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Primitive Recursion and the
Chain Antichain Principle

Alexander P. Kreuzer

Abstract Let the chain antichain principle (CAC) be the statement that each
partial order on N possesses an infinite chain or an infinite antichain. Chong,
Slaman, and Yang recently proved using forcing over nonstandard models of
arithmetic that CAC is …11-conservative over RCA0 C …01-CP and so in par-
ticular that CAC does not imply †02-induction. We provide here a different
purely syntactical and constructive proof of the statement that CAC (even to-
gether with WKL) does not imply †02-induction. In detail we show using a
refinement of Howard’s ordinal analysis of bar recursion that WKL!0 C CAC is
…02-conservative over PRA and that one can extract primitive recursive realiz-
ers for such statements. Moreover, our proof is finitary in the sense of Hilbert’s
program. CAC implies that every sequence of R has a monotone subsequence.
This Bolzano-Weierstraß-like principle is commonly used in proofs. Our result
makes it possible to extract primitive recursive terms from such proofs. We also
discuss the Erdős-Moser principle, which—taken together with CAC—is equiv-
alent to RT22.

1 Introduction

Let the chain antichain principle (CAC) be the statement that every partial order on
N contains either an infinite chain or an infinite antichain. This principle is a conse-
quence of Ramsey’s theorem for pairs (RT22). The principle RT22 states that for each
coloring of unordered pairs of N there exists an infinite subset of N on which this
coloring is constant. The chain antichain principle has been studied in the reverse
mathematics of partial orders. Lately it has received much attention in the context of
the classification of RT22 and in particular in the context of determining the strength
of the first-order consequences of RT22. It is known that RT22 implies…0

1-CP and that
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Moser principle
© 2012 by University of Notre Dame 10.1215/00294527-1715716

245

http://www.nd.edu/~ndjfl
http://www.ams.org/mathscinet/msc/msc2010.html
http://www.nd.edu
http://dx.doi.org/10.1215/00294527-1715716


246 A. P. Kreuzer

its first-order consequences are implied by†02-IA but it is not known where between
these principles the first-order consequences of RT22 lie; see [4, 11]. Chong, Slaman,
Yang in [5] recently proved that CAC is…1

1-conservative over RCA0C…0
1-CP which

implies that CAC does not yield †02-induction. This result is remarkable since forc-
ing over !-models—which is usually used to obtain such conservativity results—is
not applicable to obtain conservativity over …0

1-CP; see [11, §6]. Chong, Slaman,
and Yang use instead a forcing over nonstandard models of arithmetic. This result
raises the question whether one can extend it to obtain the conservativity of RT22 or at
least gain insights in the properties of principles that do imply…0

1-CP but not†02-IA
like CAC.

We provide here a different, purely syntactical and constructive proof of the fact
that CAC does not imply†02-induction. We show that CAC even together with WKL
is …0

2-conservative over PRA. Furthermore, we provide a method for the extraction
of primitive recursive realizing functionals for sentences of the form 8f 9yAqf.f; y/

that are provable using CAC C WKL. (This means that we extract a primitive
recursive functional ' with 8fAqf.f; 'f /.) Our proof is based on the techniques
from [21], where we developed a method to extract terms of Ackermann type from
proofs using RT22 and primitive recursive terms from proofs using the cohesive prin-
ciple and the atomic model theorem.

In [21] we introduced the notion proofwise low. Roughly speaking, this notion
covers the computational content of low2-ness but also keeps track of the induction
used in the proof. A …1

2-principle P of the form

8X9YP 0.X; Y /

is proofwise low over a system, say WKL!0 , if for each term ' a term � exists such
that

WKL!0 ` 8X
�
…0
1-CA.�X/! 9Y

�
P 0.X; Y / ^ …0

1-CA.'XY /
��
: (1)

Here …0
1-CA.t/ W� 9f 8n .f .n/ D 0$ 8xt.n; x/ D 0/ and the ! superscript at

WKL0 indicates that we use the finite type variant of WKL0. This means that WKL!0
is not sorted into two types for N and subsets of N, but into countable many types
for N, NN , NNN

and so on. This system is conservative over WKL0; see [18].
If one takes for ' in (1) the characteristic term of universal Turing predicate

ˆ
X;Y
n .n/" and notes that one can take for � also the Turing predicate ˆXn .n/", one

has that in a degree d � X 0—this takes account of WKL—one can compute Y and
Y 0. From this follows that P has low2 solutions. In [21] we showed that for princi-
ples P of the form (1) where P 0 is …0

3 and which are proofwise low over WKL!0 the
system WKL!0 C†

0
2-IAC P is …0

3-conservative over RCA!0 C†
0
2-IA and that one

can extract realizing terms from …0
2 sentences. We, moreover, showed that RT22 is

proofwise low over a refinement of WKL!0 for which this result still holds. This pro-
vides a different purely proof-theoretic proof of the well-known results from Cholak,
Jockusch, and Slaman in [4].

