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On Pseudo-Finite Dimensions

Ehud Hrushovski

Abstract We attempt to formulate issues around modularity and Zilber’s tri-
chotomy in a setting that intersects additive combinatorics. In particular, we
update the open problems on quasi-finite structures from ["].

1 Introduction

This paper is based on my talk in the Oléron meeting in June 2011. It is intended
as an invitation to model theorists to explore areas of common interest with additive
combinatorics. Many of the streams leading up to this confluence were opened up by
Anand Pillay; the paper is dedicated to him, with friendship and appreciation.

The relationship of model theory and modern combinatorics starts very near the
birth of both: Ramsey’s theorem [3 !, Theorem A], proved as a lemma for one of
the first true theorems of model theory, rediscovered by Erdds, later settling down
as part of the backbone of both subjects. Shelah, in his foundational work, was—
and remains—keenly aware of combinatorial connections. In recent decades, with
model theory turning to face group theory and geometry as well as its own intrinsic
issues, the contact with combinatorics seemed limited to special areas. In reality,
however, broad trends in the two subjects moved in parallel, unaware of each other
but concerned with very similar questions.

Geometric stability theory was born with pseudo-finite structures. Zilber studied
them under additional hypotheses: No-categoricity, finite Morley rank. His main tool
was a dimension theory based on Morley rank and the leading coefficient of the Zil-
ber polynomial, counting points in finite approximations. The main themes were the
dichotomy between linear and nonlinear behavior—the dividing line of modularity;
the study of modularity in the almost strongly minimal setting, with the proof that
totally categorical strongly minimal sets are modular; and a theory allowing infor-
mation to be lifted from rank one to finite Morley rank.
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Zilber’s theory was generalized, firstly to the superstable and stable settings, us-
ing Shelah’s powerful theories of forking, domination, and regular types. A little
later, pursuing conjectures of Lachlan, and influenced by the classification of the fi-
nite simple groups that seemed to have been completed at that time, the monograph
Cherlin and Hrushovski [7] generalized Zilber’s theory beyond the stable setting.
This was the first view of geometric simplicity theory; 3-amalgamation was seen
as the main principle, generalizing the canonical 2-amalgamation of stability. Once
again, the theory was generalized to the supersimple and simple settings. A com-
pletely new idea was required: the compact Lascar group, as the unique obstruction
to 3-amalgamation (see Kim and Pillay [23]).

A few years ago, listening to a talk by Bourgain on the sum-product phenomenon
from the point of view of analysis, combinatorics, and computer science, I noted a
parallel between these questions and the stabilizer theorem of model theory, closely
related to 3-amalgamation. However, combinatorialists work with arbitrary subsets,
while structural model theory was developed under restrictive assumptions of stabil-
ity or simplicity. At first sight it did not seem possible to strengthen the analogy to a
precise and useful bridge.

But it happens frequently in model theory that an apparently purely restrictive
condition is shown to imply a positive structure, which is then the real vehicle of
further results. The paradigmatic example is stability, defined in terms of few types.
This is shown to imply a rich new structure on the algebra of formulas or the space
of types; one presentation is the relative tensor product operation on types (with
accompanying explanations regarding strong types, Lascar types, and so on). But
such tensor structures can arise in other ways, without the limitation on the type
space. Another example is superstability and the regular type decomposition. Once
such additional structures are discovered, model theory can profitably investigate
them as objects of independent interest and not work exclusively with the restrictive
assumptions that gave rise to them. I have long felt so for intrinsic reasons of model-
theoretic development; certainly it is essential for applications to combinatorics. To
what extent can simplicity theory be stripped of the assumption that every type has
a finite nonforking base and allow its ideas to be transposed to the pseudo-finite
setting?

In Hrushovski [ 0], it was shown that this can be done for 3-amalgamation and the
stabilizer theorem, as well as the connection to locally compact groups. It turned out
that the stabilizer theorem itself was worked out independently by combinatorialists,
culminating with Sanders [37].

The present paper revolves around modularity and the Zilber dichotomy. We take
some tentative first steps towards a definition in the pseudo-finite setting. In Sec-
tion 2, we recall the pseudo-finite dimensions that form the entry point of the model-
theory/combinatorics connection considered here. Corresponding to pure model the-
ory versus the model theory of enriched fields, we consider them both abstractly and
in a setting where they are dominated by Zariski dimension.

Section 3 includes an exposition, based on [“], of a result of Breuillard, Green,
and Tao and of Pyber and Szabd [2°] on pseudo-finite subgroups of simple alge-
braic groups. Like the stabilizer theorem for groups, one could formulate a version
on definability properties of hyperdefinable sets with sufficient geometric richness,
reminiscent of Buechler’s dichotomy; this will be done elsewhere.
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Another example of the efficacy of pseudo-finite dimensions as an embedded di-
mension theory is included in Section 4. We deduce in somewhat generalized form
a result of Breuillard, de Cornulier, Lubotzky, and Meiri [?] on escape from many
subvarieties. From a model-theoretic viewpoint, the finiteness (i.e., boundedness)
condition on the set of subvarieties is replaced by a condition of zero-dimensionality.
This is an extremely elementary case of a potential development whose interest in
general would be high.

In Section 5 we consider modularity at a single scale and develop an analogy
with the almost strongly minimal case. We leave for later consideration the study
of modularity and ampleness properties and their consequences at more than one
scale. Eventually one can hope to have, for example, the results of Section > for
groups follow from a general theory (related to a line of results on definability of /-
definable groups, socle lemmas, and generalizations; see Blossier, Martin-Pizzaro,
and Wagner [0]).

In the final section, we return to the quasi-finite setting. Our assumptions here are
much stronger, but on the other hand we work only with pseudo-finite dimensions and
cannot use Zariski dimension as a tool. In [9] the classification of the finite simple
groups was used, via work of Kantor, Liebeck, and Macpherson [21]. It was shown,
however, that the relevant part of the classification is equivalent to certain model-
theoretically meaningful properties of quasi-finite structures. It remains a significant
goal to find direct and conceptual proofs of these, beginning with modularity, and
it seems to be the right time to take a new look. We present the list of properties,
slightly reformulated, and give the new but easy proof of one of them.

Another subject addressed in the talk was higher amalgamation and the connec-
tion to combinatorics (e.g., triangle elimination). See the interesting results of the last
section of Goldbring and Towsner [ | 3]. Studying the obstruction to 3-amalgamation
leads again to locally compact groups, with further connections to dynamics (e.g.,
weak mixing). There are many open problems here, but this direction will be taken
up elsewhere. (We mention here only, answering a question in the talk, that the
replacement theorem of [!0] is valid with compact Lascar types for any definable
measure, over any base.)

2 Fine and Coarse Pseudo-Finite Dimensions

The logarithm of the cardinality of a nonstandard finite set behaves like a dimension
theory, as soon as one factors out a nontrivial convex subgroup of the nonstandard
reals.

Let u be a nonprincipal ultrafilter on a set I, let (M; : i € I) be L-structures,
and let M be their ultraproduct. If D is a nonempty definable set such that D(M;) is
finite for almost all i, then we have a nonstandard finite cardinality for D, an element
| D| of the ultrapower R* of R along u. Let C be a nonzero convex subgroup of R*.
We define

dc(D) =log|D|+ C
the image of log |D| in R*/C.

In [16], various degrees of graininess are treated uniformly, with C treated as a
parameter. Here we specialize to two cases. The convex hull of the standard reals is
denoted Cgy; the corresponding dimension theory is 8g,. The characteristic feature
of § = &gy is that any dimension comes with a real-valued measure, defined up to
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a scalar multiple. 1t is characterized (up to a scalar multiple) by o (X) = 0 iff
8(X) <o, pe(X) = 0iff §(X) > «, and when §(X) = §(Y) = «,

Mo (X) = St(|X|/|Y|)Ma(Y)7

st : R¥, — R being the standard part homomorphism. If 6(X) = « and
§(Y) = B and pq, i g are chosen, there is a unique representative measure fiy g
with g +g(X X Y) = pa(X)pa(Y).

The information contained in g, and the families o can be gathered together
as a single invariant d¢c,, where Cy is the convex group of infinitesimals; §c,(X)
is a more canonical version of the pair (8sn(X), fs;,(x)). An element @ € R*/Cy
sitting above o € R/ Cy, determines a measure pg, finite on definable sets X with
8in(X) < a. We will, however, work with the more familiar presentation as dimen-
sions and measures.

On the other hand, if we have in mind some definable set X, with log | X| = «,
let C~, be the coarsest possible dimension that does not give X dimension 0; that
is, C<4 is the maximal convex subgroup of R* not containing «. Let C, be the
smallest convex subgroup containing «, and restrict attention to definable sets Y with
log|Y| € Cy. The corresponding dimension theory can be viewed as real valued,
using the natural isomorphism C,/C<y — R mapping « to 1. It can be defined
directly:

§(Y) = st(log |Y|/oc).

The coarse pseudo-finite dimension § = §, depends of course on the choice of «,
but in this paper we will always treat one coarse pseudo-finite dimension at a time,
and view o as fixed.

2.1 Continuity It is often desirable to have § and p, continuous in the sense of
real-valued logic. Recall that if X is a definable set, T is a locally compact topo-
logical space, and ¢ : X — T is a function, we say that ¢ is continuous if for
any C C U C T with C compact and U open, there exists a definable set D with
¢ 1 (C) Cc D C ¢ Y (U). A measure j1 on'Y is said to be continuous if whenever
W is a @-definable subset of ¥ x X, and W(a) = {y : (y,a) € W}, the func-
tion a +— w(W(a)) is continuous. Similarly, we say that § is continuous if in this
situation, for any « < B € R there is some @-definable D with

{a:8(W(a) <a} C D Cla:8(W) < B}.

Both of these are easily seen to be true if the language is closed under cardi-
nality comparison quantifiers. This means that for any formula ¢(x, y) there is
some formula 6(x,x’) =: (CCy)g such that M; = 0(a,a’) for almost all i iff
lp(M,a)| < |p(M,a’)]. For all combinatorial applications I am aware of, we can
simply close the language under this kind of quantifier so as to obtain continuity.

When the measure p is continuous, and ¢ : X — R is continuous, we can
define [ ¢ dp. We have (with compatible normalizations, as above) pe+g(W) =
[ npg(W(a)) dpg(a) when W is a definable subset of ¥ x X, 84n(X) = o, and
8in(Y) = B (or more generally for maps 7 : W — X such that each fiber has
Sﬁn =< ,B)

We define § and p,, for partial types by taking the infimum of their values over
larger definable sets.
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Continuity implies in particular that § (¢(x, ¢)) depends only on tp(c). In partic-
ular, if P, Q and I < P x Q are complete types and /(b) = {a : (a,b) € I}, then
8(1(b)) is a constant. Moving to complete types in the usual way, this will allow us
at appropriate moments to ignore analytic aspects and concentrate on the geometry
of the situation.

The following statements (Sections 2.7—2.6), included partly for reference, were
given as exercises in a class on pseudo-finite structures; we leave them in this form.
Section 2.5 was initially marked as unchecked and was worked out by Elad Levi.

2.2 Let § = §c be any pseudo-finite dimension. Let f : X — Y be a sur-
jective definable map, and let E = {(x,x’) € X? : fx = fx’}. Show that
26(X) <S8(E)+6(Y).

