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Elimination of Hyperimaginaries and Stable
Independence in Simple CM-Trivial Theories

D. Palacín and F. O. Wagner

Abstract In a simple CM-trivial theory every hyperimaginary is interbounded
with a sequence of finitary hyperimaginaries. Moreover, such a theory elimi-
nates hyperimaginaries whenever it eliminates finitary hyperimaginaries. In a
supersimple CM-trivial theory, the independence relation is stable.

1 Introduction

An important notion introduced by Shelah for a first-order theory is that of an imag-
inary element: the class of a finite tuple by a ;-definable equivalence relation.
The construction obtained by adding all imaginary elements to a structure does not
change its basic model-theoretic properties but introduces a convenient context and
language to talk about quotients (by definable equivalence relations) and canonical
parameters of definable sets. In the context of a stable theory it also ensures the ex-
istence of canonical bases for arbitrary complete types, generalizing the notion of a
field of definition of an algebraic variety.

The generalization of stability theory to the wider class of simple theories ne-
cessitated the introduction of hyperimaginaries, classes of countable tuples modulo
;-type-definable equivalence relations. Although the relevant model theory for hy-
perimaginaries has been reasonably well understood (see Hart, Kim, and Pillay [5]),
they cannot simply be added as extra sorts to the underlying structure, since inequal-
ity of two hyperimaginaries amounts to nonequivalence, and thus a priori is an open,
but not a closed condition. While hyperimaginary elements are needed for the gen-
eral theory, all known examples of a simple theory eliminate them in the sense that
they are interdefinable (or at least interbounded) with a sequence of ordinary imag-
inaries; the latter condition is called weak elimination. The following question has
thus been asked (and even been conjectured).
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Question Do all simple theories eliminate hyperimaginaries?

The answer is positive for stable theories (see Pillay and Poizat [13]) and for super-
simple theories (see Buechler, Pillay, and Wagner [1]). Among nonsimple theories,
the relation of being infinitely close in a nonstandard real closed field gives rise to
noneliminable hyperimaginaries; Casanovas and the second author have constructed
noneliminable hyperimaginaries in a theory without the strict order property in [3].

A hyperimaginary is finitary if it is the class of a finite tuple modulo a type-
definable equivalence relation. Kim [6] has shown that small theories eliminate fini-
tary hyperimaginaries, and a result of Lascar and Pillay [9] states that bounded hyper-
imaginaries can be eliminated in favor of finitary bounded ones. We shall show that
in a CM-trivial simple theory all hyperimaginaries are interbounded with sequences
of finitary hyperimaginaries. We shall deduce that in such a theory hyperimaginaries
can be eliminated in favor of finitary ones. In particular, a small CM-trivial sim-
ple theory eliminates hyperimaginaries. However, even the question of whether all
one-based simple theories eliminate hyperimaginaries is still open.

Elimination of hyperimaginaries is closely related to another question, the stable
forking conjecture.

Question In a simple theory, if a 6 j^B
M for some model M containing B , is

there a stable formula in tp.a=M/ which forks over B?

If we do not require M to be a model or to contain B , this is called strong stable
forking. Every known simple theory has stable forking; Kim [7] has shown that
one-based simple theories with elimination of hyperimaginaries have stable forking.
Kim and Pillay [8] have strengthened this to show that one-based simple theories
with weak elimination of imaginaries hyperimaginaries have strong stable forking;
on the other hand, pseudo-finite fields (which are supersimple of SU-rank 1) do not.
Conversely, stable forking implies weak elimination of hyperimaginaries (see [8]).

While we shall not attack the stable forking conjecture as such, we shall show in
the last section that the independence relation x j^y1

y2 is stable, meaning that it
cannot order an infinite indiscernible sequence.

