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Denumerably Many Post-Complete Normal Modal
Logics with Propositional Constants

Rohan French

Abstract We show that there are denumerably many Post-complete normal
modal logics in the language which includes an additional propositional con-
stant. This contrasts with the case when there is no such constant present, for
which it is well known that there are only two such logics.

1 Introduction

Say that a logic is Post-complete if it is consistent and has no consistent proper ex-
tension. It is well known that there are only two Post-complete normal monomodal
logics—KT! and the smallest normal modal logic to contain �?—alias KVer.1
This contrasts starkly with the case where we are simply considering Post-complete
quasi-normal monomodal logics (i.e., Post-complete modal logics which extend K)
of which Segerberg has shown there are nondenumerably many.2

As the above examples show, the phenomenon of Post-completeness is quite sen-
sitive to the lattice of logics under investigation. When we fix upon a particular lattice
of modal logics, the Post-complete logics in that lattice will be its co-atoms. Nothing
about this point requires us to be concerned with modal logics, of course, as can be
seen in the discussion of the lattice relativity of Post-completeness in Humberstone
[5]—the discussion in footnote 10 therein providing a number of further references
on the issue.3

If we shift to the case where we are considering bimodal normal modal logics—
modal logics containing two modal operators, both of which are normal—the situa-
tion changes again. Here we have an increase in strength from the monomodal case,
but, rather than there being fewer Post-complete modal logics, we instead find that
there are now nondenumerably many such logics, as shown in [12]. This is a case
where we have changed the lattice of modal logics under investigation, not by chang-
ing the closure conditions we place upon logics in the lattice, but by changing the
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language under investigation. Here we will investigate the number of Post-complete
normal modal logics when we change the language by adding a propositional con-
stant. In Section 2 we will go over some formal preliminaries before proving our
main result in Section 3. In Section 4 we will end by discussing some of the ramifi-
cations of this result.

2 Formal Preliminaries

Let L be the propositional language constructed in the usual way from denumerably
many propositional variables p0; p1; p2; : : : , using the connectives!, :, and �—
the other connectives being defined in terms of these as usual. Let L� be a propo-
sition language just like L except that it also contains an additional propositional
constant �. When wanting to make comparative comments about normal modal log-
ics formulated in the two languages, we will denote logics in the language L� by
subscripting their name with �. So, for example, K� is the smallest normal modal
logic in the language L� .

A frame in this setting will be an ordered triple hW;R;C i, where W is a non-
empty set, R is a binary relation on W , and C � W . Throughout we will adopt
the convention of identifying isomorphic frames. A model is a frame along with a
valuation function V which maps every propositional variable pi to a subset of W
(the set of members of W at which pi is true). We will define truth at a point w in a
model M D hW;R;C; V i (“M ˆw A”) inductively as follows:

M ˆw pi ” w 2 V.pi /I

M ˆw :A ” M 6ˆw AI

M ˆw A! B ” M 6ˆw A or M ˆw BI

M ˆw �A ” 8u.Rwu)M ˆu A/I

M ˆw � ” w 2 C:

A formula A is true throughout a model M D hW;R;C; V i (“M ˆ A”) when-
everA is true at all pointsw 2 W in M, valid on a frame F D hW;R;C i (“F ˆ A”)
whenever A is true throughout all models on that frame, and valid at a point w in a
frame F (“F ˆw A”) whenever it is true at that point in all models on that frame.
Given a class of frames C , let Log.C/ be the set of all formulas A such that A is
valid on all the frames in C . As usual we will write Log.F/ for Log.¹Fº/.

3 Main Result

In this section we will exhibit a denumerable collection of distinct normal modal
logics in the language L� , each one of which is Post-complete. Consider the frames
Ln D hWn; Rn; Cni, for n � 1:
� Wn WD ¹0; 1; : : : ; n; nC 1º;
� Rn WD ¹hnC 1; 0iº [ ¹hi; j i j j D i C 1º;
� Cn WD ¹0º.

We make the following observation without proof.

Proposition 3.1 Ln is the only (point-generated) frame for Log.Ln/.

Consider, now, the formula L�n:

L�n W � ! Þ.�
n
:� ^ÞnC1�/:
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Figure 1 The Frame Ln

Here �A is an abbreviation for �A ^ A. Note also that, despite the fact that the
logics Log.Ln/ are extensions of KD!� , the use of Þ and � (rather than simply one
or the other) is intended to be suggestive. It is easy to see that, for all n, L�n is valid
on the frame Ln. We now show that this formula is valid on none of the frames Lm
for which m 6D n.

Lemma 3.2 For all n;m 2 Nat we have the following:

Ln 6ˆ L
�
m whenever m < n:

Proof Suppose that Ln ˆ L
�
m. Then, in particular, it follows that Ln ˆ .?/, where

.?/ W � ! ÞmC2�:

Suppose, then, that Ln ˆ0 .?/, from which it follows that Ln ˆ0 ÞmC2�. Thus
Ln ˆ1 ÞmC1�, and so Ln ˆm Þ2�. Now as mC 2 < nC 2, and RnC2.0/ D ¹0º,
and the only point in Cn is 0, we thus have that Ln ˆR2.m/ � by hypothesis and
that Ln ˆR2.m/ :� by construction, giving us a contradiction, and so the result
follows.