Hint: The first proof is valid for § or any continuous dimension. For a complete
type g of elements of Y, show equality:

28(f7(9)) = 8(E N £ (@)?) + 8(q)

Now 28(X) = sup, 26(f~"(9)), 8(E) = sup, 8(E N f~1(¢)*).8(Y) = sup, 8(q).
The alternative proof is valid for any pseudo-finite dimension §¢: working in
L2(Y:), leta(y) = |/~ )], 1) = 1, (u,v) = 3,y u(y)v(y). By Cauchy-
Schwarz,
Xi? = (@.1)* = (@.a)(1. 1) = | E:||Yi].

2.3 Let M be any countably saturated structure in a countable language, and let
I" be a countable intersection of M -definable sets. Assume that I" forms a subset
of a definable group G of M. Show that I' is a subgroup of G if and only if there
exist definable sets X, forn € Nwith 1 € X, = Xn_l, Xn+1Xn+1 C Xy, and
I'= ﬂneN Xn'

For any set D, let Ap = {(x.x) : x € D} (the diagonal), and for R < D? let
R' ={(x,y):(y,x) € R},andlet RoS = {(x,z) : @y)((x,y) € S,(y.2) € R)}.

2.4 Let M be any countably saturated structure in a countable language, and
let E be a countable intersection of M -definable sets. Assume E C D? for
some definable set D. Show that E is an equivalence relation if and only if
E = (,en Xn for some sequence (X, : n € N) of definable subsets of D? with
X, = X,’l and X, 41 o Xp41 C X,. The domain of E will be (1, D, where
D,={xeD:(x,x)e X,}.

The next exercise makes sense of the dimension of a hyperimaginary set. See the
proof of Theorem 3.1 for an instance where it occurs naturally.

2.5 Define §(X) for sets X of the form Y/E, with Y a /\-definable set and E a
/\-definable equivalence relation on Y. If Y, E are defined over the countable set
A, let8(Y/E) = sup, 28(q) — 8(¢% N E); the supremum ranges over all types over
A of elements of Y. Show that this does not depend on the choice of A. If f is
a definable map inducing an injection Y/E — Y’/E’, show that each fiber has a
similar form; if each fiber F has § (F) < y, show that §(Y/E) <8(Y'/E') + y. If
E =, X, where X,,, D, are as in Section ” .4, and if Z, is a definable subset of
D, which is a maximal anticlique for X,,, show that §(Y/FE) = lim, §(Z,). (Note
that such definable sets Z, need not exist outright but will exist in some expansion
which is still an ultraproduct; so lim, § (Z,) does not depend on the expansion.)
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2.6 Let G be a simple algebraic group, and let I be a definable, Zariski-dense
subgroup of G with fine pseudo-finite dimension 85,(G) < oco. Let N # 1 be a
normal subgroup of I'. Then N has finite index in I".

Hint: Show that if @ # 1, then ab generates G; for some even n, the map
c:G"— G,

c(g1,---.gn) = (g7'a"g1)(g5 " ag2) -+~ (g, agn)

is surjective. Let U be a Zariski-open subset of G such that dim ¢! (1) is constant
onU. Ifa € N, show that 8z,(c ™ (u) N T") < §,(T") dim ¢~ (u)/ dim(G), and
conclude that &g, (c(I')) = 84, (7). Hence 84, (N) = Saa(G).

2.7 Coarse pseudo-finite dimension Lemmas 5.1-5.7 of [16] apply to §; we recall
some of the statements. We assume continuity of §; it is used in Lemmas 2.5(4) and
. We assume a normalization with § (X) = 1.

Lemma 2.8 We have the following.
(1) 8(Y) = 0for finite Y.
(2) §(Y'UY)=max(8(Y"),8(Y)).
(3) (Y xY')=68(Y")+8().
(4) More generally, if f is a definable function on 'Y,

§(Y)=supla+B:a R, p=8{z:8(f"(2) = a}}:
this holds for Y — Y/ E even for a /\-definable equivalence relation E.

(5) The definable subsets ¢ of X with §(¢) < 8(X) form an ideal; it is the ideal
of [16, Example 2.13].

Definition 2.9 e For an element ¢ € X™ and base set A, let

8(a/A) = inf8{<p tp € tp(a/A)}.

Note that for ¢ € L(A), §(¢) = max{d(a/A) : ¢(a)}. (The maximum is
attained because of compactness/saturation and Lemma 2.5(5).)

o Assume §(a/A) < oo. Write a 4b if §(a/Ab) = §(a/A).

e Assume §(a;/A) <oo,i =1,...,n.Sayay,...,a, are independent over A

if 3" 8(a;i/A) = §((ai. . ...an)/A).

By definition, the relation a | 4b is transitive, in the sense that a| 4bc iff a| 4b and
al 4pc. When é(a/A),8(b/A) < oo, the relation a| 4b is symmetric, as follows
from the next lemma.

Lemma 2.10 We have §(a/Ab) + §(b/A) = &(a,b/A).

Proof Lete > 0. Leto(x,y) € tp(a,b/A) be such that §(¢) —8(a,b/A) < € and
8(p(x,b)) —8(a/Ab) < €. Let 8(y) € tp(b) be such that §(0) — §(b/A) < €
and (using the continuity mentioned above) such that for any 5 with 6(b’),
[8(p(x,b")) —8(p(x,b))| < e. We may replace ¢(x, y) by ¢(x, y) A 8(y). Clearly,
18(e(x. y))—(8(p(x.b))+8(0))| < €. Sold(a.b/A)—(8(a/Ab)+8(b/A))| < 4e.

O

From symmetry and transitivity it follows that if §(a/A),8(b/A),8(c/A) < oo,
al 4b,c,and b 4c,thenal 4b and a, b 4¢.
We also have an existence statement for independent extensions.



On Pseudo-Finite Dimensions 469

Lemma 2.11 Assume al, 4b. Then for any c there exists a’ with tp(a’/Ab) =
tp(a/Ab) and a'| 4b, c.

Proof Leta =d8(a/A) = §(a/Ab). We must find a’ with tp(a’/ Ab) = tp(a/Ab)

and 8§(a’/Abc) = «. In other words, a’ must realize tp(a/Ab) along with
{—~¥ : ¥ € L(Abc),8(¢) < «}. Since every formula in tp(a/Ab) has § at
least «, this is consistent. O

2.12 Embedded pseudo-finite dimension We now assume that a field structure is
included in the language, and the definable sets we are interested in are pseudo-finite
subsets of algebraic varieties. (Or more generally, that some reduct of the theory has
finite Morley rank.)

Define the §-closure clg (A) to be the set of all b with §(b/A) = 0. Here we relax
a little the usual convention that base sets are small, but there will be no difficulty
translating the statements to ones about finite subsets of clg(A4). Let d(a/A) be the
smallest dimension of an irreducible variety W with a € W, such that W is defined
over clg (A), that is, some Ab with §(b/A) = 0. (Thus if A is § -closed, then d(a/A)
is transcendence degree.) Let U(a/A) denote the variety W it is obviously unique,
so defined over Aa as well as over Ab.

d-independence implies Zariski independence over a §-closed A.

Lemma 2.13  Let A = clg(A). Then al 4b implies d((a,b)/A) = d(a/A) +
d(b/A).

Proof Let V. be an irreducible variety defined over some ¢ with a | 4¢, such that
a € V., and with dim(V}) least possible. Using Lemma , find ¢/ with a, c| 4¢’
and with tp(c’/Aa) = tp(c/Aa). Soa € V., and hence a € V. N V. But by
transitivity we have a| 4¢,¢’. So dim(V, N V) = dim(V,), and it follows that
Vo = Ve NVy = V. Let d be a canonical parameter for V, (i.e., Ad is a field
of definition for V,, over A). Then d € Ac N Ac’. Since ¢ 4¢/, it follows that
28(c/A) = 28(c/Ad) + 8(d/A) and also §(c/A) = 8(c/Ad) + §(d/A). This
forces § (d/A) = 0. By minimality of dim (V) and the definition of d(a/A) we have

d(a/Ab) > dim(V,) > d(a/A).

Clearly, d(a/A) = d(a/Ab), so d(a/Ab) = d(a/A). The equality now follows
from Lemma . O

In fact, this may be generalized.

Lemma 2.14  Let A be §-closed. If a| 4b, then a, b are independent over A in the
sense of any stable formula ¢(x, y) over A.

Proof  The proof is as above, using local rank for the stable formula ¢ in place of
dimension. O

2.15 The Larsen-Pink inequality We recall the Larsen—Pink inequality, valid for any
pseudo-finite dimension 8¢ (see Hrushovski and Wagner [19], [16, Section 5]).

Let G be a group of finite Morley rank, and let I" be a subgroup of G. We assume
that I" is Zariski dense, that is, not contained in any proper definable subgroup of G.
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If G is simple, or a finite power of a simple group, and 8¢ (G) < oo, then for any
definable Z < G, we have

dim(Z) 1)

dc('NZ)=< dim(G) ¢

In particular, this holds for §.

In [I6], this is generalized to the case of a /\-definable subgroup of
strict dimension, that is, a sequence Y, of definable sets, with Y, 1Yn_+11 Cc Yy
and 8¢ (Y1) = 8¢c(Y2) = ---; the statement in this case is that §¢c (Z N Yy,) <
8¢ (Y1) dim(Z)/ dim(G), for large enough n (see Proposition 5.6).

The strictness of dimension is an unnecessary assumption in the case of §; it suf-
fices to assume that §(Y) is bounded. For we can take a further ultraproduct or
saturation and consider Y= for nonstandard n*; these all have the same §, namely,
8(Yux) = 8((yen Yn); letting T'" = (" on Ya*+k We obtain a slightly smaller
Zariski-dense subgroup, this time of strict dimension.

It is possible to restate the lemma “from below”:

For X CG,reR, let X" ={xy-...-xp :x1,...,xx € X,k <r}.

Proposition 2.16 Let G be a simple algebraic group, and let Y be a Zariski-
dense pseudo-finite set with 0 < §(Y) < oo. Assume 1 € Y = Y=\, Then for any
subvariety Z of G,

§(Y N Z)dim(G) < limsupé(Y™)dim(Z).
n
Proof  Suppose otherwise; so for infinitely many n we have § (Y ™) < gigg; X
8(Y N Z). In particular, § (Y ") is bounded. Let W be an ultraproduct (with respect
to an ultrafilter on the set of n € N) of the Y27, So W2 C Wi, (g Wi is
a Zariski-dense /\-definable subgroup of G, and §(Wy) = 8§ (Wi41) = ---. The
version discussed above of [0, Proposition 5.6] applies to I" = ("), Wi and shows
that §(I' N Z)dim(G) < §(I')dim(Z). We have §(Y N Z) < §(I" N Z). On the
other hand 8§ (Y ™) —, 8([") Wx). The proposition follows. O

3 Approximate Subgroups of Linear Groups

Breuillard, Green, and Tao [3] and Pyber and Szabd [29] proved a decisive result on
approximate subgroups of linear groups. From a model-theoretic viewpoint, it falls
into a line of results about definability of /\-definable groups. For fine pseudo-finite
dimension, the result was first proved in [ 1 6]. The proof used the “stabilizer theorem”
inspired by stability and simplicity. By utilizing more of the geometry of the situation
[3] proved it for coarse pseudo-finite dimension. This is much stronger: combinato-
rially, it amounts to showing that for a typical subset X of size n one can expect X X
to have size n' ™€, as opposed to (1 + €)n. It turned out that the main input of the
model-theoretic proof for linear groups was not the deeper, stability-inspired results
but simply the pseudo-finite dimension-theoretic framework and basic properties of
the dimension theories. We describe the proof in this language, restricting attention
to the principal case, of simple algebraic groups G or powers of such groups.

