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A Note on the Axioms for Zilber’s
Pseudo-Exponential Fields

Jonathan Kirby

Abstract We show that Zilber’s conjecture that complex exponentiation is iso-
morphic to his pseudo-exponentiation follows from the a priori simpler conjec-
ture that they are elementarily equivalent. An analysis of the first-order types in
pseudo-exponentiation leads to a description of the elementary embeddings, and
the result that pseudo-exponential fields are precisely the models of their com-
mon first-order theory which are atomic over exponential transcendence bases.
We also show that the class of all pseudo-exponential fields is an example of a
nonfinitary abstract elementary class, answering a question of Kesälä and Bald-
win.

1 Introduction

Zilber’s pseudo-exponential fields were defined in Zilber [7] as models of certain
axioms. Infinitary logic is used throughout the paper, which shows that the axioms
are expressible by an L!1;!.Q/-sentence. Anand Pillay emphasized to me the im-
portance of understanding the first-order theory of these pseudo-exponential fields,
which we denote by TB. In [4], Zilber and I gave an axiomatization of TB, assuming
the Diophantine conjecture on intersections of subvarieties with tori (CIT). This note
takes some steps towards understanding TB unconditionally, in particular by describ-
ing the first-order types which are realized in pseudo-exponential fields. In Section 2,
I show that the axioms for pseudo-exponential fields can be written in a first-order
way, with two exceptions: anL!1;!-sentence is needed to omit the type of a nonstan-
dard integer, and the quantifierQ (there exist uncountably many) is essential for the
countable closure property (CCP), although the axiom can be expressed in an L.Q/-
scheme, rather than just as an L!1;!.Q/-sentence. These nonelementary axioms are
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known to hold in Cexp, so it follows immediately that if Cexp satisfies the first-order
theory of pseudo-exponential fields, then it satisfies the full L!1;!.Q/-theory.

The main result of Zilber’s paper is that there is a unique model of his axioms of
cardinality 2@0 , which we call B, and indeed of each uncountable cardinal �. Thus
we have the following.

Theorem 1 If the complex exponential field Cexp is elementarily equivalent to B,
then it is isomorphic to B.

The isomorphism is Zilber’s main conjecture about Cexp. However, Theorem 1 does
not make proving the isomorphism any easier; rather it shows that proving elemen-
tary equivalence is just as far out of reach.

The class of pseudo-exponential fields naturally forms an abstract elementary
class (AEC). Hyttinen and Kesälä [1] introduced the notion of a finitary AEC, and
the class of pseudo-exponential fields has been used as an example of a nonfinitary
AEC, but no proof of this fact has previously appeared in the literature. From the
proof that theQ-quantifier cannot be eliminated, the next theorem follows quickly.

Theorem 2 The category of pseudo-exponential fields (with CCP) together with
closed embeddings is an abstract elementary class which is not finitary.

Section 3 of this note uses the algebra of exponential fields developed in Kirby [3]
and Kirby and Zilber [4] to address the issues of elementary embeddings and atom-
icity for pseudo-exponential fields. In fact here we can work with a broader class,
not assuming the countable closure axiom, but unfortunately still narrower than the
class of all models of TB. The main technical difficulty is that, without CIT, we do
not understand what saturated models of TB look like, and we do not have an uncon-
ditional quantifier-elimination result, so the proofs have to use less direct techniques,
including a careful analysis of the types which are realized.

Theorem 3 The strong embeddings between pseudo-exponential fields (not neces-
sarily with CCP) are exactly the elementary embeddings. In particular, all pseudo-
exponential fields, including those of finite exponential transcendence degree, are
elementarily equivalent.

This theorem complements [7, Theorem 5.13], which adds the additional hypothesis
of infinite exponential transcendence degree but gets the stronger conclusion that
strong embeddings are L!1;!-embeddings. The stronger conclusion fails in general.

Finally, we show the following.

Theorem 4 Each pseudo-exponential field (not necessarily with CCP) is an
atomic model of TB over an exponential transcendence base, in the language
hC; �; expi. In particular, TB has a prime model. Conversely, every model of TB
which is atomic over an exponential transcendence base is a pseudo-exponential
field.