2 Preliminaries

As usual, we shall work in the monster model C of a complete first-order theory
(with infinite models), and all sets of parameters and all sequences of elements will
live in Ceq. Given any sequences a; b and any set of parameters A, we write a �A b

whenever a and b have the same type over A. We shall write a �s
A b if in addition a

and b lie in the same class modulo all A-definable finite equivalence relations (i.e., if
a and b have the same strong type over A), and a �Ls

A b if they lie in the same class
modulo all A-invariant bounded equivalence relations (i.e., if a and b have the same
Lascar strong type over A). Recall that a theory is G-compact over a set A iff �Ls

A

is type-definable over A (in which case it is the finest bounded equivalence relation
type-definable over A). A theory T is G-compact whenever it is G-compact over
any A. In particular, simple theories are G-compact (see [6]).

Definition 2.1 A hyperimaginary h is finitary if h 2 dclheq.a/ for some finite
tuple a of imaginaries, and quasi-finitary if h 2 bdd.a/ for some finite tuple a of
imaginaries.
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Definition 2.2 A hyperimaginary h is eliminable if it is interdefinable with a se-
quence e D .ei W i 2 I / of imaginaries, that is, if there is such a sequence e with
dclheq.e/ D dclheq.h/. A theory T eliminates (finitary/quasi-finitary) hyperimag-
inaries if all (finitary/quasi-finitary) hyperimaginaries are eliminable in all models
of T .

Remark 2.3 ([9, Corollary 1.5]) If h 2 dclheq.a/, then there is a type-definable
equivalence relation E on tp.a/ such that h and the class aE of a modulo E are
interdefinable.

Lemma 2.4 Let e be a finitary hyperimaginary. If T eliminates finitary hyper-
imaginaries, then T .e/ eliminates finitary hyperimaginaries.

Proof Let a be a finite tuple with e 2 dclheq.a/, and let h be a finitary hyperimag-
inary over e. So there is a finite tuple b with h 2 dclheq.eb/ � dclheq.ab/. Then
there is a type-definable equivalence relation E over ; such that e and aE are inter-
definable, and a type-definable equivalence relation Fa over a such that h and bFa

are interdefinable. Moreover, Fa only depends on the E-class of a; that is, if a0Ea,
then Fa0 D Fa.

Type-define an equivalence relation by
xy NEuv, xEu ^ yFxv:

It is easy to see that h is interdefinable with .ab/ NE over e. Moreover, .ab/ NE is clearly
finitary and hence eliminable in T . So h is eliminable in T .e/.

The following fact appears in [9, Proof of Proposition 2.2], but was first stated as
such in [1, Lemma 2.17].

Fact 2.5 Let h be a hyperimaginary, and let a be a sequence of imaginaries such
that a 2 bdd.h/ and h 2 dclheq.a/. Then, h is eliminable.

Fact 2.6 ([1, Lemma 2.18]) Let h; e be hyperimaginaries with h 2 bdd.e/. Then
the set of e-conjugates of h is interdefinable with a hyperimaginary h0.

Fact 2.7 ([9, Theorem 4.15]) A bounded hyperimaginary is interdefinable with a
sequence of finitary hyperimaginaries.

Proposition 2.8 If T eliminates finitary hyperimaginaries, then T eliminates
quasi-finitary hyperimaginaries.

Proof Let h be a quasi-finitary hyperimaginary, and let a be a finite tuple of imag-
inaries such that h 2 bdd.a/. By Evans and Hrushovski [4, Lemma 1.4] there is
a0 �h a with acleq.a/ \ acleq.a0/ D acleq.h/. Let h0 be the hyperimaginary cor-
responding to the set of aa0-conjugates of h. Then h0 is aa0-invariant and hence
finitary. It is thus interdefinable with a sequence e of imaginaries.

On the other hand, h 2 bdd.a/ \ bdd.a0/, as are all its aa0-conjugates. Thus
h0 2 bdd.a/ \ bdd.a0/, and so e � acleq.a/ \ acleq.a0/ D acleq.h/. Hence
e � acleq.h/ and h 2 bdd.h0/ D bdd.e/. By Fact 2.7, there is a sequence h00 of fini-
tary hyperimaginaries interdefinable with h over e. By Lemma 2.4 and elimination
of finitary hyperimaginaries we see that h00 is interdefinable over e with a sequence
e0 of imaginaries. So h 2 dclheq.ee0/ and e0 2 dcleq.eh/. Moreover, ee0 2 acleq.h/

since e 2 aclq.h/. Hence h is eliminable by Fact 2.5.

