0 for all b 2 NM ,
(ii) for some n, for some (any) distinct i1; : : : ; in 2 Œ0; 1�, ˆ :9y.'.ai1 ; y/ ^
� � � ^ '.ain ; y//.

Proof (ii) implies (i): If for some b, �I .'.x; b// > 0, then for infinitely many
i 2 Œ0; 1�,ˆ '.ai ; b/, so clearly (ii) fails.

(i) implies (ii): If (ii) fails, then by compactness there is b such that ˆ '.ai ; b/

for infinitely many i ; hence �I .'.x; b// > 0.

4 Proof of Theorem 1.1

We start with the following.

Proof of (1) implies (2) Assume (1). By Fact 2.3, there are '˛.x; y˛/ 2 L for
˛ < !, b˛i for ˛ < ! and i < !, and k˛ < ! for each ˛ < ! such that
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(i) for each ˛, ¹'˛.x; b˛i / W i < !º is k˛-inconsistent,
(ii) for each “path” � 2 !! , ¹'˛.x; b˛�.˛// W ˛ < !º, and
(iii) for each ˛, the sequence .b˛i W i < !/ is indiscernible over

S
ˇ¤˛¹b

ˇ
i W

i < !º.
By compactness we may find b˛i for ˛ < ! and i 2 Œ0; 1� satisfying the analogues

of (i), (ii), and (iii). So in (i) we now have � 2 Œ0; 1�! , and in (iii) we have mutually
indiscernible segments. For each i 2 Œ0; 1� let ci be the sequence .b˛i W ˛ < !/. So
.ci W i 2 Œ0; 1�/ is an indiscernible segment (of infinite tuples). For each i let di real-
ize ¹'˛.x; b˛i / W ˛ < !º, and let ei be the sequence .di ; b˛i /˛ (i.e., .di ; b0i ; b

1
i ; : : :/).

Clearly we man assume that .ei W i 2 Œ0; 1�/ is also an indiscernible segment (of
infinite tuples).

Now let I˛ denote .b˛i W i 2 Œ0; 1�/, letK denote .ci W i 2 Œ0; 1�/, and let J denote
.ei W i 2 Œ0; 1�/. LetM0 be any model containing J . Let !.x; y0; y1; : : :/ D �J , let
�.y0; y1; : : :/ D �K , and for each ˛ < ! let �˛ D �I˛ . These are all global average
(so generically stable) measures, which are M0-invariant. Clearly the restriction of
! to .y0; y1; : : :/ is � and the restriction of � to each y˛ is �˛ . Let �.x/ be the
restriction of ! to x, and for each ˛ let !˛.x; y˛/ be the restriction of ! to .x; y˛/.

Claim 1 For each ˛, !.'˛.x; y˛// D 1, and hence !˛.'˛.x; y˛// D 1.

Proof This holds becauseˆ '˛.di ; b˛i / for all i .

Claim 2 For each ˛ < !, �˛.'.d; y˛/ D 0 for all d 2 NM .

Proof This is by Lemma 3.5 and the fact that ¹'.x; b˛i / W i 2 Œ0; 1�º is k˛-
inconsistent.

Claim 3 We have that �.y0; y1; : : :/ is
N
˛ �˛.y˛/ (and this is also true for the

restrictions of these measures toM0).

Proof This holds by Proposition 3.4 and the mutual indiscernibility of the I˛’s.

By Claims 1 and 2, for each ˛ < !, !jM0 is a strong forking amalgam (of �jM and
�˛jM ) with respect to �˛jM . Together with Claim 3, this yields Theorem 1.1(2).

Proof of (2) implies (1) LetM0, !.x; y0; y1; : : :/, �˛.y˛/, and so on, be as in the
statement of Theorem 1.1(2). For each ˛ < ! let '˛.x; y˛/ be a formula over M0

witnessing that !˛.x; y˛/ is a strong forking amalgam of �.x/ and �˛.y˛/ with re-
spect to �˛; namely, !.'˛.x; y˛// D 1, but .�˛j NM/.'˛.d; y˛// D 0 for all d 2 NM
(or, equivalently, for all d 2M0).

The assumption that (2) holds gives generically stable measures �˛.y˛/ overM0

for ˛ < ! and !.x; y0; y1; : : :/ overM0 extending
N
˛ �˛ such that the restriction

!˛ of ! to .x; y˛/ is a strong forking extension of �˛.y˛/ for all ˛. By Lemma 2.20,
for each ˛ < ! let k˛ < ! be such that

(*) �.k˛/˛

�
9x .'˛.x; y˛;1/ ^ � � � ^ '˛.x; y˛;k˛ //

�
D 0.

Let us now fix N < !. Let �.y0; : : : ; yN / be the restriction of ! to y0; : : : ; yN
which we know to be �0.y0/ ˝ � � � ˝ �N .yN /. So as !.'0.x; y0/ ^ � � � ^
'N .x; yN // D 1, it follows that �

�
9x .'0.x; y0/ ^ � � � ^ 'N .x; yN //

�
D 1. By

Proposition 2.21 (where here the Borel set B.y0; : : : ; yN / is the one defined by
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9x .'0.x; y0/ ^ � � � ^ 'N .x; yN //), there are weakly random I˛ D .b˛i W i < !/

for �˛ overM0, for ˛ D 0; : : : ; N such that
(**) for all .c0; : : : ; cN / 2 I0 � � � � � IN we have ˆ 9x.'0.x; c1/ ^ � � � ^

'N .x; cN //.
By (*) we have
(***) for each ˛ D 0; : : : ; N , '˛.x; b˛i1/^ � � � ^'˛.x; b

˛
ik˛
/ is inconsistent, for all

i1 < � � � < iik˛ .
Now (**), (***), and compactness yield the failure of Fact 2.3(2), whereby T is

not strongly dependent. This completes the proof of Theorem 1.1.

5 Final Remarks and Questions

A weakness in the theory developed here is the status of “strong forking amalgams”
and in particular that Question 2.18 probably has a negative answer. Nevertheless,
the theory as it stands gives rise to obvious notions of preweight and weight for a
generically stable measure �.x/. For �.x/, a generically stable measure over a model
M0, the preweight of � is defined to be the supremum of � such that there exists
generically stable !.x; y˛/˛<� over M0 such that the restriction of ! to .y˛/˛<� is
the nonforking product of the restrictions �˛ to each y˛ and where we have strong
forking of !˛.x; y˛/ with respect to y˛ (with the obvious notation).

Question 5.1 Suppose that T is strongly dependent. Does every generically sta-
ble measure have finite weight?

Another obvious question raised by the work concerns the relationship between
generically stable measures and average measures in a NIP theory. In the stable
case, any Keisler measure is a weighted average of some of its weakly random types.
(Strictly speaking we should consider here rather '-measures, for '.x; y/ a fixed
L-formula.) Is there a similar relation between a generically stable measure and
various average measures obtained from its weakly random types?
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