Zilber states in [7, Theorem 5.16] that the uncountable pseudo-exponential fields
(with the countable closure property) are prime over exponential transcendence
bases, but he uses an expanded language L� which is an expansion of our language
by L!1;!-definitions, not by first-order definitions. So Theorem 4 does not follow
directly from Zilber’s methods.
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2 The Axioms for Pseudo-Exponentiation

We give five axioms capturing Zilber’s definition. Explanations of the terminology
in axioms 4 and 5 are deferred to the more detailed discussions afterward. We use
only the language hC; �; expi.

1. ELA-field: F is an algebraically closed field of characteristic zero, and its
exponential map exp is a homomorphism from its additive group to its mul-
tiplicative group, which is surjective. (The letters ELA stand for exponential,
logarithm, and algebraically closed.)

2. Standard kernel: The kernel of the exponential map is an infinite cyclic group
generated by a transcendental element � .

3. Schanuel property: The predimension function

ı. Nx/ WD td
�
Nx; exp. Nx/

�
� ldimQ. Nx/

satisfies ı. Nx/ > 0 for all tuples Nx from F .
4. Strong exponential-algebraic closedness: If V is a rotund, additively and

multiplicatively free subvariety ofGna �Gnm defined over F and of dimension
n, and Na is a finite tuple from F , then there is an Nx in F such that . Nx; e Nx/ 2 V
and is generic in V over Na.

5. Countable closure property: For each finite subset C of F , the exponential
algebraic closure eclF .C / of C in F is countable.

Clearly axiom 1 is first-order expressible.

2.1 Standard kernel Write ker.F / D ¹x 2 F j exp.x/ D 1º, the kernel of the
exponential map. Define

Z.F / D
®
r 2 F

ˇ̌
8xŒx 2 ker! rx 2 ker�

¯
;

the multiplicative stabilizer of the kernel.
Axiom 2 can be split into three parts.

2a: The kernel is a cyclic Z-module.
2b: Every element of the kernel is transcendental over Z.
2c Standard integers: We have

.8r 2 Z/
_
n2N

r D 1C � � � C 1„ ƒ‚ …
n

_r C 1C � � � C 1„ ƒ‚ …
n

D 0:

It is clear that axioms 2a and 2b are first-order expressible and that 2c is not, but it
is given by a single L!1;!-sentence. Equivalently, 2c can be viewed as omitting the
incomplete type of a nonstandard integer.

2.2 The Schanuel property Axiom 3, the Schanuel property, is equivalent to the fol-
lowing axiom scheme, which is first-order expressible provided that axiom 2 holds,
so we can quantify over the standard integers: for each n 2 N, for each subvariety
V � Gna �Gnm defined over Q, of dimension n � 1,

.8x1; : : : ; xn/
�
9 Nm 2 Zn X ¹N0º

�h�
Nx; exp. Nx/

�
2 V !

nX
iD1

mixi D 0
i
:
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2.3 Strong exponential-algebraic closedness Write G for the algebraic group
Ga � Gm. Each matrix M 2 Matn�n.Z/ defines a homomorphism Gn

M
�! Gn

by acting as a linear map on Gna and as a multiplicative map on Gnm. If V � Gn, we
writeM � V for its image. Note that if V is a subvariety of Gn, then so isM � V .

An irreducible subvariety V of Gn is said to be rotund if and only if for every
matrixM 2 Matn�n.Z/ we have dimM � V > rkM .

Suppose that . Nx; Ny/ is a generic point of V over F , with the xi being the coordi-
nates from Ga and the yi the coordinates from Gm. We say that V is multiplicatively
free if and only if the yi do not satisfy any equation of the form

Qn
iD1 y

mi

i D b with
the mi 2 Z, not all zero, and b 2 Gm.F /. Equivalently, the projection of V to Gnm
does not lie in any coset of a proper algebraic subgroup of Gnm. Similarly, we say
that V is additively free if and only if the xi do not satisfy any equation of the formPn
iD1mixi D a with the mi 2 Z, not all zero, and a 2 F .

Proposition Axiom 4, strong exponential-algebraic closedness, is first-order ex-
pressible modulo axioms 1, 2, and 3.