The following remarks and lemmas will need G-compactness.
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Remark 2.9 Let T be G-compact over a set A. The following are equivalent:
(1) a �Ls

A b iff a �s
A b for all sequences a; b;

(2) Aut.C= bdd.A// D Aut.C= acleq.A//;
(3) bdd.A/ D dclheq.acleq.A//.

Proof This is an easy exercise.

Remark 2.10 Let T be a G-compact theory, and assume further that a �Ls
A b ,

a �s
A b for all sequences a; b and for any set A. Let now h be a hyperimaginary,

and let e be a sequence of imaginaries such that h and e are interbounded. Then h is
eliminable.

Proof It follows from Remark 2.9 that bdd.e/ D dclheq.acleq.e//. Fix an enumer-
ation Ne of acleq.e/, and observe that h 2 dclheq. Ne/ and Ne 2 bdd.h/. Then apply
Fact 2.5 to eliminate h.

It turns out for G-compact theories that elimination of hyperimaginaries can be de-
composed as weak elimination of hyperimaginaries plus the equality between Lascar
strong types and strong types over parameter sets.

Fact 2.11 ([2, Proposition 18.27]) Assume that T is G-compact. Then T elimi-
nates all bounded hyperimaginaries iff a �Ls b, a �s b for all sequences a, b.

Proof The proof in Casanovas [2] is nice and intuitive; however, we will give
another one using Remark 2.10. If T eliminates bounded hyperimaginaries, then
Aut.C= bdd.;// D Aut.C= acleq.;//. By Remark 2.9 we get Lstp D stp. For the
other direction, let e 2 bdd.;/, and let Na be an enumeration of acleq.;/. It is clear
that e and Na are interbounded. By Remark 2.10, e is eliminable.

Lemma 2.12 Suppose that T is G-compact, and assume further that T eliminates
finitary hyperimaginaries. Then a �Ls

A b iff a �s
A b for all sequences a; b and for

any set A.

Proof Since T is G-compact, it is enough to check the condition for finite A. But
then T .A/ eliminates finitary hyperimaginaries by Remark 2.4 and hence all bounded
hyperimaginaries by Fact 2.7. Now applying Fact 2.11 we obtain a �Ls b iff a �s b

in T .A/.

3 Elimination of Hyperimaginaries in Simple Theories

In this section T will be a simple theory. Recall that the canonical base of a over
b, denoted Cb.a=b/, is the smallest definably closed subset C of bdd.b/ such that
a j^C

b and tp.a=C / is Lascar strong.

Lemma 3.1 For any a and any h 2 bdd.c/ we have Cb.a=h/ � dcl.ac/\bdd.h/.
Therefore, the canonical base of the type of an imaginary finite tuple over a
quasi-finitary hyperimaginary is finitary. Furthermore, if b 2 Cb.a=c/, then
dcl.ab/\ bdd.b/ � Cb.a=c/. In particular, if c 2 dcl.a/, then Cb.a=c/ D dcl.a/\

bdd.c/.

Proof Since h 2 bdd.c/, equality of Lascar strong types over c refines equality of
Lascar strong types over h, and the class of a modulo the former is clearly in dcl.ac/.
So the class of a modulo the latter is in dcl.ac/, and Cb.a=h/ 2 dcl.ac/\bdd.h/. As
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a consequence, if a is a finite tuple and h is a quasi-finitary hyperimaginary bounded
over some finite tuple c, then Cb.a=h/ is definable over the finite tuple ac.

For the second assertion put b0 D dcl.ab/ \ bdd.b/. Since b0 2 dcl.ab/, there is
an equivalence relation E on tp.a=b/ type-definable over b such that b0 is interdefin-
able over b with aE . As b0 2 bdd.b/ and b 2 Cb.a=c/, the E-class of a is bounded
over Cb.a=c/; as tp.a=Cb.a=c// is Lascar strong, aE 2 Cb.a=c/.