In this section and the next (with an exception in Exercise 3.0), we use coarse
pseudo-finite dimension. Fix «, and denote the coarse pseudo-finite dimension §,,
by &. As explained in Section ?, we may take § to be continuous.
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In order to bring out the precise geometry used in the proof, we state it axiomati-
cally, in the context of groups of finite Morley rank. It is the geometry of the maximal
tori, going back to (at least) Jordan’s proof in [20].

Let M = (G,-, X,...) be an expansion of a group (G, ), that is, a structure
including a group (G, -), a definable set X C G, and possibly more. We assume (G-)
has finite Morley rank g, while X is pseudo-finite, with continuous coarse dimension
§ satisfying § (X)) = 1. (This can be achieved by adding dimension quantifiers.) We
write dim for Morley rank. We also assume that G is simple nonabelian, or a power
of simple groups; this is in order for the Larsen—Pink inequality to be valid.

We say a subgroup H is Zariski-dense if it is contained in no proper (G, -)-
definable subgroup of G.

Fora € G,1etT, = Cg(a). LetT] ={b e T, : T, = Tp}. Lett = dim(T,) for
a generic a € G. Let Ng(T,) be the normalizer. Assume the following geometry of
centralizers.

¢ For a generic a € G and generic b € T,, we have T, = Ty, and Ng(T,)/ T,
is finite. In other words, let R = {a € G : dim(Ng(T,)) = dim(7,) = t,dim(7, \
T7) <t}. Thendim(R) = g.

Theorem 3.1 Let T be a Zariski-dense /\-definable (in M) subgroup of G, with
0 < 8(T") < co. Then there exists a definable subgroup S of G containing T, with
8(S)=48().

Proof Itisclearthatif b € 7, then b € R; thatis, R is the disjoint union of 7]
overa € R.
We have dim(G \ R) < g —landdim(7 \ R) <t —1.
Recall also that for centralizers T = T,, the Larsen—Pink inequality becomes an
equality:
dim T
s(rnr) = iim GS(F).

Hence we have the same for §.

Let Y = {Cg(a) : a € RN T}. Clearly, Y is I'-conjugation-invariant. We will
show that Y is definable, that is, {b : Cg(b) € T} is definable, using a dimension
gap. Let X be a definable subset of G, I' € X, with §(XX) — §(T) < 2351?6)
(see Sections , ). Let g = dim(G), and let t = dim(7) for (any)
T = Cg(a),a € R. Note that §(I' \ R) < gT_ltY(F) < §(I") by the Larsen—

Pink inequality; similarly, §((T\ R)NT) < Z18(T) = F28(T NT) < §(T NT).

Claim 1 Leta e R, T =Cg(a). Thend(TNX)—86(TNT) <§(XT)—-4(I') <
§()

2g

Proof The first inequality is obvious if we extend § to quotients such as 7/T
(see Section ). The inclusion map 7 N X C X induces an injective map
(TrnX)/(TNT)— X/T' = XT'/T; hence

§(TNX)—8(T NT)=8§(T NX)/(TNT)) <§XT/T)=8(XT)—3§().

But let us also give a proof independent of Section 2.4. Define amap f : (T N X) x
I' - XU by f(t.y) =ty. If f(t,y) = f(s.z) =c,thens 't =zy"' e T NT,
so the projection map (¢, y) +> t takes f~!(c) to a coset of T N T, injectively; thus
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8(f 1)) <8(TNT). So (B(TNX)+8(")) <8(TNI)+8(XT), and the first in-

equality follows. The second results from the assumption § (XX ) —&(T") < 2(;255()(;) .

Claim 2 Let T = Cg(a), a € R. Then

t—1/2
TeY < §TNX)> /

§(T) > §(TNX)> ém).

Proof If T = Cg(a),a € RNT,thend('NT) > éS(F) by Larsen—Pink.

Conversely, let T = Cg(a), a € R, and assume §(7 N X) > %8(1"). By
Claim 1,
§(T t—1 dim(7T \ R
s nr)=sTnx)— I o = lgpy s ImTANR) ¢y
2g g g

Butd((T\R)NTI) < WS(F) (by the Larsen—Pink inequality for the Zariski
closure of T\ R). SoT N I' N R # @, and the claim follows by choosing any
a’ € T NT N R, noting that Cg (a’) = Cg(a). O

By Claim ” and the continuity of §, Y is definable. Hence the normalizer S = N(Y)
is a definable group, and it contains I'. We have §(Y) < §(R N T") < oco; we want
to show that § (S) is finite as well.

Claim 3 8(S) is finite.

Proof Let Z be the intersection of all T € Y, andlet Z = T; N --- N Ty for
some T1,...,Tr € Y. Then any element of I' N R commutes with any element of
Z.As§(I'\ R) < §(TI), any element g of I" is a product of two elements of I' N R
(ie., g(CNR)N (' N R) # B). So Z commutes with every element of I'; since
I is Zariski-dense, Z commutes with every element of G, so Z is finite. We have
amap S — Y* s+ (s7'Tys,...,s ' Tgs). The fibers of this map are cosets of
N(Ty) N---N N(Tg), so they are finite. Hence §(S) is finite. O

We have a surjective map R N I' — T,a — Cg(a), whose fibers are of the
form TN RNT forsome T € T. Now (T N RNT) = éS(F) (since
dim(7T'\R) < dim(T"), and using Larsen—Pink). Hence é&(l")—l—S(T) =46(RNT) =
§(I'). Sod(Y)=(1- é)S(F).

FixT € Y. S/(N(T) N S) embeds into Y. [N(T) : T] is finite. By the Larsen—
Pink inequality for S, we have §(S N N(T)) =8(SNT) = f;S(S), and we obtain
1- é)S(S) < 8(Y). It follows that § (S) < §(I"), so equality holds. O

Corollary 3.2 (Breuillard-Green-Tao [3], Pyber-Szabé [29])  Let G be a simple
algebraic group, or a power of such a group. Let 0 < € < €. Then for some m,
we have the following. Let F be a field, and let G = G(F). Let X = X ' bea
subset of G. Then | X ™| > | X |'*€, unless X is contained in a subgroup of G of size
at most |X|1+€/, or in H(F) for a proper algebraic subgroup H of G of bounded
complexity.

When X is a k = | X|®-approximate subgroup, that is, XX C XF with |F| < k, we
have X™ C X - F~ so |X™| < |X|'*™3 giving a lower bound €/m for §.
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Proof Fix 0 < ¢ < €, and suppose that there is no such m. Find X,, C G, =
G(Fy,), with X}, contained in no subgroup of G, of size at most |X,,|1+€, nor in
any proper algebraic subgroup of complexity less than m, and |X,"| < | X | €. Let
(G, F,Y1,Y,,...) be anonprincipal ultraproduct of (G, Fy, X,". X;,"/z, X,;"M, S
Then Y,41Yp41 C Yy, so T := [, Y, is a /\-definable group. Normalize 8
by §(Y;) = 1; we have §(Y,) > 8(Y1)/(1 + €). (We could easily arrange even
8§(Yn) = 8(Yn+1).) So0 < §(I') < oo. Also, Yy, is contained in no definable sub-
group S of G with 8§(S) < (1 + €)(1 + €)~18(Y,). And (G, -) has finite Morley
rank and satisfies ¢. Finally, I" is Zariski-dense in G.
But by Theorem . 1, there exists a definable S with §(I") = &(S), a contradiction.
O

The identity of the definable group S can be ascertained: when F has character-
istic zero or sufficiently large characteristic, it is itself commensurable to a twisted
algebraic group (definable over the field with a distinguished automorphism). This
was first proved by Weisfeiler using the classification of the finite simple groups (see
Larsen and Pink [24] for a history of this theorem and a proof by a direct interpreta-
tion, and see Hrushovsky and Pillay [/ %] for a model-theoretic proof in the case of
prime fields).

Remark 3.3 Let X be a Zariski-dense pseudo-finite subset with §(X) = §(S).
Then by Nikolov and Pyber [27, Appendix 4], X3 = S. They employ a method
of Gowers, using representations of finite groups; it remains a challenge to give a
model-theoretic account of this method, or another derivation of the exponent 3 here.

3.4 Sum-product phenomenon The following exercises are essentially an account
of Tao [37]; but we will restrict to fields. Let K be an infinite ultraproduct of fields,
as above. Let R be a /\-definable subring of K, with 0 < §(R) < oo.

Exercise 3.5 If R is a subfield of K, then R is definable. Hint: Let R* = R\ (0)
be the group of units of R. Fora € K, we have a € R* iff aR N R # (0) iff
§(@aRNR) = §(R). Let X be a definable approximation to R, so that § (XX)—8(R)
is small, hence so is 8(X?2) — 8((R*)?). As in Proposition 3.1, for 0 # a we have
a € Riff §(aX N X) is large enough. Hence R is definable.

Exercise 3.6 R is definable. Hint: We already know that the field of fractions
F ={a/b:a,b e R, b # 0} is definable. So we may assume that it is K and use
fine pseudo-finite dimension 8g,. Show that 6g,(R) = 85,(K). (Consider the map
R x R\ (0) — K, (a,b) — ab™!; each fiber has the same 8, as a nonzero ideal of
R, and hence the same as R.) It follows that R has finite index in K, as an additive
group. Leta € R, b = a~'. Then b"*! = p™ 4 r forsomem € N, > 0,r € R.
Multiplying by ¢ we find that &/ = 1 + ra™ € R, and hence b = b'a’~! € R. So
R = F is afield, and R is definable.

4 Escape from Many Subvarieties

This section was prompted by a question from the authors of [7] and generalizes
Theorem 9.1 there (see the discussion in the introduction to that paper).

Fori € N, let G; be a connected algebraic group over a field K;, dim(G;) = d.
Let D = 29+1,
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Let J; be a finite-index set, and let (V;; : j € J;) be a set of proper subvarieties
of G;. Assume that G;, V;; have bounded complexity.

Let X; be a finite subset of G, (K;), say, 1 € X for simplicity. Let X'? = {x;-...-
X4 1 X1,...,Xg € X}. If N is a subgroup, X/N denotes the image of X in G/N.

Proposition 4.1 Let | € N. Assume XI?D C UjeJ,« Vi, |Jil" < |X;|. Then (for
all but finitely many i) there exists a proper algebraic subgroup N; of G; of bounded
complexity, normalized by X;, such that | X;/N;| < | X;|"/!.

In particular if G; is simple and X; generates a sufficiently Zariski-dense subgroup,
then for large i we cannot have X C Ujes, Vi TP < |X].

Let (G, X, J) be an ultraproduct (over an ultrafilter u) of the (G;, X;, J;). We
may assume X generates a Zariski-dense subgroup of G. One could take a definable
set to be any subset of (X U J)" represented by subsets ¥; of (X; U J;)". A more
effective version would specify a language, including functions v : X — J with
X € V,,(x)» as well as relations making the dimension function & (¢(x, b)) defined
below continuous in tp(b).

For any nonempty definable set Y, represented by subsets Y;, let

8(Y) =limlog|Y;|/log|Xi| € RU oo.
u

The limit is taken along the ultrafilter; equivalently, it is the standard part of the
ultrapower of these numbers in R* U 0o; so § (Y) is a nonnegative real number or co.
In terms of §, the Proposition can be stated as follows.