Proof We consider parametric families .Vp/p2P of subvarieties of Gn, where P
is some parameterizing variety. It is a well-known fact (part of the fiber dimension
theorem) that the set of p such that Vp is irreducible and of dimension n is first-order
definable in the field language. The property of being additively free is not definable
in the field language since, for example, the subvariety of G2 given by the equation

x1 C px2 D 0

is additively free if and only if p … Q. However, it is definable as follows, allowing
quantification over Z:�

8 Nm 2 Zn X ¹N0º
�
8z9 Nx

h
Nx 2 Vp ^

nX
iD1

mixi ¤ z
i
:

It is easy to give similar definitions showing that rotundity and multiplicative freeness
are definable allowing quantification over Z. However, Theorem 3.2 of [7] shows that
these two properties are even first-order definable in the field language. For a para-
metric family .Vp/p2P of subvarieties of Gn, let P 0 be the set of p 2 P consisting
of those p such that Vp is irreducible, of dimension n, rotund, and additively and
multiplicatively free. Consider the following axiom scheme with one axiom for each
family .Vp/p2P and each natural number r :

.8p 2 P 0/.8Na 2 F r /.9 Nx 2 F n/.8 Nm 2 QnCr /h
. Nx; e Nx/ 2 Vp ^

� nX
iD1

mixi C

rX
iD1

mnCiai D 0!

n̂

iD1

mi D 0
�i
:

This scheme is first-order expressible assuming that axiom 2 holds, so we can quan-
tify over Z and hence overQ. It also follows from axiom 4, since that axiom gives an
Nx such that . Nx; e Nx/ is generic in Vp over Na. Since Vp is additively free, that Nx does
not satisfy any Q-linear equation over Na, which is all that the scheme requires.

Now let V be any rotund, additively and multiplicatively free subvariety of Gn
defined over F and of dimension n, and let Na be a finite tuple from F , as in the
hypothesis of axiom 4. Then V is Vp for some parametric family .Vp/p2P as above,
with p 2 P 0. By extending Na, we may assume that V is defined over Na. By extending
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again and using axiom 3, we may assume that ı. Na/ 6 ı. Ny; Na/ for all tuples Ny from
F (since the values of ı. Na; Ny/ lie in N, so the minimum is attained). Thus for all Ny,
ı. Ny= Na/ WD ı. Ny; Na/� ı. Na/ > 0. Now invoke the axiom scheme to find an Nx. We have
ldimQ. Nx= Na/ D n, so we must have td. Nx; e Nx= Na; e Na/ > n. But dim V D n, so . Nx; e Nx/
must be generic in V over . Na; e Na/ and so a fortiori over Na. Thus axiom 4 is equivalent
to this scheme, modulo axioms 1–3.

On [7, p. 87], Zilber remarks:
The definition [of strongly exponentially-algebraically closed] assumes a “slight
saturatedness” of the exponentially-algebraically closed structure.

This remark had led me to assume that strong exponential-algebraic closedness was
not first-order, even assuming the other axioms, so the above result was somewhat un-
expected. Indeed the fact that strong exponential-algebraic closedness is first-order
means that Zilber’s other notion of exponential-algebraic closedness is redundant
for the construction of the exponential fields which do have standard kernel and
the Schanuel property (although it is used in this note, in Section 3.1, where both
these properties fail). In [4, Theorem 5.5] we prove that the notions of exponential-
algebraic closedness and strong exponential-algebraic closedness coincide under the
additional assumption that the Diophantine conjecture CIT is true (and assuming the
other relevant axioms), and it would be interesting to know if the same result can be
proved unconditionally.

2.4 The countable closure property In any exponential field F there is a pregeom-
etry called exponential algebraic closure, which we write eclF . We give a quick
account of its definition. Details can be found in Macintyre [6] or Kirby [2]. An ex-
ponential polynomial (without iterations of exponentiation) is a function of the form
f . NX/ D p. NX; e

NX /, where p 2 F ŒX1; : : : ; Xn; Y1; : : : ; Yn� is a polynomial. We
can extend the formal differentiation of polynomials to exponential polynomials in a
unique way such that @eX

@X
D eX .