Lemma 3.3 For all n;m 2 Nat we have the following:

Ln 6ˆ L
�
m whenever m > n:

Proof Suppose that m D nC k for some k > 0. Then in K we have L�m ! .?0/,
where

.?0/ W � ! Þ
�
�n:� ^�n.�k:�/

�
:

Suppose, then, that Ln ˆ L�m, so in particular Ln ˆ .?0/, and hence as
Ln ˆ0 � ^ Þ:� we have that Ln ˆ0 Þ.�n:� ^ �n.�k:�//. In particular
it follows that Ln ˆ1 �n:� ^�n.�k:�/, and so Ln ˆn :� ^��k :�. Conse-
quently, Ln ˆnC1 �k:�, and in particular Ln ˆnC1 �:�, from which it follows
that Ln ˆ0 � and Ln ˆ0 :�, giving the result.

Theorem 3.4 The logics Log.Ln/ are all distinct normal modal logics.

Proof The proof follows by Lemmas 3.2 and 3.3.

To see that each logic Log.Ln/ is Post-complete begin by noting that the frames Ln
are distinguishing in the sense that for each point x there is a formula Dx such that,
for all models on Ln, Dx is true at a point y in a model iff x D y. The relevant
formulas are given in the following table:
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x 2 Wn Dx

1 ÞnC1�
2 Þn�
:::

:::

i Þ.nC2/�i�
:::

:::

n Þ2�
nC 1 Þ�
0 �

Say that a formula is variable-free if it is constructed using the Boolean connec-
tives, � and �. Further, say that a substitution � is variable-free if for all propo-
sitional variables pi , �.pi / D Ai for some variable-free formula Ai . In what fol-
lows we will make use of the fact that the distinguishing formulas Dx above are all
variable-free formulas.

Consider now the following function f from }.Wn/ to variable-free formulas:

f .X/ D
_
¹Dx j x 2 Xº:

Lemma 3.5 For all valuations V we have the following for all formulas A and
points x 2 Wn:

hLn; V i ˆx A if and only if hLn; V i ˆx �f .A/;

where �f .pi / D f .V .pi //.

Proof By induction upon the complexity of A, the only case of interest being the
basis case, where A D pi . We show the following:

hLn; V i ˆx pi ” hLn; V i ˆx �f .pi /:

For the “)” direction, suppose that hLn; V i ˆx pi . By the construction of �f
this means that �f .pi / D �f .V .pi // D f .V .pi / n ¹xº/ _ Dx . Since, for all
y, hLn; V i ˆx Dy iff x D y, it follows that hLn; V i ˆx Dx and hence that
hLn; V i ˆx �f .pi /.

For the “(” direction, suppose that hLn; V i ˆx �f .pi /. By the definition
of �f this means that hLn; V i ˆx f .V .pi //. It is easy to see, though, that
hLn; V i ˆx f .X/ iff x 2 X , for all X � W . Consequently, it follows that
x 2 V.pi / and thus that hLn; V i ˆx pi as desired.

In particular, as �f .A/ is a variable-free formula, for all formulas A, its truth or fal-
sity at a point in a model does not depend upon V , giving us the following corollary.

Corollary 3.6 For all valuations V we have the following for all formulas A and
points x 2 Wn:

hLn; V i ˆx A if and only if Ln ˆx �f .A/;

where �f .pi / D f .V .pi //.

Corollary 3.7 If A is a nontheorem of Log.Ln/, then for some variable-free sub-
stitution � we have that �.A/ is a nontheorem of Log.Ln/.

Proof The proof follows from Corollary 3.6 and Proposition 3.1
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Let the formula An be defined as follows:^
0�j<nC2

�jA:

Lemma 3.8 (4) If A is a variable-free formula that is not valid in Ln, then :An is
valid on Ln.

Proof If Ln 6ˆ A, then there is some point y 2 Wn such that Ln 6ˆy A. Then
for any x 2 Wn, let j < n C 2 be such that Rjn.x/ D ¹yº. (The existence of such
a j is guaranteed by the fact that Rn is functional.) Then A is false at Rjn.x/, and
so Ln 6ˆx �jA, and thus Ln 6ˆ An. As this is so for all x 2 Wn, it follows that
Ln ˆ :An.

Theorem 3.9 For all n 2 Nat, Log.Ln/ is a Post-complete normal modal logic in
the language with a single propositional constant.

Proof Suppose, for a reductio, that there is a logic S which is a consistent proper
normal extension of Log.Ln/. Then there must be some formula A such that `S A

and °Log.Ln/ A. By Corollary 3.7 it follows that there is some variable-free substi-
tution � such that °Log.Ln/ �.A/. Thus there is a point-generated model on a frame
for Log.Ln/ which invalidates �.A/. By Proposition 3.1 it follows that Ln 6ˆ �.A/.
By Lemma 3.8 it follows that L ˆ :�.A/n, and thus `Log.Ln/ :�.A/n.