Proposition 4.2 Assume X' C U]-GJ Vi, 8(J) =0, 8(X) < oo. Then there
exists a definable proper subgroup S of G, normalized by X, such that §(X/S) = 0.

Proof  Fix a base set A; recall the definition of U(a/A), above Lemma . Write
U(a) for U(a/A). Let S;(b) = {x € G : xU(b) = U(b)} be the left stabilizer of
U(b), and similarly for S, on the right.

For independent ay,...,a, € X =D ai,...,an are also independent over clg(A)
in the sense of d (Lemma ).Leta=ay-...-a,. If A/ = Ae is an extension of
A with §(e/A) = 0 and such that U(ay), ..., U(ay,), U(a) is defined over A’, then
the field extensions A’(a;) are linearly disjoint. Thus (ay, ..., ay) is a generic point
of U(ay) - ... - U(ay) over A’. Asthe producta = ay - ... - ay is an element of the
variety U(a), we have U(a;) - ... U(a,) € U(a).

Assume a € X'=P. Then a lies in a proper subvariety of G defined with a
parameter in J; as §(J) = 0, we have dim U(a) < d.

Let m(i) = max{dim(U(a/A)) : a € X'}. Then m(i) is nondecreasing
with i, and m(i) < d fori < D. Since D = 29t there exists n with
m(n) = --- = m(2n + 1), 2n + 1 < D. Fix such an n, and let m = m(n).
Let X, be the set of b € X ="*1 with d(b/A) = m.

Leth € X, N X'=". Fora € X'="*! with a| 4b, we have dim(U(a)U(b)) <
dimU(ab) < m = dim(U(b)); but aU(b) < U(a)U(b); it follows that aU(b) =
U(a)U(b). Soa™'U(a) € S;(b).

Applying this fora € X' N %,,, b € X" N X,,, we obtain a~'U(a)b <
S;(b)b < U(b), but dim U(h) = m and U(b) is irreducible, so a~'U(a) = S;(b).
In particular, S = S;(b) does not depend on b € X,: S;(b) = S;(b') if
a,b,b’ € ¥, are independent, hence in general. Similarly, U (a) = S*a is aright
coset of the right stabilizer S* = S, (b). Now for independent a, b € X, we have
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U@)U(®b) =aSS*h,sodim(SS*) = m. Thus S = S*. Since aS = U(a) = S*a
it follows that S is normalized by a.

If c € X(A), thenfora € X" N X,, we have U(ca) = cU(a). Thus ca € X,,. So
ca also normalizes S, and hence so does c. So any element of X(A) normalizes S.

So far A was arbitrary. But A could have been chosen to be an elementary sub-
model; so as S is A-definable, if there exists an element of X that does not normalize
S, then such an element exists in X(A). It follows that every element of X normal-
izes S.

Let 7(a) denote the image of @ in the quotient group G/S. Modulo S, the set
U(a)/S consists of one element. As U(a) is defined over some extension Ab with
8(b/A) = 0, we have r(a) € dcl(A4b), so §(mr(a)/A) = 0. Hence §(7r(X)) = 0.

O

5 Pseudo-Finite Sets on Algebraic Varieties

5.1 Erdds geometry studies finite sets within an algebraic variety (sometimes with
constraints of reality, but we will not consider these here; see Elekes [ | 0]). How does
the set intersect subvarieties, or families of subvarieties? The statements are often
asymptotic and can be stated in terms of a pseudo-finite dimension theory, embedded
in Zariski dimension theory. We wish to take the first steps toward constructing a
model-theoretic framework for Erdds geometry. The feeling is that such a framework
may exist, comparable to the model theory of differentially closed fields or of quasi-
finite structures, and that notions such as canonical base and versions of ampleness
play a useful role in it.

We presently limit our attention to top-dimensional asymptotics, a severe restric-
tion; see examples below for some of the phenomena left out. Even with this re-
striction there is more unknown than known, but we will be able to formulate some
precise questions.

Most of what we say will apply to subsets of a variety V, if we assume that
their intersection with proper subvarieties is bounded, uniformly in the degree. For
simplicity, however, we consider only curves and indeed just subsets of the field
itself. (This last restriction is purely for simplicity and, for what we do, loses no
generality.)

Thus, let X; be a subset of a field Fy, with |X| = k and k approaching oc.
Throughout the section, we denote by X an ultraproduct of the sets X, lying in the
ultraproduct F of the Fj.

We obtain functions on the set of subvarieties of A, ; namely, if U is a subvariety
of affine n-space, defined over F, we have §5,(X NU) and the real-valued § (X NU).
Normalize § by § (X) = 1. A distant goal would be a full account of the possibilities
for § on the affine varieties. At present we set our sights on a description of the
top-dimensional part.

Our first construction will come in two versions, fine and coarse, corresponding
to the two pseudo-finite dimensions.

Let Fy be a base field. By a variety, in this section, it suffices to consider affine
varieties defined over Fj; we view them as Zariski-open subsets of an irreducible
Zariski-closed subset of A”. For a variety V over Fo, V < A", let V(X) = V N X",
Let R[n] = RF,[n] = RF,(X)[n] be the family of all Fy-irreducible varieties
V C A" such that §(V(X)) = dim(V); and let R = |, R[n]. Similarly, let
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R = Rr, = RF,(X) be the family of all Fy-irreducible varieties V' C A"
such that 85, (V(X)) = dim(V)8s,(X). Both conditions, |V(X)| > |X|?~¢ and
[V(X)| = ¢|X|%, occur in the combinatorial literature. Our goal is to understand R
and R.

We first list some obvious properties of & (the same hold for R).

Lemma 5.2

(1) For any variety V. .C A", §(V) < dim(V). (Infact §(V) < dim(V)5(X).)

(2) (Products) R is closed under products of absolutely irreducible varieties; in
general if V,V' € R, then V x V' contains a component projecting onto
V,V'.

(3) (Projections) R is closed under projections.

(4) (Fibers)Let V. e R,V C A", Let w : A"™™ — A" be the projection,
and let U be a Zariski-dense subvariety of wV. Then for some a € U(X), we
have V(a) = 171 (a) € R Fya)(X).

(5) (Self-fiber products) Let U € R, and let f : U — V be a dominant mor-
phism of varieties. Let U xy U be the fiber product, {(u,u’) € U x U :
fu = fu'}. Then there exists a component W of U xy U projecting onto
U in each direction, and with W € R.

Proof  Assertion (2) is clear; (3) and (4) follow from Lemma 2.5(4). (For fine
pseudo-finite dimension, one needs to use compactness to obtain a uniform bound
on the fiber dimensions.) Assertion (1) now follows by induction on dim(V'), us-
ing a finite-to-one projection of a Zariski-open subset of ¥V to AY%™(")  For (5) see
Section 2.7, O

Now R, R can be viewed as sublanguages of the language of fields (made rela-
tional). But model theory likes structures, and in general R, R do not have amal-
gamation. In the case when they do, we could formulate our questions about the
corresponding universal domain. In general, it is a nontrivial task to formulate a
good model-theoretic setting for the study of R, R. We will suggest some possi-
bilities. Before doing so, we pause to consider some relevant results and problems
from the combinatorial literature. We state them directly in terms of pseudo-finite
dimensions, leaving the translation to the reader.

5.3 Some theorems of additive combinatorics To delineate our subject we mention
two conjectures that lie outside it, for different reasons. The “polynomial Freiman—
Ruzsa conjecture” of Green [!4] is usually stated for abelian groups A of prime
exponent p, though a version for arbitrary abelian groups is expected. If X is a
pseudo-finite subset of the ultrapower A* with X = —X and § (X + X) = §(X), the
conjecture predicts a definable subgroup S < A* with §(S+anX) = §(S) = §(X)
for some @ € X. This uses only the abelian group structure and not properly the al-
gebrogeometric structure; it lies already in a modular setting where the geometry
is soft, and first-order interpretations cannot be expected to go far. All proofs of
Freiman’s theorem so far have had an analytic part, and this seems likely to be nec-
essary and to continue in any future extensions.

At the other end, there is the Erdds—Szemerédi conjecture of [ ”]. It states for a
pseudo-finite X C Z* that §(X + XX) = 2§(X). Note that the situation involves
a range of different dimensions; for this reason it cannot be discerned by our R. It
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would already be interesting, and may be accessible to the methods described here,
to prove it under the strong assumption that § or even 8y, take a discrete set of values
(analogous to assuming finite Morley rank in place of stability).

The next theorem is fundamental to our present concerns. It is the Szemerédi—
Trotter theorem, in nonlinear versions due to many authors; of which the ultimate
form has perhaps not yet been found. It concerns, in model-theoretic language, a
pseudo-plane (P, L, I). Here P, L are pseudo-finite-definable or co-definable sub-
sets of algebraic varieties P, L, while I can be taken to be the restriction to P x L of
an algebraic variety /. As far as I am aware, all proofs use real geometry; it would be
extremely interesting to know why. At all events, the theorem as stated is only valid
in internal characteristic zero, meaning that almost each F; has characteristic zero,
since it implies the nonexistence of finite subfields.

We cite two versions. The first, by Solymosi and Tao [36], is optimal numerically
but has transversality assumptions that are not convenient at the level of generality
we need. We will not state them explicitly.

Theorem 5.4 ([36] (With transversality and reality assumptions)) Assume
8n(1) > 8an(P), $an(L). Then for any real A > 2/3,

2
Sin(1) < Adsn(P) + §8ﬁn(L)'
In particular,

5(1) = 2(35(P) +5(1).

As noted earlier, when L is a complete type, (/) takes a constant value e for / € L.
Leta =68(P),b =68(L),sob+ e =3§(I). Using e > 0, we find that

§(L) <28(P).

This is intriguingly like the pseudo-modularity property that played a central role in
proofs of Zilber’s dichotomy for certain settings (see Hrushovski [!5]). One could
speculate that a failure of such pseudo-modularity (in pseudo-finite structures of any
characteristic) leads to an interpretation of a field; even in characteristic zero this
would give an interesting new proof. Some precise versions of this are formulated
below.

Observe also that if e = a/2, we obtain b < (1/2)a; this is as predicted by the
Jfundamental rank inequality of Cherlin, Harrington, and Lachlan [¢], a strong form
of modularity.

The second version, Elekes and Szabé [! |, Theorem 9], is weaker numerically
but with transversality assumptions that are closer to optimal. We are content to cite
only Corollary 18, valid without the transversality assumptions.

Theorem 5.5 ([11, Corollary 18])  Assume that F has internal characteristic zero.
Let (P, L, 1) be a pseudo-plane in (F, X), as above. If §(I(1)) = 1 and §(P) = 2,
then §(L) < 1.

For later reference, we will also formulate a conjectural statement for small sets in
positive characteristic.

Conjecture 5.6  Assume that F has internal characteristic p* > 0, so that it con-
tains a nonstandard prime field F p«. But assume §(IF,+) = oo. Then Theorem
holds as stated.
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The paper of Elekes and Szabd goes on to rediscover the group configuration, and the
authors use it to prove that if R € R[3] has dominant, generically finite projections
to any A2 < A3 via coordinate projections, then R is isogenous to addition on a
one-dimensional abelian group. A certain higher-dimensional version is given ([! [,
Theorem 27]; here R C P2 where P is allowed to have higher Zariski dimension,
but the quantifier-free Morley dimension of X C P in the structure (X; R N X3) is
still assumed to be one).