A Khovanskii system of width n consists of exponential polynomials f1; : : : ; fn
with equations

fi .x1; : : : ; xn/ D 0 for i D 1; : : : ; n (1)
and the inequation ˇ̌̌̌

ˇ̌̌̌ @f1

@X1
� � �

@f1

@Xn

:::
: : :

:::
@fn

@X1
� � �

@fn

@Xn

ˇ̌̌̌
ˇ̌̌̌ .x1; : : : ; xn/ ¤ 0; (2)

where the differentiation here is the formal differentiation of exponential polynomi-
als.

For any subset C of F , we define a 2 eclF .C / if and only if there are n 2 N,
a1; : : : ; an 2 F , and exponential polynomials f1; : : : ; fn with coefficients from
Q.C / such that a D a1 and .a1; : : : ; an/ is a solution to the Khovanskii system
given by the fi .

We say that eclF .C / is the exponential algebraic closure of C in F . If
a 2 eclF .C /, we say that a is exponentially algebraic over C in F , and other-
wise that it is exponentially transcendental over C in F .

Theorem 1.1 of [2] states that eclF is a pregeometry in any exponential field. We
have stated axiom 5 in terms of this pregeometry. The definition of the pregeome-
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try originally used by Zilber is different and only makes sense assuming axiom 2.
However, when axiom 2 holds, the two definitions agree by [2, Theorem 1.3]. With
Zilber’s original definition one can see that axiom 5 is expressible as an L!1;!.Q/-
sentence. Using this definition we can show the following.

Proposition Axiom 5, the countable closure property, is expressible as an L.Q/-
scheme.

Proof For the Khovanskii system on exponential polynomials f D .f1; : : : ; fn/,
write �f . Nx; Nz/ for the first-order formula expressing (1) and (2), where Nz denotes
the coefficients for the exponential polynomials. Then axiom 5 is expressed by the
L(Q)-sentences

.8Nz/:.Qx1/.9x2; : : : ; xn/�f . Nx; Nz/

where f ranges over all finite lists of exponential polynomials with variables Nz as
coefficients.

2.5 The complex exponential field and proof of Theorem 1 The complex exponen-
tial fieldCexp is the field of complex numbers equipped with the usual complex expo-
nential function given by exp.z/ D

P
n2N

zn

nŠ
. Axioms 1 and 2 are chosen such that

Cexp satisfies them. Zilber noted in [7, Lemma 5.12] that Cexp also satisfies axiom 5,
the countable closure property. With the definition of eclF from Section 2.4, we can
give a shorter proof. Given a finite subset C of Cexp, there are only countably many
Khovanskii systems with coefficients from Q.C /. The inequation in a Khovanskii
system says that the Jacobian of the functions f1; : : : ; fn does not vanish, so, by the
implicit function theorem, solutions to a Khovanskii system are isolated in the com-
plex topology. Hence there are only countably many solutions to each system, so
eclCexp.C / is countable.

We have seen that axioms 3 and 4 are first-order expressible modulo axioms 1
and 2, and certainly Cexp has cardinality 2@0 , so Theorem 1 follows.

2.6 Strong extensions We now summarize the definitions and results from [3] and
[4] which we shall need.

In this note, a partial exponential subfield of an ELA-field F is a subfield
F0 � F together with a Q-linear subspace D.F0/ of F0 and the restriction of the
exponential map expF to D.F0/, such that F0 is generated as a subfield of F by
D.F0/[ exp.D.F0//. Thus F0 is determined byD.F0/. For any finite tuple Na from
F we define

ı. Na=F0/ D td. Na; e Na=F0/ � ldimQ
�
Na=D.F0/

�
;

and say that F0 is strong in F , written F0 C F , if and only if for all Na 2 F ,
ı. Na=F0/ > 0.

If B � F is a subset, then hBiF , the partial exponential subfield of F generated
by B , is the partial exponential subfield F0 with D.F0/ equal to the Q-linear span
of B . We write B C F if and only if hBiF C F .

