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The Lascar Group and
the Strong Types of Hyperimaginaries

Byunghan Kim

Abstract This is an expository note on the Lascar group. We also study the
Lascar group over hyperimaginaries and make some new observations on the
strong types over those. In particular, we show that in a simple theory Ltp � stp
in real context implies that for hyperimaginary context.

The Lascar group introduced by Lascar [8], and related subjects, have been
studied by many authors (see Lascar and Pillay [9], Casanovas et al. [1], Kim [7],
Hrushovski [6], Gismatullin and Newelski [3], and more). Notably in [9] and [1],
a new look on the Lascar group is given, and using compact Lie group theory
Lascar and Pillay proved that any bounded hyperimaginary is interdefinable with
a sequence of finitary bounded hyperimaginaries. Good summaries on the Lascar
group are written in Ziegler [11] and Wagner [10]. While this is another short
expository note stating known results in [8], [9], [1], and [7], we supply a couple
of new observations. We study the Lascar group in a slightly more general context,
namely, over hyperimaginaries. The notion of strong types over hyperimaginaries
is somewhat subtler even at the level of the definition (see Example 3.5). As a
by-product we show that in a simple theory if Ltp.a=A/ � stp.a=A/ for real tuples
a and A, then the same holds for hyperimaginaries. A question remains whether this
holds in any theory.

We work with an arbitrary complete theory T in L, and a fixed large saturated
model M ˆ T of size N�, as usual. We recall some definitions. Unless noted oth-
erwise, a tuple can have an infinite size (< N�). By a hyperimaginary we mean an
equivalence class of a type-definable equivalence relation over ;. So a hyperimagi-
nary has the form a=E D aE where a is a tuple from M and E.x; y/ is the ;-type-
definable equivalence relation on Mjxj. We call aE an E-hyperimaginary. We say
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the hyperimaginary is finitary if a is a finite tuple. In general, we put jaE j WD jaj. In
the note arity means an arity of a real tuple.

From now on a; b; c; : : : ; A; B; : : : denote hyperimaginaries, but M;N; : : : de-
note elementary small submodels of M. Clearly any tuple from M or Meq is also a
hyperimaginary. We call such a tuple real or imaginary, respectively. Given a hy-
perimaginary c, Autc.M/ denotes the set of all automorphisms of M fixing c (i.e.,
fixing the equivalence class setwise). A relation is said to be over c or c-invariant if
it is Autc.M/-invariant. A hyperimaginary a is said to be bounded over b (written
a 2 bdd.b/) if a has only boundedly many automorphic conjugates over b, that is,
j¹f .a/ j f 2 Autb.M/ºj < N�. We say that a is bounded if a 2 bdd.;/. Similarly, we
say that a is definable (resp., algebraic) over b written a 2 dcl.b/ (resp., a 2 acl.b/)
if ¹f .a/ j f 2 Autb.M/º is a singleton (resp., finite). Two hyperimaginaries a; b
are said to be interdefinable or equivalent if a 2 dcl.b/ and b 2 dcl.a/. We use
nonstandard notation a � b to denote a 2 dcl.b/. We put

acleq.b/ D
�
acl.b/ \Meq�

[ ¹bº:

Notice the difference between acl.b/ and acleq.b/; both are somewhat newly intro-
duced when b is a hyperimaginary. In Corollary 3.4 we shall see that acl.b/ and
acleq.b/ are interdefinable. As is known, the type of a over b, tp.a=b/, makes sense,
and p 2 SE .b/ means that p is a type of some E-hyperimaginary over b. As usual
a �b c means c ˆ tp.a=b/. Of course, when we say a �b c, both a; c must be
hyperimaginaries for a common E, so in general E(-complete) types are computed
in M=E. For two partial E-types p.x/; q.x/ we write q � p if p ˆ q and q ˆ p.
For the additional introduction to hyperimaginaries the reader may see Ziegler [11].

1 Lascar Group

We restate definitions from [8], [9], and [7]. Throughout we fix a hyperimaginary
A. Recall that AutfA.M/.D a subgroup of AutA.M/ generated by ¹f 2 AutA.M/ j

f 2 AutM .M/ for some modelM � Aº) is a normal subgroup of AutA.M/. We
recall a fact on Lascar (strong) types.