Bukh and Tsimerman [5] conjecture a similar situation in positive characteristic,
assuming & (P) sufficiently small compared to §(IF,+). In their paper they prove
this in certain cases where R is assumed to include already a group structure (cf.
Hrushovski and Pillay [!7]; see also Schwartz, Solymosi, and de Zeeuw [35] and
references there, where similar issues are tackled and it is 85, that dominates).

Now in positive characteristic, a linear Szemerédi—Trotter theorem is known (see
Bourgain, Katz, and Tao [ ! ]), but no nonlinear version is available. Bukh and Tsimer-
man reduce to the linear statement of [ ] by polarization. A similar course was fol-
lowed in Martin [20] for proving the trichotomy for the corresponding reducts of
the theory ACF of algebraically closed fields—addition plus a polynomial. We will
elaborate below on the analogy to the theory of reducts of ACFs and formulate a
dichotomy, Conjecture , that would imply the main conjecture of [5, Section 9,
p- 24].

Although the analogy with reducts is suggestive, reducts are assumed to be closed
under first-order operations that are sensitive to individual points. We seek other
model-theoretic frameworks that better reflect the statistical nature of ErdGs geom-
etry and whose operations lead to meaningful constructions in the combinatorial
setting. We begin with a special case, built upon reducts at least at the quantifier-free
level.

5.7 The Langian case Call X Langian if for any variety W, the family of irreducible
subvarieties of W that fall into R (or ) has only finitely many maximal elements;
denote the union of these subvarieties by W® (resp., W®). So W& is a Zariski-
closed subset of W, and W € Rif W = WR, Let Tx (resp., Tx) consist of
all universal sentences in this language that hold true in Fglg (endowed with the
natural R-structure), and in addition, the axioms W = W'R, for any variety W (i.e.,
(Vx)(x € W <= x € W®)). Then Ty is consistent, and indeed consistent
with (3x)(x € U) for U € R. To see this, consider first a single U € R, and let
a = (ai,...,an) be a generic point of U. Then {ay,...,a,} is a model, since any
variety in which (a;,, ..., a;,) lies is the image of U under a projection, and so is
in R. Next, if given finitely many varieties Uy, ..., Uy € R, note that a model of
Tx A (Ax)(x € I1;U;) is also a model of (Fu)(u € U;) for eachi.

The universal theory Ty has the joint embedding property—this is clear from
Lemma 5.2(2). Thus the class of existentially closed modeli of Ty fits into the
setting of Shelah [3°] and Pillay [7£]; we refer to this class as Ty and view it as the
class of models of an ideal “theory.”

The same construction works for R and &5,; in this case we call the universal
theory Ty and call the class of existentially closed models 7 x.

Proposition 5.8 Tx and Tx are algebraically bounded, and the dimension of the
Zariski closure coincides with the dimension induced by §, up to a scalar.
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Proof Recall that the existential type of a tuple determines the orbit under the
automorphism group, in an appropriately saturated model U. Using compactness for
existential types, algebraic boundedness reduces to showing that if f : U — V is
a dominant map between varieties in R, and U(X) — V(X) has finite fibers, then
f : U — V has finite fibers, at least over some Zariski-dense open V’. This is clear
from Lemma 5.2(5). O

Remark 5.9 T is stable if R generates a disintegrated reduct of ACF; otherwise it
is rarely simple. We have the familiar examples of ultraproducts of finite subgroups
of a one-dimensional algebraic group, ogjinite fields. These and their isogenous vari-
ants are probably the only cases when T is simple. We give a heuristic argument,
assuming Conjecture (or restricting to internal characteristic zero). If T is not
modular, then it interprets a field and we expect T to be isogenous to a theory of
pseudo-finite fields. Assume that T is modular and R is not disintegrated. Over
parameters one can find R € R, R < A3, dim(R) = 2, with generically finite
projections to each A2. By modularity, (A!, R) is isogenous to a one-dimensional
algebraic group. Thus up to finite covers we can assume that X is an ultraprod-
uct of approximate subgroups X; < A;. Now it seems that (A4, X) has the strict
order property, that is, a partial ordering with unbounded chains defined by an ex-
istential formula. In the fundamental case where X is an arithmetic progression
[m,n]b, by translating we may assume m = 0, and then the partial ordering is
x <y <= (Iz € X)(x +z = y). The general case requires more care,
and a good use of Freiman’s structure theorem.

Nevertheless, it seems that 7" carries a natural measure and has a form of almost
everywhere 3-amalgamation for compact Lascar types; and the ideas of the simplicity
theory of [2¢] should be of use.

As algebraic closure controls dimension, we can say that T (or T) is modular if the
lattice of algebraically closed sets is modular, at least over an existentially closed
substructure. We propose the following.

Conjecture 5.10 (Zilber’s dichotomy for T) If T (resp., 'Af) is not modular, then it
interprets an infinite field.

The notion of interpretation is a strong one here: there should exist affine algebraic
varieties V, E < V2, M, P < V3, whose Zariski closures are all in R (resp., R),
such that M, P respect E and (V/E, M/E, P/E) isaring, with V(X)/E asubfield.
The difference between these varieties and their Zariski closure should be definable
in some way that we do not make precise here; a Boolean combination of existential
conditions would do. See the analogous Conjecture for comments.

We further expect that the field in the conjecture is naturally 1som0rphlc to a
subfield of the ambient field. In this form, the conjecture implies that if T or T are
not modular, then F (or F") has a pseudo-finite subfield, so that the F; have finite
subfields and must (for almost all i) have positive characteristic.

This last consequence is in fact true; it follows by first interpreting a pseudo-plane,
then invoking the Szemerédi—Trotter theorem. We will see a completely analogous
statement in the more generally applicable settings below, and so we omit the discus-
sion here.

Remark 5.11 If X is Langian and in addition, &R (resp., R) has amalgamation
(and not only self-amalgamation and joint embedding), then T (resp., T') is a reduct
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of the theory ACF of algebraically closed fields. In this case the conjecture is a
theorem of Eugenia Rabinovich [30].

We may expect that a “typical” X is Langian.” In particular, it may be that for any
pseudo-finite X, and any finite subset S of varieties over QQ that are in R, there exists
aLangian X’ with a corresponding R’ = R(X'), with S C R’. But such things—if
true—would be difficult to prove. For that matter, even for approximate subgroups
of semiabelian varieties, Langianity is a nontrivial statement related to other Zilber
conjectures. Despite this, the hypothesis seems to be a useful testing ground. At any
rate we pass now to more general contexts.

Note that 7 and T were formed directly out of R, . Without the Langian (or
amalgamation) assumptions, I do not know how to make a useful structure directly
out of R, and we return to using X. Now X may contain small subsets, say, ex-
istentially definable, that can be quite arbitrary; and quantifying over them could
interpret set theory on logarithmically-sized sets, so we cannot expect any geomet-
ric properties at this level of generality. Our next framework does not replace the
structure (F, X) with another but instead modifies the logic, so as to sense only
top-dimensional behavior. Thus we may not ask if there exists a (single) x with a
given property, only if there exist a substantial number (positive measure) of such el-
ements. For fine dimension we use probability logic; one could try using dimension
logic to deal with coarse dimension. Both take place within real-valued logic, which
we proceed to review.

5.12 Real-valued logic (Yaacov and Usvayatsov [39]) A real-valued structure
consists of a universe F and real-valued relations, meaning functions g : F" —
[0,m] C R. Tt would suffice to use functions into [0, 1], but it is convenient to
allow [0,2],... as well. Boolean connectives are replaced by continuous functions
h: ]_[le[O, m;] — [0, m] (or a dense family of such functions). We begin with a
family of basic real-valued relations and form new ones by composition with such
“connectives.” The basic relations are viewed as interpretations of basic relation
symbols, and the relations generated by them are interpretations of corresponding
Jformulas formed from these symbols. We will not be strict about the distinction
between formulas and their interpretations.

A discretely definable set is a subset of F" whose characteristic function, valued
in the two-element set {0, 1} C [0, 1], is a real-valued relation. For our purposes, we
will assume that the diagonal on F is a discretely definable set.

Ultraproducts are formed by taking an ultraproduct of the universes as usual, while
taking the limit along the ultrafilter of the real-valued relations (equivalently, taking
the standard part of the ultraproduct of the relation values). Saturation is defined sim-
ilarly. By a discrete interpretation of a structure M of a structure N we mean a dis-
cretely definable equivalence relation E on M* and discretely definable relations R;
on M*"i respecting E, so that the interpreted structureis N = (M*/E, R, /E, .. ).
We have a dimension function § induced on N.

5.13 Probability logic We use real-valued logic instead so as to retain compactness
(and through it, amalgamation and some 3-amalgamation). As in Keisler [22, Sec-
tion 3.4], we will use real-valued formulas and integral operators rather than rela-
tional quantifiers; they work well with real-valued logic and resolve the usual trouble
with the interpretation of “there exists at least measure-8 many x” at the critical
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boundary, that is, at the exact value 8. We consider only finitary logic and use the
terminology “(real-valued) formula” in place of Keisler’s “term.”

We thus define a probability-logic structure to be a real-valued structure
as above, with an additional operator f taking a formula #(x, y,...) to a for-
mula [7(x,y,...)dx in variables y,.... This operator is assumed to be linear
(f(at +a't") = [at + [a't’ fora,a’ € Rxy), nonnegative, and to have norm 1,
that is, if 7 takes values in [0, m] then so does | 7. We assume also that Fubini holds,
inducing a unique integral operator [ --- [*---dx; ---dx, in n variables for any n.

An n-type is by definition a real-valued function p on formulas ¢(x1,...,Xx,),
such that for some (ay,...,a,) in some structure 4, p(¢) = ¢4(ay,...,a,). Let
S, denote the type space. It is a compact subspace of the space of functions on
formulas into R, with the Tychonoff topology.

The iterated integral extends to a norm 1 operator on the space of all continuous
functions on S,; by the Riesz representation theorem, it comes from a probability
measure on Sy; these measures are compatible with the projections. Similarly, one
obtains a measure on the space S, of types in infinitely many variables xy, x5, . ...

Two structures are elementarily equivalent if the integral operators (on formulas
without parameters) act on formulas in the same way, and any two zero-place formu-
las have the same constant value for the two structures.

By an elementary substructure of M we mean an elementarily equivalent N
whose universe is a subset of M, and such that for any formula ¢ in k variables,
tN = M| Nk,

This logic gives us no way to treat, for instance, addition; within three-
dimensional space, the graph of addition is zero-dimensional. In fact, typically
if M is an enriched field, there exist elementary submodels whose universe is
a set of algebraically independent elements. Thus as it stands, probability logic
completely loses sight of the algebraic relations that are our main interest. We mod-
ify it by adding bounded existential quantifiers; equivalently, we may use relative
probability quantifiers over any variety (see below).

5.14 Probability logic on varieties, at maximal fine dimension We proceed to de-
scribe the probabilistic formalism for a logic of (F, X, és,) at the top dimensions.
We use the associated measure at these dimensions. We will not use § here (see
Problem ).