If F satisfies the Schanuel property, or more generally, if there is C � B with
C C F , then there is a smallest partial exponential subfield of F which contains B
and is strong in F . We write it as dBeF and call it the hull of B in F . For any subset
B � F , we write hBiELAF for the smallest ELA-subfield of F containing ker.F /[B ,
and we write dBeELAF for hdBeF iELAF .
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Proposition (A) Suppose that F is an ELA-field with standard kernel and Nb is a fi-
nite tuple from F such that Nb C F . Then there ism 2 NC such that the isomorphism
type of h NbiELAF is determined by the algebraic locus V D Loc. Nb=m; e Nb=m= ker.F //,
a subvariety of Gn, and does not depend on F . Furthermore, h NbiELAF is strong in F .

Proof The existence of some m 2 NC such that the partial exponential subfield
h NbiF is determined up to isomorphism by V follows from the Thumback lemma (see
[3, Fact 2.15], or see Zilber [8, Theorem 2] for a proof). Then [3, Theorem 2.18]
applies to show that h NbiELAF is uniquely determined and strong in F .

Proposition (B) If F C M is a strong extension of ELA-fields such that ker.F / D
ker.M/,M is generated as an ELA-field by F and a finite tuple Nb 2M n, and either
F is countable or ker.F / is @0-saturated, then there ism 2 NC such that the isomor-
phism type of M as an extension of F is determined by V D Loc. Nb=m; e Nb=m=F /.
Furthermore, Nb can be chosen to beQ-linearly independent over F , and then V is ro-
tund, additively and multiplicatively free, and of dimension at least n. The extension
is exponentially algebraic (i.e.,M D eclM .F /) if and only if dim.V / D n.

In this case, we writeM as F jV , “F extended by V .”

Proof See [3, Sections 3, 5] for the case where F is countable. In the case where
ker.F / is @0-saturated, the analysis is exactly the same except that one needs to use
[4, Theorem 3.3] in place of [3, Theorem 2.18].

2.7 L!1;!-theory Let ‰ be an L!1;!-sentence expressing axioms 1–4. For any
natural number n, it is easy to give an L!1;!-sentence ˆn specifying that F has
exponential-transcendence degree equal to n.

From Section 2.6, we see that axiom 4, strong exponential-algebraic closedness, is
equivalent (assuming axioms 1–3) to an existential closedness property for exponen-
tially algebraic strong ELA-extensions, which do not extend the kernel. Lemma 5.9
of [3] shows that these extensions can be freely amalgamated, so, at least in the
countable case, we can characterize the models as certain Fraïssé limits. Indeed any
ELA-field F which is countable or has @0-saturated kernel has a unique smallest
strongly exponentially algebraically closed extension, which we write as F�. For
more details, see [3, Section 6].

In particular, each of the L!1;!-sentences ‰n WD ‰ ^ ˆn and ‰1 WD

‰ ^
V
n2N :ˆn is countably categorical by the uniqueness of Fraïssé limits (or

specifically by [3, Corollary 6.10]) and hence complete. For ‰1 this was already
proved in [7, Theorem 5.13]. Clearly these are the only completions of ‰ as L!1;!-
theories. In particular, ‰1 gives the complete L1;!-theory of B. We write Bn for
the unique countable model of ‰n.

2.8 Necessity of Q and proof of Theorem 2 We now show that the Q-quantifier
cannot be eliminated.

Proposition The countable closure property is not expressible in L1;! , even
modulo axioms 1–4.

Proof The idea is to find and use an exponentially algebraic regular (in fact,
strongly minimal) type which is totally categorical and orthogonal to the generic
(exponentially transcendental) type and to the kernel.
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Let F0 D B0, and adjoin an extra element a such that ea D a. This a generates a
well-defined ELA-field extension F0jV of F0, where V is the subvariety of G given
by the equation x D y. Let F1 D .F0 j V /

�, the strong exponential algebraic
closure of F0jV . By construction, F1 satisfies axioms 1–5 and is an exponentially
algebraic extension of F0, so it has the same exponential transcendence degree, zero.
Thus F1 Š F0.