The “in particular” clause is essentially [1, Remark 3.8]. If c 2 dcl.a/, then
clearly c 2 Cb.a=c/; the assertion follows.

Recall the definition of CM-triviality.

Definition 3.2 A simple theory T is CM-trivial if for every tuple a and for any
sets A � B with bdd.aA/\bdd.B/ D bdd.A/ we have Cb.a=A/ � bdd.Cb.a=B//.

Remark 3.3 As in Pillay [11, Corollary 2.5], in the definition of CM-triviality
we may take A � B to be models of the ambient theory and a to be a tuple from
the home sort. Therefore, it makes no difference in the definition of CM-triviality
whether we consider hyperimaginaries or just imaginaries.

Now we characterize canonical bases in simple CM-trivial theories in terms of fini-
tary hyperimaginaries.

Proposition 3.4 Assume that the theory is simple CM-trivial. If a is a finite imag-
inary tuple, then

bdd
�
Cb.a=B/

�
D bdd

�
Cb.a=b/ W b 2 X

�
;

where X is the set of all finitary b 2 bdd.Cb.a=B//.

Proof Since Cb.a=b/ � bdd.b/ � bdd.Cb.a=B// for b 2 X , we have

bdd
�
Cb.a=b/ W b 2 X

�
� bdd

�
Cb.a=B/

�
:

For the reverse inclusion, for every b 2 X let Ob be a real tuple with Cb.a=b/ 2 dcl. Ob/;
we choose them such that

. Ob W b 2 X/ j^
.Cb.a=b/Wb2X/

aB;

whence . Ob W b 2 X/ j^B
a.

Now, if a 6 j^ . ObWb2X/
B , then there is a finite tuple b0 2 B [ ¹ Ob W b 2 Xº and

a formula '.x; b0/ 2 tp.a=B; Ob W b 2 X/ which divides over . Ob W b 2 X/. Put
Nb D bdd.ab0/ \ bdd.B; Ob W b 2 X/. Then Nb is a quasi-finitary hyperimaginary, and
by CM-triviality

Cb.a= Nb/ � bdd
�
Cb.a=B; Ob W b 2 X/

�
D bdd

�
Cb.a=B/

�
:

Since Cb.a= Nb/ is finitary by Lemma 3.1, it belongs to X . Note that b0 2 Nb; but
a j^Cb.a= Nb/

Nb, so '.x; b0/ cannot divide over Cb.a= Nb/, and even less over . Ob W b 2 X/

as this contains 3Cb.a= Nb/. Thus, a j^ . ObWb2X/
B , whence a j^ .Cb.a=b/Wb2X/

B by tran-
sitivity. Therefore,

Cb.a=B/ � bdd
�
Cb.a=b/ W b 2 X

�
:
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Question The same proof will work without assuming CM-triviality if for every
finite tuple b 2 B there is some quasi-finitary hyperimaginary Nb 2 bdd.B/ with
b 2 dcl. Nb/ such that Cb.a= Nb/ � bdd.Cb.a=B//. Is this true in general?

We can now state (and prove) the main result.

Theorem 3.5 Let T be a simple CM-trivial theory. Then every hyperimaginary is
interbounded with a sequence of finitary hyperimaginaries.

Proof By Lemma 3.1 every hyperimaginary is interbounded with a canonical base.
Since Cb.A=B/ is interdefinable with

S
¹Cb. Na=B/ W Na 2 A finiteº, it is enough to

show that canonical bases of types of finite tuples are interbounded with sequences
of finitary hyperimaginaries. This is precisely Proposition 3.4.

Corollary 3.6 A simple CM-trivial theory eliminates hyperimaginaries whenever
it eliminates finitary ones.

Proof By Theorem 3.5 every hyperimaginary is interbounded with a sequence of
finitary hyperimaginaries and so with a sequence of imaginaries. Since T is simple,
it is G-compact, whence Lstp D stp over any set by Lemma 2.12. We conclude that
every hyperimaginary is eliminable by Remark 2.10.