Definition 1.1 Let a; b be hyperimaginaries such that tp.a=A/ D tp.b=A/. We
define dA.a; b/ to be the least natural number n.� 1/ such that there are sequences
I1; I2; : : : ; In and hyperimaginaries a D a0; a1; : : : ; an D b such that a_i�1Ii and
a_i Ii are both A-indiscernible for each 1 � i � n. (If there is no such n < !, then
we write dA.a; b/ D1.)

The following is proved in [7] when a; b; A are real. The same proof works for
hyperimaginaries.

Fact 1.2 The following are equivalent (a; b are E-hyperimaginaries):
(1) Ltp.a=A/ D Ltp.b=A/ (or write a �LA b); that is, there is f 2 AutfA.M/

such that f .a/ D b;
(2) dA.a; b/ < !;
(3) ˆ F.a; b/ for any A-invariant bounded equivalence relation F coarser

than E.
In conclusion, xE �LA yE is an invariant bounded equivalence relation over A

coarser than E and is the finest among those.

Definition 1.3 (Lascar group) We have GalL.M; A/ WD AutA.M/=AutfA.M/.
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In the rest of the paper, when there is no risk of confusion we may omit A
for notational convenience, so A � M for any model mentioned below, and
Aut.M/;Autf.M/ below indeed mean AutA.M/;AutfA.M/, respectively. As was
said in the introduction, Sections 1 and 2 form a summary of known results from [1],
[9], and [11] when A is real. Most of the arguments there go through even when A
is a hyperimaginary, and we will repeat some arguments for the sake of completion.

Remark 1.4 We argue that the Lascar group depends only on T and A, and we
write GalL.T; A/ for GalL.M; A/. We have jGalL.T; A/j � 2jT jCjAj.

(1) Let M be a (small) elementary submodel of M. For f; g 2 Aut.M/, if
f .M/ �M g.M/, then f:Autf.M/ D g:Autf.M/ in GalL.M/. There is h
in Autf.M/ which fixes M pointwise and sends f .M/ to g.M/. Then since
s WD f �1:h�1:g fixesM too, s 2 Autf.M/. Thus the claim follows.

(2) In (1), we can chooseM having size jT jCjAj. Since there are at most 2jT jCjAj
many types overM , we have jGalL.M; A/j � 2jT jCjAj.

(3) Let M0 � M be saturated, and let jM0j > jMj. There is a canonical isomor-
phism from GalL.M/ to GalL.M0/.

Let f 2 Aut.M/. Any two automorphisms of M0 extending f are in the same
coset in GalL.M0/. This induces a homomorphism ˛ W Aut.M/ ! GalL.M0/. We
claim that ker.˛/ D Autf.M/. If f 2 Autf.M/, then clearly any extension of f in
Aut.M0/ is in Autf.M0/. Conversely, let f 0 2 Autf.M0/ extend f 2 Aut.M/. Then
for a small modelM �M, by Fact 1.2,M �L f 0.M/ D f .M/ in M. Hence there
is g 2 Autf.M/ such that f .M/ D g.M/. Then g�1:f 2 Autf.M/ since it fixes
M , so f 2 Autf.M/, too.

Let us also write ˛ W GalL.M/ ! GalL.M0/ for the induced injection. We claim
that ˛ is surjective. Let g 2 Aut.M0/. For a small modelM �M, there isM 0 �M

such that g.M/ �M M 0. Now there is f 2 Aut.M/ sendingM toM 0. Then by (1),
˛.f / D g:Autf.M0/.

In the rest of this section, for f; g 2 Aut.M/, we write f � g if f:Autf.M/ D

g:Autf.M/.
We shall endow GalL.T / with a quotient topology to make it a compact (but not

necessarily Hausdorff ) topological group. Let � W Aut.M/! GalL.D GalL.T; A//
be the canonical projection. Fix a modelM �M, and let

SM .M/ WD
®
tp
�
f .M/=M

� ˇ̌
f 2 Aut.M/

¯
;

equipped with its Stone topology. Then by Remark 1.4(1), � factors through the sur-
jection� W Aut.M/! SM .M/ sending f to tp.f .M/=M/; that is, there is a canon-
ical surjection � D �M W SM .M/ ! GalL such that � D �:�. We use these maps.
We give GalL the quotient topology under the map �. This topology is independent
from the choice ofM . It suffices to show this for a model N.� M/, an elementary
extension of M (since any two models have a common extension). Now the map
�N W SN .N /! GalL factors through the restriction map SN .N /! SM .M/ send-
ing tp.f .N /=N/ to tp.f .M/=M/. Since the restriction map is continuous and both
SN .N /; SM .M/ are compact Hausdorff, �M ; �N induce the same quotient topology.