Let ¢ = 8sn(X), and let & = gy be the associated probability measure on de-
finable subsets of X. We will use the real-valued probability logic described above,
but in addition to the integral operators, we use bounded quantifiers. Namely, let
p(x,y) = pa(¥)x% + -+ + po(y) be a polynomial with integer coefficients, where
x is a single variable and y = yi,..., y¢ is a tuple of variables. We introduce a
quantifier, that is, an operator taking a formula ¢(x, y) to

[pa #0]( Y elx.n).

p(x,y)=0

This is a new formula in the variables y, which vanishes if p;(y) = 0 and otherwise
sums @(x, y) over all roots of p(x,y). A structure must correctly interpret these
quantifiers. In particular, an elementary substructure is a relatively algebraically
closed subfield.
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As basic relations, we take the characteristic function 1y of X, and the character-
istic functions of all subvarieties of A", over the prime field.

A partial type P C X" is coherent if the two natural notions of dimension coin-
cide for P: 8g,(P) = dim P - 84,(X), where P is the Zariski closure of P. Thus an
irreducible closed subvariety V' < A” lies in R iff V' N X" is coherent.

Remark 5.15

(1) By combining the bounded summation operators with the integral operators,
we obtain integral operators on any variety. Conversely, the summation op-
erators can be viewed as integral operators on (relatively) zero-dimensional
varieties. The logic can thus be presented in terms of probability logic on
varieties.

(2) A formula in normal form is formed out of the basic relations by real-valued
connectives, bounded quantifier operators, and integral operators, in this or-
der. We have quantifier elimination in the sense that the values of normal
form formulas determine the complete type. This is related to Hoover’s nor-
mal form theorem (see [22, Theorem 3.1.4]).

(3) Let S, be the space of types of infinite tuples of elements of X, over @.
It is separable and carries a canonical measure as explained above. Let
(ay,as,...) be a random sequence; that is, tp(a,as,...) is a random ele-
ment of . Let N be the algebraic closure of the field generated by aq, a», .. ..
Then N is an elementary submodel. Moreover, the measure of a formula in
one variable with parameters in N equals the limit frequency of the solution
set of the formula in {ay,...,a,}. We refer to N as a random elementary
submodel.

(4) In random elementary submodels, algebraic independence coincides with
San-independence: if a ¢ Fo(b)¥¢ (where Fy is the prime field and
b = (by,...,bm), a,b; € N), then any formula ¢(x,b) in tp(a/b) has
8an (@) = o (where o =~8ﬁn(X) = 6gu(x = x)). This is an analogue of alge-
braic boundedness for 7' and leads to 3-replacement and almost everywhere
3-amalgamation. (We recall the statement of 3-replacement from [ 6], in
this setting, over an elementary submodel. Assume that tp(c/a, b) is wide,
tp(b/a) and tp(b’/a) do not divide, and tp(h) = tp(b’). Then there exists ¢’
with tp(c’/a, b") wide, and tp(c'd’) = tp(ch), tp(c’a) = tp(ca).)

The property stated in (4) will be called coherence. To prove the coherence of a
random elementary submodel N = Fy(ag.ay....)"e, let § = 8z,. Note first that
8(ai,...,an) = na. Say a,b = (by,...,by) € acl(ay, ..., a,), with a ¢ acl(b).
We have to show that §(a/b) > 0. Working over some of the a;’s, we may assume
each a; € acl(a,b). As a ¢ acl(b), Fy(b) has transcendence degree at most n — 1
over Fy, and it follows that §(b/ Fy) < (n—1)a. If §(a; /b) = 0 for each i, we obtain
8(ay,...,an) < (n—1)a, a contradiction. Thus §(a; / Fo(b)) > 0; as a; € acl(a, b),
it follows that 6(a/b) > 0. (This is superficially stronger than coherence but actually
equivalent.)
We write (F, X)P™ for (F, X) viewed as a measure-on-varieties structure.

5.16 Interpretations in probability logic on varieties We now define probability
logic on varieties. The sorts are algebraic varieties over some fixed field Fy. Con-
structible sets are viewed as basic definable sets, and morphisms between algebraic
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varieties are basic functions of the structure. In addition, there are real-valued rela-
tions on sorts. Each definable set D comes with a dimension §(D); if (D) # oo,
also with a measure up. Real-valued relations on D can be integrated correspond-
ingly.

A natural notion of interpretation of such structures would thus work with mor-
phisms between varieties (rather than set morphisms between sorts); namely, a sur-
jective constructible map f : Uy, ..., Uy — V of varieties, such that the pullback of
any definable relation D on V" is a definable relation on U" (U = ]_[f:1 U;), and
the dimension and measure on D are appropriately normalized pushforwards of the
corresponding ones on f~!(D). From the point of view of U, V is an imaginary
sort obtained using a constructible equivalence relation E, rather than an arbitrary
one. Using this definition has the effect of strengthening the dichotomy conjecture
Conjecture below, while making the recognition conjecture Conjecture al-
most trivial. The first conjecture would remain very interesting for more generous
notions of interpretation.

5.17 Definition of modularity Call a substructure Y of F' coherent (over A) if any
m-type realized in Y over A is coherent.” Equivalently, for any algebraically indepen-
dentay,...,a, € Y over A (in the sense of algebra, i.e., of ACF) and any real-valued
formula ¢, if ¢ < @(as,...,an) < B, then §{x : ¢ < p(x) < B} = né(X).

Thus a random elementary submodel is coherent.

Definition 5.18 (F, X)P™ is modular if for any elementary submodel Fy, if Y
is a coherent (small) subset of X over Fy, then algebraic closure over Fy is mod-
ular; that is, for ay,....a, € Y, ifa; € Fo(aa,...,an)™ \ Fo(ay,...,a;), then
Folar,....ap)" 0 Foagyy, ... an)" # FO%.

By a (2, 3,2)-pseudo-plane we mean interpretable co-definable sets P, L lying
on algebraic varieties P, L, and a constructible set / such that for any two
points of P, I(a) N I(a’) is finite, and dually; and §(P) = dim(P) = 2,
8(L) = dim(L) = 2,8(I) = dim(/) = 3 (where § denotes o~ '85,). We can
now restate Theorem

Proposition 5.19  Assume that F has internal characteristic zero. Then (F, X )PP
has no (2, 3, 2)-pseudo-plane.

Now comes a sequence of statements as in almost strongly minimal model theory.

Proposition 5.20  Assume that (F, X)P™ interprets no (2,3,2)-pseudo-plane.
Then (F, X )P is modular.

Proof  Over parameters, if (F, X )P is not modular, then one can find a coherent
sequence a1, ...,a4 demonstrating this, via an algebraic relation R among them.
View R as a binary relation on A2, and rename the variables writing R = R(x, y),
x = (x1,x2), ¥y = (¥1,¥2). View R(a, y) as a family of curves on y-space. Let R’
be a Zariski-open subset, such that R’(a, y) is a disjoint union of irreducible curves.
Let R” be the irreducible component of R’ x 4> R’ containing the diagonal, so that if
(a,b,b’) € R”, then (a,b) € R',(a,b’) € R and (b, b’) lie in the same component
of R'(a). Let P = R/E where (a,b),(d’,b’) € E iffa = a’ and (a,b,b’) € R".
We have a relation I; on P x A2, pushforward of R”; and I;(a) is an irreducible
curve, fora € P.
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Similarly, we may replace the right-hand side A2 by a finite cover Q, ob-
taining / C P x Q such that R5(b) is irreducible. With a little thought
one sees geometricam/ that R,(a) remains irreducible. = Model-theoretically,
this is because the canonical base b’ of the strong type of a over b satisfies
b’ = Cb(stp(a/b)) C acl(h) N dcl(a,b), so that tp(b'/a) is equidefinable with
tp(b/a) and hence remains stationary.

Now for distinct a,a’ € P we have P(a) N P (a’) finite (this is the intersection of
two distinct irreducible curves), and dually.

Let ¢ be the image of ((a1,a»), (a3, a4)) modulo E, noting acl(ay, az) = acl(c).
Similarly define d, and let P, Q, I be the types of ¢, d, (¢, d), respectively. O

Proposition 5.21 Assume that (F, X )P is modular and that R € R[3] has dom-
inant, generically finite projections to any A? < A3 via coordinate projections; then
R is isogenous to addition on a one-dimensional abelian group.

The proof is standard, using the ACF group configuration. Note in particular the
conditional.

Corollary 5.22 Assume Conjecture 5.0. Then the main conjecture of [5] is valid,
at least for small A: for any degree d, for some m, if A C Fp, and |A| < pY/™. then
for any polynomial f, |{(a,b) € A%: f(a,b) € A} < Cq|A]2~V/m.

Conjecture 5.23 Assume that (F, X )P is not modular. Then it interprets a field
k with §(k) > 0. In fact § (k) = 1.

Conjecture 5.24 The field k can be embedded in F, by a discretely definable
function.

This last recognition conjecture is straightforward for the strict notion of interpreta-
tion used above. We state it explicitly since in generalizations of the present scenario,
or weakenings of the notion of interpretation, it may well become a significant step.

Problem 5.25 Investigate a “coarse-dimension logic on varieties” for § analogous
to the above for &4y

(1) Define a “coarse-dimension logic” analogous to probability logic but with
§ replacing u,. Possibly, replace the integral operators with dimen-
sion operators taking a formula f(x,y) to a formula fx t(x,y,r) with
f.1(x,y,r) = 8{x : t(x,b) > r} (see Lemma 2 5(4)). Is there a normal
form?

(2) Define a “coarse-dimension logic on varieties” by adding bounded quanti-
fiers, or an infimum operator over algebraically bounded finite sets, as in Sec-
tion . Call an oco-definable set P coherent if §(P) = dim P (where §
is normalized with §(X) = 1 and P is the Zariski closure of P). Thus an
irreducible closed subvariety V' < A" lies in R iff V' N X" is coherent. Show
that “generic” sequences realizing coherent types are the universe of coherent
elementary submodels.

(3) Define modularity to mean that algebraic closure is modular on coherent sub-
structures over an elementary submodel. Investigate the analogue of Conjec-
ture

Remark 5.26 We could also consider a maximal structure on (F, X'), where any
ultraproduct of subsets of F" is considered a definable subset of F™. This is a
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first-order structure; we can still define a coherent formula and partial type, and thus
repeat the definition of modularity and the statement of Conjecture . This would
be weaker than the direct transposition of Conjecture (3) to coarse logic but
would still imply Conjecture

This means that the coarse-dimension dichotomy Conjecture (3) would re-
main interesting if the logic is augmented somewhat beyond Conjecture Q)
(within the maximal structure).

On the other hand, the corresponding conjecture for the maximal structure itself
would simply be equivalent to the combinatorial statement; it would not carry real
model-theoretic content or constrain the possible proofs, without a restriction of the
formulas to a more geometric level.

5.27 Three examples We now recall the promised examples. The first two are stan-
dard in the additive combinatorics literature; they exhibit a distinct phenomenon in-
termediate between modularity and fields, when several scales are allowed, but it is
a surprisingly mild addition and is the only one I am aware of.

Example 5.28 Let G be a nilpotent algebraic group; for definiteness take the
group G of strict upper diagonal (3 x 3)-complex matrices, viewed as an exten-
sion of C2 by C. Let Xy consist of the matrices in G whose top right entry is an
integer of absolute value at most N2 and whose other entries are integers of abso-
lute value at most N. Let X be an ultraproduct over N. Then X is an approximate
subgroup; if M is the graph of multiplication on G2, we have §(M) = 28(X),
dim(M) = 2dim(G); thus M € R. Now G is not abelian by finite, and algebraic
closure is not modular in the reduct generated by M. The presence of more than
one scale is easily visible: the intersection of X with a generic coset bZ of Z has
(X Nbdbz) = %dim(X ). In fact, the family Xy is just a subfamily of the more
natural Xy’ y = [-N’, N']?> x [-N2, N?], with N’ < N; the ultraproduct has two
scales that are only accidentally equal in the original example.