As `S A and S is closed under uniform substitution it follows that `S �.A/, and
hence as S is normal we have the following as a theorem of S:^

0�j<nC2

�j�.A/:

As S � Log.Ln/ it follows, though, that `S :.�.A/n/, contradicting the supposition
that S was consistent, and the result follows.

Corollary 3.10 There are denumerably many Post-complete normal modal logics
in the language with propositional constants.

Proof The proof follows directly from Theorems 3.4 and 3.9.

As mentioned above, all the logics Log.Ln/ are extensions of KD!� . This provides
an interesting contrast with KD!, which has KT! as its sole Post-complete normal ex-
tension, while, as shown above, KDŠ� has denumerably many Post-complete normal
extensions.

4 Conclusion

What we have shown above is that there are at least denumerably many Post-complete
normal modal logics in the language with propositional constants. Rather than telling
us something interesting about monomodal logics (properly speaking), though, this
is better thought of as telling us something interesting about a rather odd lattice of
bimodal logics. Typically when people talk about modal operators we implicitly
restrict attention to unary operators �, but this does not have to be so. For example,
in Goguadze [3]—drawing inspiration from Jónsson and Tarski’s work on Boolean
algebras with operators—polyadic modal operators are defined where the semantic
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interpretation of an n-ary modal operator �.p1; : : : ; pn/ is given in terms of an
.nC 1/-ary relation R� as follows:

M ˆx �.A1; : : : ; An/ ” for all v1; : : : ; vn
if R�xv1; : : : ; vn then M ˆvi

Ai for 1 � i � n:

In this setting a propositional constant corresponds to the limit case of a polyadic
modal operator, interpreted in terms of the world of evaluation being in a given set.
Now, of course, this new 0-place modal operator is not going to be normal, as it is
not going to satisfy the 0-place version of necessitation—from the provability of A
infer �—as � in the logics under consideration here is not a theorem. That simply
means that we have a 0-place non-normal modal operator on our hands, not that we
do not have a modal operator at all.5

To more easily connect with the point made above that the language with a single
unary modal operator and a propositional constant used here is a bimodal language
in disguise, we can think of our propositional constant as a unary modal operator
which does not depend upon its argument. This would mean that, for example,
the constant-masquerading-as-unary-modal-operator �� would validate the schema
��A$ ��B for all formulas A and B . Again, as mentioned above, this new opera-
tor �� is not going to be normal, as we can have ` A without having ` ��A— this
is really just saying that � is a theorem.

We end by presenting the following open problem.

Open Problem 4.1 Are there nondenumerably many Post-complete normal
modal logics in the language L�?

Update. Since the submission of this paper several people acquainted with its con-
tents notified the author that there are indeed nondenumerably many Post-complete
normal modal logics in the present language. Model-theoretic proofs of the stronger
result were supplied by Robert Goldblatt and by a referee for this journal, and an
algebraic proof was sketched by Tomasz Kowalski. Rather than reproducing any
of their arguments here, the author has opted for simply notifying the reader of the
stronger result and leaving those mentioned (and perhaps others) free to publish their
proofs.

Notes

1. We will assume that the reader is familiar with modal logic, any unexplained terminology
being taken from Chellas [2]. Logics here will be thought of as sets of formulas, but
rather than writing A 2 S to denote that A is a theorem of S, we will instead use the
more perspicuous notation `S A.

2. Segerberg has written extensively on Post-completeness in modal logics. The inter-
ested reader is referred to Segerberg [9], [10], and [11], as well as to Makinson [7]
and Kohn [6].

3. This distinction is recorded in Williamson [12] by referring to the logics which we will
call Post-complete normal modal logics, as maximal consistent normal modal logics.
This seems like a mistake to the present author, making it seem as if we are applying
different concepts rather than applying the same concept in different settings.
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4. The following lemma was suggested to me by Robert Goldblatt to patch an error in a
previous proof of Theorem 3.9, as well as being independently suggested to me by Lloyd
Humberstone for reasons of elegance.

5. This observation lends some credence to the complaints sometimes raised against An-
derson [1] that we are smuggling in all the relevant deontic content with our constant for
the sanction. Nowell-Smith and Lemmon [8, p. 291] make the point that the Anderso-
nian reduction will only work if our constant has deontic content or represents a “deontic
concept.” As it happens, the sanction constant S is just a strange deontic modal operator,
and so what the Anderson result shows is that we can define a unary deontic modal op-
erator in terms of a unary alethic modal operator and a 0-place deontic modal operator.
An interesting result, to be sure, but hardly a reduction of the deontic modalities to the
alethic. Of course, if this kind of reduction is executed so as to avoid other problems,
this objection is not so clear cut (cf. Humberstone [4]).
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