Lascar originally introduced the topology on GalL in terms of ultrafilters. It is
known that his and the quotient topology coincide. Contrary to what the reader
might expect, the proof that GalL is a topological group is quite subtle. The only
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known complete and correct proof can be found in [11], and the proof goes through
when working over some hyperimaginary A.

Proposition 1.5 GalL.T; A/ is a compact topological group.

2 Quotient Groups of the Lascar Group

We introduce two canonical subgroups of GalL.T; A/. Note that ¹idº is a closed
normal subgroup of GalL.T; A/. The connected component of GalL.T; A/ containing
id is denoted by Gal0L.T; A/; it is also closed and normal.

Definition 2.1 We have the following:
(1) AutfKP.M; A/ WD ��1.¹idº/.
(2) AutfS.T; A/ WD ��1.Gal0L.T; A//.
(3) GalKP.T; A/ WD GalL.T; A/=¹idº D AutA.M/=AutfKP.M; A/.
(4) GalS.T; A/ WD GalL.T; A/=Gal0L.T; A/ D AutA.M/=AutfS.M; A/.
(5) We say that T is G-compact over A if GalL.T; A/ is Hausdorff.

KP stands for Kim–Pillay, and S stands for Shelah or “strong.” Again, below we may
omit the subscript A.

Remark 2.2
(1) Recall that for topological groups H C G, the quotient group G=H is Haus-

dorff if and only ifH is closed inG. Hence both GalKP.T / and GalS.T / are compact
Hausdorff. Moreover, GalS.T / is totally disconnected, so it is a profinite group.

Now T is G-compact if and only if ¹idº is closed if and only if Autf.M/ D

AutfKP.M/ (then GalKP.T / and GalL.T / are canonically isomorphic).
(2) For the rest of this section we endow Aut.M/ with a topology having basic

open sets of the form ¹f 2 Aut.M/ j f .a/ D bº for some real n-tuples a; b 2 M.
(However, the topologies of GalS;GalKP are always the quotient topologies obtained
from GalL.)

(3) Let � be a subgroup of AutA.M/. Fix F an ;-type-definable equivalence
relation on M˛ (˛ an arity). We write EF

� to denote an equivalence relation such
that for F -hyperimaginaries c; d , we have EF

� .c; d/ if and only if d D f .c/ for
some f 2 � . So EF

� is an equivalence relation on M˛=F or, equivalently, an
equivalence relation on M˛ coarser than F . When we write ED� .x; y/, D means
the finest real equivalence relation x D y. We omit F if F is clear from context.
Note that if � is normal, then E� is A-invariant, but in general it need not be. When
� D Autf.M; A/ we know that E� is�LA, and EAutfKP.M;A/ is denoted by�KPA .

Notice that � is closed if and only if � D � D ¹f 2 AutA.M/ j for each finite
real tuple a 2M;ED� .a; f .a//, that is, f stabilizes all ED� -classes of finite aritiesº.

Lemma 2.3

(1) Let H 0 be a closed normal subgroup of GalL, and let H D ��1.H 0/. Then
given F , EF

H is a type-definable bounded equivalence relation (over A).
(2) The restriction map � is continuous, so both AutfS.M/ and AutfKP.M/ are

closed in Aut.M/.

Proof (1) Let a D uF ˆ p.x/ 2 SF .A/ where u is a real tuple of arity ˛. Fix
a model .u �/M D Mp � M. Since H 0 is closed, there is ˆ.x0;M/ over M
type-defining ��1.H 0/; that is, f 2 H if and only if ˆ.f .M/;M/ holds. Note
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that H being a group implies that ˆ.x0; y0/ type-defines an equivalence relation on
tp.M/. Moreover, x0 �LA M ! ˆ.x0;M/. Thus ˆ.x0; y0/ is a bounded equiv-
alence relation on tp.M=A/. Note also that since H is normal it easily follows
that ˆ.x0; y0/ � EDH .x

0; y0/ on tp.M=A/. Then by taking existential quantifiers
to ˆ.x0; y0/, clearly EDH .x; y/ is type-definable on q.x/ D tp.u=A/ too. Hence
EFH .x; y/ is type-defined by

‰p.x; y/ � 9zw
�
EDH .z; w/ ^ q.z/ ^ q.w/ ^ F.z; x/ ^ F.w; y/

�
on tp.a=A/ D p.x/. We put

‰0p.x; y/ �
�
‰p.x; y/ ^ p.x/ ^ p.y/

�
_ x �A y:

Therefore, clearly EF
H .x; y/$

V
¹‰0p j p.x/ 2 SF .A/º.