Corollary 3.7 Every small simple CM-trivial theory eliminates hyperimaginaries.

Proof A small simple theory eliminates finitary hyperimaginaries by [6]. Now
apply Corollary 3.6.

4 Stable Independence for CM-Trivial Theories

Recall that an ;-invariant relation R.x; y/ is stable if there is no infinite indiscernible
sequence .ai ; bi W i < !/ such that R.ai ; bj / holds if and only if i < j . In this
section, we shall show that independence is a stable relation, even with varying base
set. We hope that this will help elucidate the stable forking problem.

Theorem 4.1 In a supersimple CM-trivial theory, the relation R.xIy1y2/ given
by x j^y1

y2 is stable.

Proof Suppose not. Then there is an indiscernible sequence I D .ai W i 2 Q/ and
tuples b; c such that
� IC D .ai W i > 0/ is indiscernible over I�bc,
� I� D .ai W i < 0/ is indiscernible over ICbc, and
� ai j^c

b if and only if i > 0.
We consider limit types with respect to the cut at zero. Put

p D lim.I=I /; pC D lim.IC=Ibc/; and p� D lim.I�=Ibc/:

By finite satisfiability, pC and p� are both nonforking extensions of p, which is
Lascar strong. Let

A D Cb.p/ D Cb.pC/ D Cb.p�/ 2 bdd.IC/ \ bdd.I�/:

As pC and p� do not fork over A, we have

ai j^
A

ICbc for all i < 0 and ai j^
A

I�bc for all i > 0:
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We consider first e0 D bdd.a1c/ \ bdd.Ac/. Then

bdd.a1e0/ \ bdd.Ae0/ D e0:

Put A0 D Cb.a1=e0/. By CM-triviality,

A0 2 e0 \ bdd
�
Cb.a1=Ae0/

�
� bdd.a1c/ \ bdd.A/;

since a1 j^A
e0 implies Cb.a1=Ae0/ � bdd.A/.

Note that a1 j^c
b yields a1 j^A0c

b. Moreover, c 2 e0, so a1 j^A0
e0 im-

plies a1 j^A0
c, whence a1 j^A0

cb by transitivity. On the other hand, sup-
pose bc j^A0

a�1. Then b j^A0c
a�1; as b j^c

a1 implies b j^c
A0, we obtain

b j^c
A0a�1, contradicting a�1 6 j^c

b. Therefore, bc 6 j^A0
a�1. Since I remains

indiscernible over A0; and both IC and I� remain indiscernible over A0bc, we may
add A0 to the parameters and suppose c D ; (replacing b by bc).

Fact 4.2 ([14, Theorem 5.2.18]) In a supersimple theory, for any finitary a there
are some B j^ a and a hyperimaginary finite tuple Na of independent realizations of
regular types over B , such that Na is domination-equivalent with a over B .

By Fact 4.2 there are B j^ a1 and an independent tuple Na1 of realizations of reg-
ular types over B such that Na1 is domination-equivalent with a1 over B . Since
B j^ a1 and I is indiscernible, we may assume by Wagner [14, Theorem 2.5.4]
that Bai � Ba1 for all i 2 Q, and B j^ I . So there are Nai for i 2 Q with
Bai Nai � Ba1 Na1. We can also assume B j^I

b, whence B j^ Ib. In particular
b j^ai

B , so for i > 0 we obtain b j^ Bai and thus b j^B
ai , while for i < 0 we

have b 6 j^ ai B and b j^ B , whence b 6 j^B
ai . By domination equivalence, Nai j^B

b

for i > 0, whereas Nai 6 j^B
b for i < 0.

By compactness and Ramsey we may suppose in addition that NI D . Nai W i 2 Q/

is B-indiscernible, NIC D . Nai W i > 0/ is indiscernible over Bb NI�, and NI� D
. Nai W i < 0/ is indiscernible over Bb NIC. We shall add B to the parameters and
suppress it from the notation. We may further assume that Na0�1 j^ b for any proper
subtuple Na0�1 � Na�1.

Claim All the regular types in Nai are nonorthogonal.