Now suppose that Nb is any finite tuple from F0, and let A D d NbeELAF0
. Then

A C F0, and since F0 C F1 we also have A C F1. By the general Fraïssé construc-
tion, or more specifically by [3, Proposition 6.9], F0 and F1 are both isomorphic over
A to its strong exponential algebraic closure A�, and so in particular to each other.
The same holds for any finite tuple Nb, so it follows that the inclusion F0 ,! F1 is an
L1;!-embedding. Now we can iterate the construction to get a chain

F0 ,! F1 ,! F2 ,! � � � ,! F˛ ,! � � �

of length !1. The union F!1
of this chain will be L1;!-equivalent to each element

of the chain and hence to B0, but ¹a 2 F!1
j ea D aº has cardinality @1, and each

such element is exponentially algebraic, so the countable closure property fails.

We say that an embedding F1 ,! F2 of pseudo-exponential fields is a closed embed-
ding if and only if the image of F1 is exponentially algebraically closed in F2, that is,
eclF2.F1/ D F1. The category of all pseudo-exponential fields together with closed
embeddings forms an AEC. The notion of an AEC being finitary was introduced by
Hyttinen and Kesälä [1] and studied also by Kueker [5]. Using [5, Definition 3.1],
an AEC K is finitary if and only if whenever M;N 2 K and f W M ,! N is an
L-embedding such that, for every finite tuple Na from M , there is a K-embedding
g WM ! N such that g. Na/ D f . Na/, then f is a K-embedding.

In the above proof we showed that the inclusion map F0 ,! F1 satisfied this last
condition, but clearly it is not a closed embedding. Thus Theorem 2 is established.
The proposition shows that our AEC is not closed under L!1;!-equivalence, and one
could use Kueker’s result that finitary AECs are closed under L!1;!-equivalence to
give another, less direct, proof of Theorem 2.

3 The First-Order Theory and Elementary Embeddings

3.1 The exponentially transcendental type Let f1; : : : ; fn be exponential polyno-
mials in variables x1; : : : ; xn, and, as before, write �f . Nx/ for the first-order formula
corresponding to the Khovanskii system on the fi , now suppressing the variables Nz
corresponding to coefficients of the fi .

Given any exponential field F , and any set A of parameters from F , the exponen-
tially transcendental type over A is the set of formulas

.8x2; : : : ; xn/
�
:�f .x; x2; : : : ; xn/

�
where n ranges over all positive natural numbers and f ranges over all n-tuples of
exponential polynomials with coefficients from A. Write pjA.x/ for this type over
A. For the exponential fields under consideration it is a consistent partial type. In
some cases, for example, Rexp, the type is not complete.

Proposition In TB, for any set of parameters A, the type pjA.x/ is complete.
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Proof It is enough to prove the result for finite A. So let M be an @0-saturated
model of TB, and letA be a finite subset ofM . Suppose that a; b 2M are each expo-
nentially transcendental overA. LetM0 D eclM .A/. We will set up a back-and-forth
system showing that tp.a=M0/ D tp.b=M0/. In particular, tp.a=A/ D tp.b=A/.

First, note that the partial E-field extensions of M0 generated by a and b are
isomorphic, since we have td.a; ea=M0/ D td.b; eb=M0/ D 2. Furthermore, since
a and b are exponentially transcendental overM0, these partial E-fields are strong in
M . By Proposition (B) in Section 2.6, there is an isomorphism

�1 W hM0; ai
ELA
M �!Š hM0; bi

ELA
M

between the ELA-subfields ofM generated byM0 [ ¹aº andM0 [ ¹bº, fixingM0

and sending a to b. Furthermore, these ELA-subfields ofM are strong inM .
Now suppose that we have n-tuples Na and Nb in M , each Q-linearly independent

overM0, with a1 D a and b1 D b and an isomorphism

�n W dM0; Nae
ELA
M �!Š dM0; Nbe

ELA
M

between the strong ELA-subfields of M generated by M0 [ Na, and M0 [
Nb, fixing

M0 and sending ai to bi for i D 1; : : : ; n.
Let c 2M . We want to find d 2M and an isomorphism

�nC1 W dM0; Na; ce
ELA
M �!Š dM0; Nb; de

ELA
M

extending �n. Write F D dM0; Nae
ELA
M . By extending Na and Nb, we may assume

M0 [ Na C M , so F D hM0; Nai
ELA
M , and similarly F 0 WD hM0; Nbi

ELA
M C M .