(2) Let f 2 Aut.M/, and let U be an open subset of GalL.T / containing
�.f / D f:Autf.M/. Since � is continuous, ��1.U / � SM .M/ contains a basic
open neighborhood

V'.x/ D
®
tp
�
g.M/=M

�
3 '.x/ W g 2 Aut.M/

¯
of �.f / D tp.f .M/=M/, where '.x/ is some formula over M . Let a 2 M be a
finite tuple corresponding to x. Then we have simply

��1.V'.x// D
®
g 2 Aut.M/ W g.a/ ˆ '.x/

¯
:

Since f 2 ��1.V'.x//, in particular ˆ '.f .a// holds. Therefore, a basic open
neighborhood ¹h 2 Aut.M/ j h.a/ D f .a/º of f is contained in ��1.V'.x//.
Hence � is continuous.

Now fix a closed normal subgroup H 0 C GalL, and let H D ��1.H 0/. We write
x �H y if EDH .x; y/ holds, which on any arity, due to Lemma 2.3(1), is a bounded
type-definable equivalence relation (over A).

Proposition 2.4

(1) We have H D ¹f 2 Aut.M/ j f stabilizes all the �H -classes of any
aritiesº D ¹f 2 Aut.M/ j f stabilizes all the �H -classes of finite real
aritiesº.

(2) The following are equivalent:
(a) c0 �H c1 for real tuples;
(b) c00 �H c01 for each corresponding finite subtuple c0i of ci (i D 0; 1).

Proof (1) Due to Lemma 2.3(2), H is closed in Aut.M/. Hence it comes from
Remark 2.2(3).

(2) Clearly (a) implies (b). Assume that (b) holds. In this proof all the tuples are
real. Note that there is h0 2 H such that h0.c00/ D c01. Hence for any finite d0, there
is d1 D h0.d0/ with c00d0 �H c01d1. Thus by compactness there is a sufficiently sat-
uratedMi containing ci such that for each finite corresponding bi 2 Mi , b0 �H b1
(*). In particular tp.M0/ D tp.M1/, and there is h 2 Aut.M/ sending M0 to M1.
Let d= �H with arbitrary finite d be given. We claim that h fixes d= �H , so by
(1), h 2 H , and (a) follows. Due to the saturation of M0 and the boundedness of
�H , there is d 0 2 M0 such that tp.d/ D tp.d 0/ and d �H d 0 holds. Then by (*), h
clearly fixes d 0= �HD d= �H .
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In [9], using compact Lie group theory, Lascar and Pillay showed that any bounded
hyperimaginary e is equivalent to a sequence of finitary bounded hyperimaginaries.
As a corollary of Proposition 2.4, the result can be directly obtained when Aute.M/

is a normal subgroup of Aut.M/. (This is observed by Casanovas and Potier [2].)

Corollary 2.5 Let e D cF with real c be a hyperimaginary bounded over A.
Assume additionally that AuteA.M/ C AutA.M/. Then there are finitary hyper-
imaginaries ei .i 2 I / such that e and .ei j i 2 I / are interdefinable over A.

Proof In the proof we again omit A. Let p.x/ D tp.e/. We may reset F as
.p.x/ ^ p.y/ ^ F.x; y// _ x � y, so that F as a whole is a type-definable
bounded equivalence relation (over A). Choose a model M containing c. Note
that F type-defines a bounded equivalence relation on MjM j too. Moreover,
Aute.M/ D ¹f 2 Aut.M/ Wˆ F.f .c/; c/º. Hence �.Aute.M// is a closed sub-
group of GalL. By the assumption it is normal as well. Hence our corollary follows
from Proposition 2.4(2).

Corollary 2.6

(1) For real x; y, x �KPA y is the finest bounded type-definable equivalence
relation over A. Precisely, for real ui (i D 0; 1) the following are equivalent:
(a) u0 �KPA u1 holds;
(b) u0 �A u1, and E 0.u0; u1/ holds for any ;-type-definable equivalence

relation E 0 such that u0=E 0 2 bdd.A/;
(c) u00 �KPA u01 for each corresponding finite subtuple u0i of ui .