Proof of Claim Consider c; c0 2 Na�1, and put Nc D Na�1 n ¹c; c0º. Then Ncc j^ b

and Ncc0 j^ b by minimality, whence c j^ b Nc and c0 j^ b Nc, as Na�1 D Nccc0 is an
independent tuple.

Suppose c j^b Nc
c0. Then c j^ b Ncc0, whence c j^ Ncc0

b and finally b j^ Nccc0, con-
tradicting b 6 j^ Na�1: So tp.c=b Nc/ and tp.c0=b Nc/ are nonorthogonal; as they do not
fork over ; we get tp.c/ nonorthogonal to tp.c0/. The claim now follows, as all Nai

have the same type over ;.

Let wP .�/ denote the weight with respect to that nonorthogonality class P of regular
types. Then Nai is P -semiregular; since Na�1 6 j^ b we obtain

wP . Na�1/ > wP . Na�1=b/

by Pillay [12, Lemma 7.1.14]. (The proof works just as well for the simple case.)
We again consider limit types with respect to the cut at zero. Put

Np D lim. NI= NI /; NpC D lim. NIC= NIb/; and Np� D lim. NI�= NIb/:
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Once more, Np is Lascar strong, and NpC and Np� are nonforking extensions of Np by
finite satisfiability; let

NA D Cb. Np/ D Cb. NpC/ D Cb. Np�/ 2 bdd. NIC/ \ bdd. NI�/:

As before,

Nai j^
NA

NICb for all i < 0; and Nai j^
NA

NI�b for all i > 0:

Put e1 D bdd. Na�1b/ \ bdd. NAb/. Then

bdd. Na�1e1/ \ bdd. NAe1/ D e1:

Let A1 D Cb. Na�1=e1/. By CM-triviality,

A1 2 e1 \ bdd
�
Cb. Na�1= NAe1/

�
� bdd. Na�1b/ \ bdd. NA/;

since Na�1 j^ NA
e1 implies Cb.a�1= NAe1/ � bdd. NA/.

As b 2 e1 and Na�1 j^A1
e1 we obtain Na�1 j^A1

b. Moreover, Na1 �A1
Na�1, since

A1 � bdd. NA/ and NI remains indiscernible over NA. Therefore,

wP . Na�1=A1b/ D wP . Na�1=A1/ D wP . Na1=A1/:

Recall that A1 � bdd. Na�1b/. Then
wP . Na�1=b/ D wP . Na�1A1=b/

D wP . Na�1=A1b/C wP .A1=b/

D wP . Na1=A1/C wP .A1=b/

� wP . Na1=A1b/C wP .A1=b/

D wP . Na1A1=b/ � wP . Na1=b/

D wP .a1/ D wP .a�1/ > wP . Na�1=b/:

This final contradiction proves the theorem.

Remark 4.3 Note that the proof uses only the conclusion of Fact 4.2. The theorem
thus still holds for simple CM-trivial theories with finite weights (strongly simple
theories) and enough regular types, for instance, CM-trivial simple theories, without
dense forking chains.

Question By Palacín and Wagner [10, Theorem 4.20] it is sufficient to assume
that every regular type is CM-trivial, as this implies global CM-triviality. However,
for a regular type p a more general notion of CM-triviality is often more appropriate,
namely,

clp.aA/ \ clp.B/ D clp.A/) Cb
�
a= clp.A/

�
� clp

�
Cb
�
a= clp.B/

��
:

If this holds for all regular types p, is independence still stable?

Corollary 4.4 An!-categorical supersimple CM-trivial theory has stable forking.

Proof Suppose A 6 j^B
C . Then there are finite tuples Na 2 A and Nc 2 C with

Na 6 j^B
Nc. By supersimplicity, there is a finite Nb 2 B with Na Nc j^ Nb

B . Thus Na 6 j^ Nb
Nc.

By !-categoricity there is a formula '. Nx; Ny1 Ny2/ which holds if and only if Nx 6 j^ Ny1
Ny2.