If c 2 F , then take d D �n.c/. If c is exponentially transcendental over F ,
then, using @0-saturation, we can find d exponentially transcendental over A [ Nb,
which is therefore exponentially transcendental over F 0 D dM0; Nbe

ELA
M , and the same

argument as above gives us �nC1.
Otherwise, since F C M , there is a finite tuple Nc of shortest length extending

c such that ı. Nc=F / D 0. By Proposition (B) in Section 2.6, Nc generates an ELA-
extension of the form F C F jV where V is the locus of . Nc; e Nc/ over F , and V is
rotund, additively and multiplicatively free, and of dimension equal to the length of
the tuple Nc. Let ˛ be a finite tuple of parameters from F over which V is defined,
and consider the variety V 0 defined by the same formula as V but with parameters
ˇ D �n.˛/. Without loss of generality we may assume that Nb is Q-linearly indepen-
dent overM0.
M was chosen to be an @0-saturated model of TB. As such, we do not know

that M is strongly exponentially algebraically closed, because we do not know
that axiom 4 is unconditionally first-order. However, M does satisfy the axiom of
exponential-algebraic closedness (see [4, Section 5.5]), which in combination with
the @0-saturation gives us . Nd; e

Nd / 2 V 0.M/, generic in V 0 over ˇ [ Nb, and such that
no Q-linear combination of Nd and Nb is exponentially algebraic over A, because these
conditions can be expressed by a partial type over the finite set ˇ [ Nb [ A.

Then Nd is Q-linearly independent over M0 [
Nb, so . Nd; e Nd / is generic in V 0 over

M0[
Nb[ e

Nb , and, using Proposition (B) in Section 2.6 once more, . Nd; e Nd / is generic
in V 0 over F 0. Hence the ELA-extension of F 0 generated by Nd is of the form F 0jV 0,
and so we have an isomorphism �nC1 extending �n, as required.
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3.2 Nonisolation of the exponentially transcendental type

Proposition If M ˆ TB and A is any set of parameters from M , then the type
pjA.x/ is not isolated.

Proof By completeness of pjA.x/ and the compactness theorem, if it were isolated
by some formula, then it would be isolated by a finite subtype of the form

q.x; Na/ D

r̂

iD1

.8x2; : : : ; xni
/
�
:�fi

.x; x2; : : : ; xni
; Na/
�
;

where Na is the finite tuple from A consisting of all coefficients from the exponential
polynomials in the fi . Let N D max¹ni j i D 1; : : : ; rº.

Define e0.x/ D x and enC1.x/ D exp.en.x// for n 2 N. Then in fact for any
tuple Nb in B, there is c 2 B such that eNC1.c/ D c and c; e1.c/; : : : ; eN .c/ are
algebraically independent over Nb, by strong exponential-algebraic closedness. Then
B ˆ q.c; Nb/ because any tuple witnessing that c is exponentially algebraic must span
the .N C 1/-dimensional Q-vector space spanned by ¹en.c/ j n D 0; : : : ; N º, but
the Khovanskii systems in q look only at tuples of length up to N . Hence

TB ` 8 Ny9x
�
q.x; Ny/ ^ eNC1.x/ D x

�
:

So there is c 2 M with M ˆ q.c; Na/ but with c exponentially algebraic over Na.
Hence pjA.x/ is not isolated.