(2) AutfKP.M; A/

D ¹f 2 Aut.M; A/ j f stabilizes all the bounded A-type-definable
equivalence classesº
D ¹f 2 Aut.M; A/ j f stabilizes all the bounded A-type-definable
equivalence classes of finite aritiesº.

(3) The following are equivalent:
(a) a �KPA b where a D uF ; b D vF with real u; v;
(b) FKPA .u; v/ holds where

FKPA .x; y/ � 9zz0
�
z �KPA z0 ^ F.z; x/ ^ F.z0; y/

�
� 9z

�
F.z; y/ ^ z �KPA x

�
(z �sA x is of course equality of KP-types over A of real tuples);
FKPA .x; y/ is a bounded type-definable equivalence relation over A
coarser than F and is the finest among those;

(c) a �bdd.A/ b.

Proof (1)(a),(b) This comes from the argument in the proof of Lemma 2.3(1).
Note that for a type ‰.x;M/ type-defining ��1.¹idº/, ‰.x; y/ must be the finest
bounded type-definable equivalence relation on tp.M=A/.

The equivalence of (1)(c) to others and (2) are due to Proposition 2.4.
(3)(a),(b) Again this is from the argument in the proof of Lemma 2.3(1).

Note that if u0 �KPA v0 and F.u; u0/; F .v; v0/ with real u0; v0 so that there is
f 2 AutfKP.M; A/ with v0 D f .u0/, then f .u/ �KPA u and F.f .u/; v/ holds.
Hence one can easily verify that ‰p there with H D AutfKP.M; A/ is equivalent to
FKPA above on p.x/ D tp.a=A/. Note also that FKPA is coarser than both�s and F .
It remains to show that FKPA is the finest one as stated. There clearly is a finest one;
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let it be F 0. If FKPA .u0; v0/ holds, then there is u00 such that F.u0; u00/^ u00 �KPA v0.
Hence F 0.u0; u00/ and F 0.u00; v0/; so F 0.u0; v0/ must hold.

(c))(b) This is obvious. Note only that due to (1)(b), u= �KPA is equivalent over
A to a hyperimaginary.

(b))(c) Assume (b). Let a0 2 bdd.A/. By compactness it suffices to show
c0 �Aa0

c1. Suppose that ¹ai j i 2 I º is the set of all A-conjugates of a0.
Write p.x; a0/ D p.xF ; a0/ D tp.c0=Aa0/; and p.x; ai / is the conjugate of
p.x; a0/ over A. Now there is a maximal subset J � I containing zero such
that ¹p.x; ai / j i 2 J º is realized by c0. Put aJ D hai j i 2 J i, and let
p0.xz/ D tp.c0aJ =A/I q.z/ D tp.aJ =A/. Consider

NE.x; y/ � 9z
�
p0.x; z/ ^ p0.y; z/ ^ q.z/

�
_ xF �A yF :

Due to the maximality of J , NE is an A-type-definable equivalence relation, bounded,
and coarser than F . Thus by (b), NE.c0; c1/ holds. Note that c0 ˆ

V
i2J p.x; ai /, so

c1 ˆ p.x; a0/, and c0 �Aa0
c1, as desired.

Proposition 2.7 The following are equivalent.
(1) T is G-compact over A.
(2) Autf.M; A/ is closed in AutA.M/, and for each finite arity, x �LA y is type-

definable over A.
(3) For any arity, x �LA y if and only if x �KPA y.
(4) For any arity, x �LA y is type-definable.
(5) For any F , xF �LA yF if and only if xF �KPA yF .

Proof (1))(2),(3) By Lemma 2.3 and Corollary 2.6.
(2))(1) Let f 2 AutfKP.M/. Then by (2) and Corollary 2.6, f fixes all

�L-classes of finite arities. Then since Autf.M/ is closed, from Remark 2.2(3),
f 2 Autf.M/.

(3))(1) Let f 2 AutfKP.M/. Due to (3), for a modelM , we haveM �L f .M/,
and there is g 2 Autf.M/ such that f .M/ D g.M/. Thus by Remark 1.4(1),
f 2 Autf.M/.

(3),(4), (1))(5))(3) This is clear.

As is well known, any simple theory T is G-compact over an arbitrary hyperimagi-
nary.