Then ' is stable by Theorem 4.1, and '. Nx; Nb Nc/ 2 tp. Na= Nb Nc/.
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Let † be an ;-invariant family of types. Recall the definition of †-closure:
cl†.A/ D

®
a W tp.a=A/ is †-analyzable

¯
:

Fact 4.5 ([14, Lemmas 3.5.3, 3.5.5]) If dcl.AB/ \ cl†.A/ � bdd.A/, then
B j^A

cl†.A/. If A j^B
C , then A j^ cl†.B/

C .

Corollary 4.6 In a supersimple CM-trivial theory the relation R.xIy1y1/ given
by x j^ cl†.y1/

y2 is stable.

Proof Suppose not. Then there is an indiscernible sequence I D .ai W i 2 Q/ and
tuples b, c such that
� IC D .ai W i > 0/ is indiscernible over I�bc,
� I� D .ai W i < 0/ is indiscernible over ICbc, and
� ai j^ cl†.c/

b if and only if i > 0.
Put c0 D dcl.bc/ \ cl†.c/. By Fact 4.5 we have b j^c0

cl†.c/, so by transitivity
ai j^c0

b for i > 0. Suppose ai j^c0
b for i < 0. Since cl†.c0/ D cl†.c/, Fact 4.5

yields ai j^ cl†.c/
b, a contradiction. Thus ai j^c0

b if and only if i > 0, contradict-
ing Theorem 4.1.

To conclude the paper we prove a version of Corollary 4.6 without the assumption
of CM-triviality but for a particular ;-invariant family, namely, the family P of all
non-one-based types.

Fact 4.7 ([10, Corollary 5.2]) In a simple theory a j^ clP .a/\bdd.b/
b for all tuples

a and b, where P is the family of all non-one-based types.

Theorem 4.8 In a simple theory, the relation R.xIy1y2/ given by x j^ clP .y1/
y2

is stable, where P is the family of all non-one-based types.

Proof Suppose not. Then there is an indiscernible sequence I D .ai W i 2 Q/ and
tuples b, c such that
� IC D .ai W i > 0/ is indiscernible over I�bc,
� I� D .ai W i < 0/ is indiscernible over ICbc, and
� ai j^ clP .c/

b if and only if i > 0.
As before, we consider limit types with respect to the cut at zero. Let

p D lim.I=I /; pC D lim.IC=Ib/; and p� D lim.I�=Ib/:

By finite satisfiability, pC and p� are both nonforking extensions of p, which is
Lascar strong. Let

A D Cb.p/ D Cb.pC/ D Cb.p�/ 2 bdd.IC/ \ bdd.I�/:

As in the proof of Theorem 4.1 we have
ai j^

A

ICbc for all i < 0 and ai j^
A

I�bc for all i > 0:

We consider first e D clP .a1/\bdd.A/. Then a1 j^e
A by Fact 4.7; since I remains

indiscernible over bdd.A/ we have a�1 �bdd.A/ a1, whence e D clP .a�1/\bdd.A/

and a�1 j^e
A. On the other hand, since e 2 bdd.A/ and ai j^A

bc for i 2 Q we
obtain

a1 j^
e

bc and a�1 j^
e

bc:
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Now put c0 D dcl.bc/ \ clP .c/; note that clP .c0/ D clP .c/. Then b j^c0
clP .c/

by Fact 4.5. Moreover, a1 j^ clP .c/
b yields clP .a1/ j^ clP .c/

b by Fact 4.5, whence
clP .a1/ j^c0

b. Thus e j^c0
b, and hence e j^c0

bc since c � c0. But now
c0 � dcl.bc/ and a�1 j^e

bc imply that a�1 j^c0
bc. Hence a�1 j^ clP .c/

b by
Fact 4.5, as clP .c0/ D clP .c/. This contradiction finishes the proof.

Remark 4.9 If the theory is supersimple, we can take P to be the family of all
non-one-based regular types.
Remark 4.10 Theorem 4.8 generalizes the fact that independence is stable in a
one-based theory. For a true generalization of Theorem 4.1 to arbitrary theories, one
should take P to be the family of all 2-ample types. This is work in progress.
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