3.3 Isolated types Let F ˆ ‰, and let X be an exponential transcendence base for
F . Any element of Z lies in the definable closure of ;, and the kernel generator �
is model-theoretically algebraic, with �� being the only conjugate. So the kernel
of F is model-theoretically algebraic. Now let Na be an n-tuple from F , and let X0
be the smallest subset of X such that Na 2 ecl.X0/. Let Nb be an r-tuple which is a
Q-linear basis forD.dX0; �; NaeF / over X0 [ ¹�º, let V D Loc. Nb; e Nb=X0; �/, and let
M 2 Matn�r .Q/ be such that Na DM Nb. Consider the first-order formula '. Nx/ given
by

9 Ny
�
. Ny; e Ny/ 2 V ^ Ny isQ-linearly independent over X0 ^ Nx DM Ny

�
;

where here Q is the field of fractions of the definable subring Z, not the quantifier.
Since F has standard integers, Q.F / will be Q. Now if F ˆ '. Na0/ and Nb0 is a
witness for Ny, then ldimQ. Nb

0=X0; �/ D r , but dim V D r and ı. Nb0=X0/ D 0, so
. Nb; e

Nb/ is generic in V over X0 [ ¹�º. Hence Nb0 2 ecl.X0/, and, by Proposition (A)
in Section 2.6, there is an isomorphism between hX0; NbiELAF and hX0; Nb0iELAF , pre-
serving X0 and � and sending Nb to Nb0. Since X X X0 is exponentially algebraically
independent over eclF .X0/, this extends to an isomorphism between hX1; NbiELAF and
hX1; Nb

0iELAF for any countable subset X1 of X . Then by strong exponential-algebraic
closedness of F , Nb and Nb0 are back-and-forth equivalent over any such X1 and hence
have the same first-order type over X . Hence Na and Na0 have the same type over X .
Thus the formula ' isolates the first-order type of Na over X .

3.4 Elementary equivalence We can now prove the second part of Theorem 3, show-
ing that all the Bn for n 2 N are elementarily equivalent to B. Let Na be an exponen-
tially algebraically independent n-tuple in B, and add parameters for Na. The type of
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a nonstandard integer is a nonisolated (partial) type, and, by the above, the exponen-
tially transcendental type over Na is also nonisolated. Hence, by the omitting types
theorem, there is a countable model M of TB containing Na which omits both types.
ThenM ˆ ‰n, and by countable categoricity of ‰n,M is isomorphic to Bn. Hence
Bn ˆ TB.

3.5 Atomic models and proof of Theorem 4 From Section 3.3 above, the first-order
type over an exponential transcendence base of any finite tuple from any model
F ˆ ‰ is isolated by a single first-order formula in the language hC; �; expi, so
each such F is an atomic model of the expansion of TB by parameters for the ex-
ponential transcendence base. In particular, B0 is atomic over ;, and a countable
atomic model is prime, so B0 is the prime model of TB. For the converse statement,
any model of TB which is atomic over an exponential transcendence base has stan-
dard integers and hence is a model of ‰, that is, of axioms 1–4. That completes the
proof of Theorem 4.

3.6 Elementary embeddings and the end of the proof of Theorem 3 If an embedding
F1 � F2 of models of‰ is not strong, then there are finite tuples Na C F1 and Nb 2 F n2
such that Nb is Q-linearly independent over Na and ı. Nb= Na/ < 0, so . Nb; e Nb/ lies in some
algebraic variety V defined over . Na; e Na/ of dimension less than n. The first-order
formula expressing the existence of such a Nb is true of Na in F2 but false in F1, and
hence the inclusion of F1 in F2 is not elementary.

Now suppose that F1 C F2 is a strong extension of models of ‰. We use the
Tarski–Vaught test to show that F1 4 F2. So let Na be a tuple from F1, b 2 F2, and
let '. Nx; y/ be a first-order formula such that F2 ˆ '. Na; b/. Extending Na if necessary,
we may assume that Na C F1, and so Na C F2. Since the kernel does not extend, the
ELA-subfield F0 of F2 generated by Na is contained in F1. If b is exponentially al-
gebraic over Na, then it generates a strong ELA-extension of the form F0 C F0jV for
some perfectly rotund V . There is an isomorphic strong ELA-extension inside F1 by
strong exponential-algebraic closedness of F1, and the element c corresponding to b
under the isomorphism realizes the same principal formula as b in F2. In particular,
F2 ˆ '. Na; c/. Otherwise b is exponentially transcendental over Na, and, since the ex-
ponentially transcendental type is approximated by isolated exponentially algebraic
types as in Section 3.2 above, we can again find such a c in F1, depending on the
formula '. So F1 4 F2. That completes the proof of Theorem 3.
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