The situation is reminiscent of locally modular superstable groups, which need not
be 1-based. For example, they could be a central extension of an abelian group A by
an abelian group Z; the image of a commutator map is a subset of Z, not a subgroup.
Such groups have infinite U-rank, with regular types of ranks 1 and w, analogous to
N’ < N above.

A similar example, presented on a one-dimensional line and reminiscent of the
many “pathological” examples in o-minimality when only a bounded field structure
is present, is the one giving the optimality of the Szemerédi—Trotter theorem (see the
Wikipedia entry, http://en.wikipedia.org/wiki/Szemer%C3% A9di-Trotter_theorem).

Example 5.29 Let n € N*, the nonstandard natural numbers. Write [a, b] for
intervals in N*, X = [1,2n2]. Let M be the graph of multiplication, restricted to
X3. Then §(M) < 38(X), so M ¢ R. With an additional scale concentrated on
Y = [1,n], we would see multiplication as a map Y2 — X, with behavior similar to
that of Example

Let P = [1,n]x[1,2n2%], L = [1,n]x[1,n2],I = {((x.y),(m,b)) € PxL;y =
mx + b}. Then §(P) = §(L) = 38([1,n]), while (since |I(c)| = |I(m,b)| = n)
§(I(c)) = 6([1,n])) = %S(P) for ¢ € L. This contradicts the fundamental rank
inequality, which would have § (L) < %8 (P) in this situation.
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Example 5.30 Let A be a simple abelian variety of dimension greater than 1, and
let a € A be a nontorsion element. Let Y be an ultraproduct of Y, = [—n,n]a.
Then Y intersects any proper subvariety of A in a finite set, with bounds uniform in
a family of subvarieties. Consider the structure (Y, P) where P = {(y1, y2,¥3) €
Y3y 4+ y» = y3). Let A’ be a Zariski-open subset of 4, andlet f : A’ — A! be
a dominant morphism of algebraic varieties. Let X = f(Y). Then f is finite-to-one
on Y, so the induced structure on X is not algebraically bounded in the sense of van
den Dries; f(P) is a nonalgebraic relation inducing a nontrivial algebraic closure
on X. Note that X is obtained by a simple projection and not by the probability
quantifier of the appropriate dimension (dim(4) — 1).

6 Quasi-Finite Structures

Zilber classified the Ng-categorical strongly minimal sets. More importantly, he
found the characteristic structural property of these structures: modularity. In the
years surrounding his proof, the inductive classification of all finite simple groups
was visualized and then consolidated. A corollary is the classification of the large
finite simple groups (CLFSG), that is, the statement that all but finitely many finite
simple groups are either alternating, cyclic, or subgroups of simple algebraic groups
consisting of points fixed by Frobenius maps (possibly twisted by group automor-
phisms). To date, no direct proof of the CLFSG has been found, or even conjecturally
outlined. Moreover, the structural content of the statement—the model-theoretic
meaning of this statement for finite structures—has not been clearly extracted. Zil-
ber’s theorem can be viewed as achieving both goals for a natural class of structures,
with automorphism groups built out of alternating groups and full projective linear
groups over a fixed finite field (see [¢] for further discussion of the relation between
the two theorems). It remains a highly significant role for model theory to find con-
ceptual statements and proofs of wider parts of the CLFSG.

Say that a theory T is quasi-finite if for some function v : N — N, any finite
subset To of T has a finite model with at most v(k) k-types. It follows that T is Ro-
categorical and pseudo-finite. Moreover, (7, §) is pseudo-finite for the appropriate
pseudo-finite dimension §. However, quasi-finiteness is much stronger and, using
the CLFSG via [2 1], can be seen to imply coordinatization by classical geometries
(see [V]). Conversely, all finite simple groups over a finite field of bounded size can
occur within the automorphism groups of finite approximations (“envelopes”) of a
quasi-finite 7'.

In [9], most of Zilber’s theory was generalized to the class of quasi-finite struc-
tures. This time the classification of the finite simple groups was used, via work of
[21]. It was shown however that the classification in [” ] is equivalent to the con-
junction of a list of model-theoretic properties of quasi-finite structures (see [V, p. 7,
Theorem 7, properties LC1-LC9]). It is plausible that such properties can be de-
duced from quasi-finiteness by direct means, and it becomes a significant challenge
to do so. For the key property LC4 of 3-amalgamation, initially proved inductively
using the CLFSG, this was already achieved in the published version of the book [7].

We present the problem here again, in slightly updated form. In this section we
write § for 8g,. For short we will say that (M, §) is pseudo-finite if M is an ultra-
product of finite structures M;, §(¢) is the image of IT,|¢(M;)| in the nonstandard
reals TT1,,R modulo the convex hull of R, and §(¢(x, a)) depends only on tp(a).
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Theorem 6.1 Let T = Th(M), and assume that (M, §) is pseudo-finite. Assume
the five conditions below hold.

(1) T is Ro-categorical.

(2) Modularity for §-dependence: If A, B are algebraically closed subsets of
M*®4, and a € A, then §(a/B) = 6(a/A N B).

(3) Every definable subset of an abelian group is a Boolean combination of cosets
and an Ag-definable set, for some finite Ay.

(4) T does not interpret the theory Trnp of the bipartite random graph.

(5) For every definable T ,-vector space V, any definable family of linear maps
V — F, is contained in a definable vector space of such maps.

Then T is quasi-finite (and coordinatized by classical geometries).

We will also sketch in Section 6. how (5) can be replaced with an additional variant
of (4).

Proof  The conclusion is the same as that of [V, Theorem 7.5.6, p. 167]. The hy-
potheses LC1-LC9 of that theorem will be recalled and related to the assumptions of
Theorem 6.1. LCl1, 2, 5, 6, 8 are included among our assumptions: LC1 = (1), LC2
is pseudo-finiteness, LC5 is modularity, LC6 is (3), and LC8 is (4). Property LC4 is
discussed immediately below; it follows from pseudo-finiteness and R-categoricity

of (M,8). We will show in Lemma that LC7 follows from the other condi-
tions. Properties LC3 and LC9 are recalled further down; we will deduce LC3 in
Section and show that (5) is equivalent to LC9 in Lemma 6.9. O

Call a complete theory T (and any model of T') almost quasi-finite if it satisfies the
properties listed in Theorem 6. 1. In [©] it is proved (directly and model-theoretically)
that almost quasi-finite structures are quasi-finite.

Problem 6.2 Find a direct, conceptual proof that quasi-finite structures are almost
quasi-finite.

For condition (5), we will solve the problem below (see Lemma ).
We now discuss the conditions of Theorem , prove the lemmas used in the
proof of Theorem above, and comment on Problem

6.3 No-categoricity and pseudo-finiteness of (M, §) No-categoricity, and the fact
that § is automorphism-invariant, follow immediately from the definition of quasi-
finiteness.

6.4 3-amalgamation (LC4). Let p;(x;), pi; (xi, x;) (i < j =1,2,3) be types over
an algebraically closed set A. Assume p;(x;) C p;j(x;,x;) and §(p;j) = 6(p;i) +
8(pj). Then there exists p(xy,x2,x3) containing all p;;, with §(p) = §(p1) +
§(p2) + 8(p3).

Property LC4 is already proved in [V, Proposition 8.4.2] for quasi-finite structures.
The proof goes through with the invariance and pseudo-finiteness assumptions of
Theorem ©.1. (Note that since § is invariant and there are finitely many types, there
are only finitely many possible values for §.)
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6.5 Modularity Condition (2) is clearly the key structural property. It takes a strong
form here, of 1-basedness. Note that §(a/B) > 0 if a ¢ acl(B) by definition of §. A
more local version of modularity would require B to be closed in the stronger sense
that if §(c/B) < §(a/B), then c € B.

Could one more ambitiously prove a trichotomy result—either modularity, or an
interpretable field of unbounded size—under weaker assumptions, including the ana-
logue of finite Morley rank, §(Def) = Z (see Macpherson and Steinhorn [25])?

Modularity of algebraic closure in definable duals of definable vector space is
shown in Shelah [34] for 2-dependent theories, and in particular for theories with a
simply exponential growth rate of local types over finite sets (see remark on p. 2 of
[34]). In fact all quasi-finite theories are 2-dependent, but this is presently known
only using the CLFSG.

6.6 Definable subgroups of abelian groups Condition (3), in the stable case, is an
old theorem of Anand Pillay and myself. In that case, the exceptional family of
Ap-definable sets does not intervene. A possible alternative goal would be to prove
quadraticity rather than linearity. Discrete harmonic analysis is a tempting tool in
this connection.

6.7 The random graph Item (4) concerns the noninterpretability of a specific theory.
A bipartite graph is called k-random if for any two disjoint sets B, B’ on one side of
the graph, with |B| U |B’| < k, there exists a vertex ¢ on the other side, adjacent to
each element of B and to no element of B’. Trnp is the theory of bipartite graphs that
are k-random for all k. One really needs to know that no such graphs are interpreted
on a set of rank 1. If one were, by modularity it could be interpreted on a quotient
of M?; so assuming that M has few 4-types, the graph would have few 2-types. It
seems plausible that for a given k, there is no finite, 2k (or even k + 4) random graph
with at most k 2-types.

See Cherlin [ /] for the difficulty of proving non-pseudo-finiteness of a very simple
specific theory, the model completion of the theory of triangle-free graphs, with
present ideas. However non-quasi-finiteness can be proved rapidly. The unique 1-
type po over @ extends to an invariant global type p, as it happens a unique one: the
type of an element x not connected in the graph to any existing element. It follows
that p|acl®d(@) is invariant under automorphisms of acl®d(@); on the other hand all
extensions of pg to acl®d(@) are conjugate by such automorphisms, so pg implies a
complete type over acl®d(d).

This also shows that if b,b’ are distinct and not connected by edge, then
acl®d(b) N acl®d(h’) = acl®i(@). (For instance, given a @-definable function g,
find b” such that g(b’) # g(b"); find b = p|{b’,b"}; then g(b") # g(b’) or
gy # g(b"); since tp(b,b") = tp(b"”,b") = tp(b"”,b"), it follows in either
case that g(b) # g(b’).) Now if a # b, one can find b’ with tp(b’/ acl®d(a)) =
tp(b/ acl®(a)) and such that (b, b’) is not an edge. Hence acl®*i(a) N acl®d(b) C
acl®d(b) N acl®d(b’) = acl®d(@). By l-basedness (2), any two distinct points are
independent. By 3-amalgamation, there exist ai, a», as with (a;,a;) an edge. This
contradicts the no-triangles assumption.

6.8 Definable duals We first move from (5) to the formulation (LC9) given in [Y].
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Lemma 6.9 Let T' be almost quasi-finite. Let V be a vector space over F p,, inter-
preted in T. Then there exists a definable group V* and a definable bilinear map
p: V xV* — ¥, such that any M -interpretable linear map V. — ¥, has the
form x +— p(x,b) for a unique b € V*. V* is unique up to a unique definable
isomorphism.