3 Strong Types of Hyperimaginaries

Now we talk about strong types in the hyperimaginary context, which is somewhat
more subtle, even the definition, than in the real case. Recall that a finite equivalence
relation means an equivalence relation having finitely many classes.

Definition 3.1 We say that two hyperimaginaries a; b have the same strong or
Shelah type over A, written a �sA b or stp.a=A/ D stp.b=A/, if EAutfS.M;A/.a; b/

holds.

Proposition 3.2

(1) Gal0L.T; A/ is the intersection of all closed (normal) subgroups of GalL.T; A/
having finite index.

(2) AutfS.M; A/ D ¹f 2 AutA.M/ j f stabilizes all strong types over A of
finite aritiesº.
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Proof (1) We recall Remark 2.2(1). Clearly Gal0L is contained in any closed sub-
group of GalL of finite index. Moreover, GalS is a profinite group. In a profinite
group, the identity is the intersection of all normal closed subgroups of finite index.
Hence (1) follows.

Then (2) follows from Remark 2.2(3) and Lemma 2.3(2).

Due to Lemma 2.3, x �sA y is bounded type-definable over A. We have a more
precise collection of formulas type-defining it.

Proposition 3.3 Let u; v be real tuples. The following are equivalent:
(1) u �A v; and for any ;-definable equivalence relation E, if u=E 2 acl.A/,

then E.u; v/ holds;
(2) u �sA v;
(3) for any A-type-definable equivalence relation E, if u=E has finitely many

conjugates over A, then E.u; v/ holds;
(4) u �acl.A/ v;
(5) u �acleq.A/ v;
(6) u00 �sA u

0
1 for each corresponding finite subtuple u0i of ci (i D 0; 1).

Proof (1))(2) By Proposition 3.2(1), Gal0L.T; A/ D
T
i Hi whereHi is a closed

normal subgroup of GalL.T; A/ having finite index, soHi is open as well. Due to the
similar argument as in the proof of Lemma 2.3(1), there is a formula Fi .x0; y0/ over
; defining an equivalence relation on tp.u/ and hence on Mjuj by compactness, such
that u=Fi 2 acl.A/. Since Hi is normal it again follows that on p.x/ D tp.u=A/,
Fi .x

0; y0/ defines EHi
.x; y/; in particular, p.x/ ˆ Fi .x

0; u0/ $ EHi
.x; u/ (the

corresponding finite u0 � u). Therefore (1))(2) follows.
(2))(3) Let E.x; y/ type-define an equivalence relation over A such that

e D u=E 2 acl.A/. Then AuteA.M/ is a subgroup of AutA.M/ containing
AutfA.M/. Now E.x; u/ clearly defines EAuteA.M/.x; u/ on tp.u=A/. Hence
�.AuteA.M// is closed (may not be normal), and it has finite index in Gal0L.T; A/
as automorphisms in a coset send e to a different E-class. Therefore Gal0L.T; A/ �
�.AuteA.M//, and (2))(3) follows.

(3))(1) and (4))(5))(1) This is obvious.
(3))(4) The proof is the same as that of Corollary 2.6(3)(b))(c). This time the

J � I are finite, and q is algebraic.
(1),(6) This follows by compactness.

Corollary 3.4 acl.A/ and acleq.A/ are interdefinable.

Proof Let u=E 2 acl.A/ (u real). It suffices to show that u=E is definable over
acleq.A/. Due to Proposition 3.3, uE 2 dcl.u= �s/ and u= �s is definable over
acleq.A/.

Example 3.5 We give a couple of examples related to Proposition 3.3. In (1) that
u �A v is essential. Let L D ¹Dº, and let u ¤ v be singletons in the infinite M. By
quantifier elimination, the second clause of (1) holds with A D v, but u 6�v v much
less u �sv v.

Also, if A is real as well, then u �sA v if and only if for any A-definable finite
equivalence relation E, E.u; v/ holds. This no longer holds in the hyperimaginary
context. Even the right-hand side need not imply u �A v. The difference comes
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from the fact that in real context any formula in tp.u=v/ is v-invariant, but not in
general if v is a hyperimaginary. Consider a typical example where Ltp 6� stp, that
is, a model .C I ¹Un.x; y/º0<n2!/ where C is the unit circle, and Un.a; b/ holds for
a; b 2 C if and only if the length of the shorter arc from a to b is at most n�1. Let
F be an equivalence relation on C type-defined by ¹Un.x; y/ j 0 < n 2 !º. Choose
u; v 2 C such that uF ¤ vF . Then for any vF -invariant finite definable equivalence
relation E (there are almost no such except trivial one), E.u; v/ holds. But not even
u �vF

v holds.