Proof  Uniqueness is clear; in fact V* is clearly a piecewise-definable group, de-
fined uniquely up to a unique definable isomorphism. Write V* = UY, with ¥,
()-definable, and write Yo C Y; C ---. By condition (5), we can take Y, to be
a definable subspace of V*. LetY, 1= {v € V : (Vy € Yp)p(v,y) = 0}.
SoYy 2 Y, O ---. By Rp-categoricity, the kernels Y,, L stabilize; ¥ =Y, =
Y,41 = ---. Replacing V by V/Y, we may assume ¥ = (0), and the pairing
p:V xY, — F,is nondegenerate for any m > n. In any finite model it follows
that |V| = |Y|, so Y = Yim+1. By pseudo-finiteness, in fact, Y, = Y41 in T.
Thus V* =Y, is definable. O

For condition (5), Problem 6.2 can be solved using the following observation made to
me by David Kazhdan. For any set X, let ¥ C denote the space of functions X — C.
For any representation U of G, UY denotes the subspace of vectors u € U fixed
by G.

Remark 6.10 Let V be a finite-dimensional representation over a finite field F' of
a group G. Let V* be the dual vector space, with the natural G action; then G has
as many orbits on V' as on V*. Indeed, the number of orbits of G on any finite set X
equals dime (¥ C)©. But we have a G-invariant isomorphism ¥ C —V" C, namely,
the Fourier transform. So dim¢ (¥ C)¢ = dime(¥" C)C.

Remark 6.11 It follows directly from Remark that if 7" is quasi-finite, and V'
is a definable vector space, and if 7" is obtained from T by adding a sort for the dual
of V, then T’ is quasi-finite. This was already used in [9] at least for one-dimensional
V', but the proof there used [~ 1].

Lemma 6.12 Assume that T is quasi-finite. Then Theorem 0.1(5) holds; indeed
for every definable IF ,-vector space V, there exists a definable dual V* containing
all parametrically definable linear maps V. — F .

Proof Let V' be a @-definable vector space over IF,. View the space of all definable
(with parameters) homomorphisms V' — [, as a piecewise-definable vector space,
as above. Let I be any definable subset of V. We have to show that the linear span
of I is definable, that is, contained in a definable piece of V' *.

To see this, let [, = {ZLI oja; o €Fpoa; € 14 If I, = T4y, itis easy to
see that I, is the span of I and is definable. Let T3 x be the subset of T asserting
that V' is a vector space, that / C V*, and that I # Ir4;. Henceif M |= Tk, then
Aut(M) has at least k orbits on V* (subsets of I, I \ I1,..., I \ Ix—1). Hence by
Remark , for any model M of T x, the number of orbits of Aut(M) on V is at
least k. Thus T is not quasi-finite. [

6.13 Finite rank (LC3) By Lemma 2.2.3 of [Y], rk(a/@) > 2 iff for some C =
acl(C), there exists F' = acl(F) strictly intermediate between C and acl(C, a).
Let F/ = acl(a) N F. It follows from (2) that F’ is strictly intermediate be-
tween acl(@) and acl(a): we have a ¢ F’ since a ¢ F, but F’ # acl(@) since
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8(@a/F’) = 8(a/F) < 8(a/C) < 8(a/?). Thus rtk(a/@) = 1 if there exists
no F’ strictly between acl(9), acl(a). Now by [9, Lemma 7.5.1], there are finitely
many F’ = acl(F’) between acl(@) and acl(a). From Lemma 2.2.4 it follows that
rk(a) = n, where @ C F; C --- C F, = acl(a) is a maximal chain. So the rank is
finite.

6.14 General position of large #-definable sets (LC7)

Lemma 6.15 Let M be almost quasi-finite, and let A, B be @-definable groups
admitting a definable bilinear map p : A x B — T, nondegenerate on the right.
Let D C A be @-definable with §(D) = 6(A) > 0, forb € B\ acl(®),a € F, let
D(b,a)=1{d € D : p(d,b) = a}. Then §(D(b,a)) = §(A).

Proof We work over acl(@) (so tp(c) = tp(c/ acl®¥(@))). Recall that a|b means
8(a/b) = é(a). Let p be a type of D over acl(@) with 6(p) = §(D).

The theory of stabilizers goes through here. Let So = {a — b : a = p,b E ¢,
alb}. Let S be the group generated by So. Then §(S) = §(D) = §(A), so A/S is
finite. By nondegeneracy of p on the right, it follows that Ann(S¢) = Ann(S) = {c :
(Vs € S)p(s,c) = 0} is finite. Now if p(a,c) = 0 for any a = p with alc},
then ¢ € Ann(Sp): to see this let b = So; pick ¢ | p with alc, b and such that
a+b E p;then (a,c) = (a + b,c) = 0so (a,c) = 0. Hence the set of such c is
finite.

For any nonalgebraic type ¢ of B over acl(@), let W(q) = {p(a,b) : a E p,
b E q,alb}. If g = tp(c;/@) fori = 1,2,3, c1lcz, and ¢c3 = ¢1 + ¢3,
and o; € W(g;), then by 3-amalgamation there exists a = p with alcy, ¢ and
pla,ci) =a; (i =1,2); 501 + oz € W(g3). Similarly for c3 = ¢ — ¢5.

Letg = tp(b). If a1, a2, a3 € W(q), let by, by = ¢ be independent, b’ = by —b,,
q' = tp(b’). Then by the above, a7 — an € W(q'); and by a second application,
(1 —az) + a3 € W(g). Thus W(q) is a coset of a subgroup of IF,,. Since clearly
W(q) # @, we have W(q) = F,. In particular « € W(g). So there exists a’ = p,
a'lb, p(a’, b) = «. This proves the lemma. O

In the statement of [9, Lemma 6.4.1], one should exclude the case where A* is finite,
since otherwise any element (including 0) is generic. With this correction, the lemma
follows immediately (using induction on ) from Lemma

6.16 Definable duals and the theory of the dual pseudo-basis Two specific theories
have already been seen to play an important role in delineating the class of quasi-
finite theories. The first was the theory Trnp of the random bipartite graph, just out-
side the class; the second was the analogous linear theory, of a bilinear map between
two vector spaces or a polarity between two projective spaces, which is quasi-finite
and determines much of the flavor of quasi-finite theories. We pause for a moment
to consider a mix of the two: a relation between a projective space over a finite field,
and a pure set. This again falls outside the quasi-finite class and is closely related to
(5) of Theorem 6.1, or LC9.

First the vector version Tyy; it can be described as the model completion of the
theory of a vector space over a finite field F' with p elements, and an infinite, linearly
independent subset I of the dual spaceto V.
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Thus Ty has two sorts, one of a vector space over a finite field F, the other a pure
set, and we have in addition a function b : V x I — F, linear in the first variable,
with the following axioms.

VI, The natural images in V* of the elements of I are linearly independent: for
any n € N and any distinct ay,...,a, € I and ay,...,a, € F there exists
veVwithbw,aq;))=a;,i =1,...,n.

VI™ The subspace of V* generated by the image of / is dense: for any linearly
independent vq,...,v, € V,and ay,...,0, € F, for some a € I we have
b(v,a;)) =w;,i =1,...,n.

We will need a slight variant, the reduct T{, 7 of Ty where I, viewed as a subset of
V*, is replaced by the set F*I. With I’ = F*I, the axioms VI" remain the same,
while the axioms VI, must be restricted to pairwise linearly independent elements
ai,...,da, and augmented by the axiom that F*I' = [’.

Ty, interprets, and is parametrically interpretable in, the theory Tpy induced on
the sorts P, I from Ty, where P is the projectivization of V.

We call I a dual pseudo-basis. In infinite models, it is only a linearly indepen-
dent, dense subset of the dual space. In finite models of approximations to the
theory, it spans the dual space but is only k-linearly independent for some k; it
cannot be a basis since the formula defining the scalar multiples of the dual basis
3!y € I)p(x, y) # 0 in fact has no solutions.

It is clear that Ty is complete (with quantifier elimination), Ro-categorical, mod-
ular, and satisfies Theorem 6.1(3).

Lemma 6.17 Ty is pseudo-finite, but not quasi-finite.

Proof If Ty were quasi-finite, by Lemma , V has a definable dual V*. But
then / embeds definably into V*, and the distinctsets I,/ + 1,1 + 1 + I, ... show
that the number of 1-types of V* is unbounded, a contradiction.

To prove pseudo-finiteness, fix n. Let V' be a vector space over F of large finite
dimension, |V| = N. Let k be such that Nnlog,(p) < k < p™/"=3)_ Choose
successively and at random elements aq,...,a; € V*, subject only to the require-
ment that ¢; not be in the span of any n elements a; with j < i. This rules out only
pi® < p"k™ < pN72" elements, so at least N/(2p") choices remain available
within any subspace of codimension n. Now the linear independence requirement
(VI,)) is met by construction, and (VI"*) will hold with high probability by the usual
argument. O

If T does not interpret (with parameters) 7p; for any finite field F, it can be shown
that Theorem 6.1(5) holds in dimension 1. We sketch the proof. First, T does not
interpret (V, I), where the image of / is an infinite independent subset of V*, and
dim(V) = 1. Otherwise, replacing V by V/{v € V : (Vx € I)(p(v,x) = 0)},
we may assume that p is nondegenerate on the left, that is, (Vx € I)(p(v,x) = 0)
implies v = 0. Also we may assume F*I = [. Thus the linear independence ax-
ioms VI, hold in (V, I'). The density axioms are then proved using 3-amalgamation.
The rest of the proof no longer uses one-dimensionality; given a definable subset /
of VV*, we know by the above that / is not linearly independent, and similarly that
the image of / in projective space P V* is not linearly independent. A linear relation
among pairwise independent elements of / is then used, with the methods of [V], to
find a definable group containing /.
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It would be interesting to see an explicit list of theories whose noninterpretation
is equivalent to condition (2).

(1]

(2]

Notes

. The most appealing—and presently quite mysterious—example would be a generaliza-

tion of the notion of a compact group. Model-theoretically, this is the same as a hyper-
definable group internal to a finite set. Connectedness can be formulated as admitting
no definable homomorphism to a finite group. This suggests a generalization to hyper-
definable groups internal to a small set J, admitting no homomorphism to a J-internal
group. Even when J is stably embedded (so very small indeed), it would be valuable to
study such groups.

. In[9] unrestricted CC-quantifiers were seen to lead to undecidability; more precise—and

decidable—dimension quantifiers could be used to the same effect and were preferred.
But at the level of generality of Sections ”—5 there is no harm in closing under CC.

The conjecture affirms this for any pseudo-finite dimension §; the case of 85y is Freiman’s
theorem.

“Typical” is not meant in any statistical sense here. We could nevertheless look at a
statistical sense: X; a randomly chosen set of n; points from Fp,. If n; is sufficiently
small compared to p;, then Langianity is true but uninteresting, as &R reduces to diago-
nals. If n; is large compared to p;, then R should consist of all absolutely irreducible
F-varieties, and is still Langian. Some intermediate range may be more difficult to call.

We say substructure where usually one just says subset by abuse of language; this is
to avoid any conflict between the definitions of coherence for substructures and for de-
finable sets. The definitions are compatible via a certain duality, not by viewing a /\-
definable set as a substructure.

Added in proof: Tao’s recent preprint [3¢] proves a strong form of the conjecture for
large A, that is, |A| > pl_l/ ™ for appropriate m; his methods are highly suggestive
from the point of view expounded in this paper.

Using the CLFSG one can show that if one restricts the hypothesis to values of k below
4, it still implies quasi-finiteness (see [¥, Theorem 3]). We prefer to state the problem
in a setting invariant under adding constants, but to fully recover the results of [©] one
would have to work with k = 4.
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