The properties of strong types of hyperimaginaries follow in the same manner.

Proposition 3.6 Let a D uF ; b D vF with real u; v be F -hyperimaginaries. The
following are equivalent.

(1) We have a �sA b.
(2) F sA.u; v/ holds, where F

s
A.x; y/ is a bounded type-definable equivalence re-

lation over A coarser than F such that

F sA.x; y/ � 9zz
0
�
z �sA z

0
^ F.z; x/ ^ F.z0; y/

�
� 9z

�
F.z; y/ ^ z �sA x

�
(z �sA x is equality of strong types over A of real tuples).

(3) We have a �acl.A/ b.

Proof (1),(2) This is by the similar reason as in the proof of Corollary
2.6(3)(a),(b).

(1),(3) This comes from Proposition 3.3.

Proposition 3.7 The following are equivalent:
(1) AutfKP.M; A/ D AutfS.M; A/;
(2) GalKP.T; A/ is compact Hausdorff and totally disconnected;
(3) �KPA is equivalent to�sA for any arity;
(4) �KPA is equivalent to�sA for finite arities;
(5) �KPA is equivalent to�sA for any hyperimaginary variables;
(6) acl.A/ and bdd.A/ are interdefinable.

In Example 3.5, AutfKP ¤ AutfS. Some non-G-compact examples (so Autf ¤
AutfKP) are constructed in [1]. In one example�L is different from�KP for a finite
tuple, while they can be equal for all finite arities in another non-G-compact example.
In [11], given any compact Hausdorff topological group G a corresponding theory
TG is constructed so that GalL.TG/ D G.

That “Ltp � stp in real (resp., hyperimaginary) context” means for any tuple c
and a set A both real (resp., hyperimaginaries), it holds that Ltp.c=A/ � stp.c=A/.

Proposition 3.8 Assume that T is simple. Then Ltp � stp in real context implies
that in hyperimaginary context. (In particular, both low theories and supersimple
theories have Ltp � stp in hyperimaginary context.)

Proof Assume that Ltp � stp in real context. Let uE be a hyperimaginary, and let
v; v0 be real. It suffices to show that v �suE

v0 implies v �LuE
v0. Choose a model

M containing u. Now E clearly type-defines an equivalence relation onM as well,
and u=E andM=E are interdefinable. Hence there is no harm in supposing that u is
some enumeration of the model. Now let a hyperimaginary e WD Cb.u=uE /, and let
F.x; y/ be E.x; y/ ^ x �L y. Then uF is hyperdefined by x �LuE

u. As is known
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uF D Cb.u=uE /: since F is finer than E, clearly uE 2 dcl.uF /. Hence u^j uF
uE .

Also uF 2 bdd.uE /. Thus tp.u=uF / is a Lascar type, and e 2 dcl.uF /. Conversely,
note now u^j e uE . Since uE 2 dcl.u/, we have uE 2 bdd.e/, so uF 2 bdd.e/ too.
Then tp.u=e/ � tp.u= bdd.e// ˆ tp.u=uF / ˆ F.x; u/. Therefore uF 2 dcl.e/. So
we can put e D uF .

We claim that v �se v0 implies v �Le v0. Suppose that v �se v0. We can clearly
assume u^j e v, Take v00 such that v00 �Le v0 and v00^j e v. Now there is u0 such that
u0v00 �se uv. Hence by type amalgamation there is u00 ˆ tp.u=ev/ [ tp.u0=ev00/.
Then u00v00 � u00v, and as u00.� e/ is a model, v �Le v00 so v �Le v0, as desired.

By the claim and Proposition 3.7, bdd.uE / D bdd.uF / D acl.uF /. Moreover,
by the definition of F and our assumption, uF is definable over acl.uE /. Hence
bdd.uE / D acl.uE /, and by Proposition 3.7 again, Ltp � stp over uE , as wanted.

Question Is Proposition 3.8 true for all T ?

We express our thanks for the following comment given by an anonymous referee:
“Another approach to defining the strong type over a hyperimaginary would be to
consider the classical theory as a theory in continuous logic with the discrete metric.
In this case, there is no distinction between hyperimaginaries and imaginaries and
one could rework material on the Lascar group in this context.”
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