Model-theoretically speaking the rough idea behind this proof is the following.
Take a first-order model N D hN;C; � ; 0; 1i that satisfies †2-induction. We would
like to show that one could extend N to an L2-model of RT22 and †02-induction.
For this consider the extension of N to an L2-model M D hN;X;C; � ; 0; 1i by all
�2-definable sets of N . This model satisfies�01-CA and, since†1.�2/-induction is
equivalent to †2-induction without parameters, also †01-IA. Thus M ˆ RCA0. The
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model M can be extended to a model of WKL0; see [24, Theorem IX.2.1]. We will
also call this model M.

Now consider the extension of N to another L2-model M0 D hN;X0;C; � ; 0; 1i
where X0 D fX � N j X 0 2 Xg. Clearly, M0 �M. By the lowness property (1) for
X D ; and ' D ˆ

X;Y
n .n/" interpreted in M the set X0 is closed under applications

of P. Hence M0 ˆ P, which is in our case M0 ˆ RT22. The model M0 also satisfies
†02-induction and �01-CA for formulas containing not more than one set parameter.
Unfortunately, one cannot show that for two sets X; Y 2 X0 that X ˚ Y 2 X0.
Therefore M0 ² RCA0.

In [21] we did a detailed bookkeeping of the uses of comprehension and the
parameters that are involved along a proof of a 89-statement in a system like
WKL!0 C RT22. In order to have access to this information we first applied a func-
tional interpretation. With this we could circumvent the problem occurring in the
sketch.

Let RCA�0 be RCA0 where †01-IA is replaced by QF-IA and the exponential
function (see [24, X.4]) and let RCA!0

� be the corresponding finite type variant.
In [21] we also showed that for principles P which are proofwise low over WKL!0

�

(under an additional uniformity assumption) the system WKL!0 C …0
1-CP C P is

…0
3-conservative over RCA!0 . (In [21] this is called proofwise low in sequence.)

This is sufficient for the cohesive principle (COH). However, for most principles
this uniformity assumption does not hold. In particular, RT22 and CAC do not satisfy
it; see Proposition 47 in [21].

In this paper we close this gap and show that for each principle P which is proof-
wise low over WKL!0

� the system WKL!0 C …
0
1-CP C P is …0

3-conservative over
RCA!0 and that one can extract primitive recursive realizing terms.

We furthermore show that CAC is proofwise low over WKL!0
� and therefore that

the previous result applies to it. With this we can analyze proofs containing CAC
and extract primitive recursive realizers. This is also interesting from the perspec-
tive of proof mining, since CAC implies the statement that each sequence of real
numbers contains a monotone subsequence, which is commonly used in everyday
mathematics.

We start by refining Howard’s ordinal analysis of the bar recursor B0;1; see [14].
The bar recursor B0;1 solves the functional interpretation of …0

1-CA (and hence—
by iteration—of …0

1-CA). More precisely, an instance of …0
1-CA has at most the

effect on the growth of functions as an application of B0;1 has. Howard’s ordinal
analysis shows, for instance, that an application of B0;1 to primitive recursive terms
(in the sense of Kleene) yields only functions in T1 (i.e., of Ackermann type). This
corresponds to the fact that with †01-IA and an instance of …0

1-CA one can prove
each instance of †02-IA and hence the totality of Ackermann function but not the
totality of any function on a higher level of the fast growing hierarchy (e.g., functions
provably total with †03-IA but not with †02-IA).

We show that applications of B0;1 to terms in RCA!0
� (actually even in G1A!)

yield only primitive recursive functions. Crucial for this analysis is the structure
of higher-order functionals of RCA!0

�. Most important is that this system does not
contain a function iterator constant (which in this system is equivalent to †01-IA).
Our refined ordinal analysis mentioned above corresponds to the fact that QF-IA
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plus an instance of …0
1-CA implies each instance of †01-IA and hence the totality of

all primitive recursive functions but not of the Ackermann function.
Using this refinement of Howard’s ordinal analysis of B0;1 we can improve a

result from [21] and show that for each principle P which is proofwise low over
WKL!0

� the system WKL!0 C…
0
1-CPC P is …0

3-conservative over RCA!0 and that
one can extract primitive recursive realizing terms.

We apply these results to CAC, which lies strictly in between RT22 and COH C
…0
1-CP, and show that this principle is …0

3-conservative over RCA!0 and hence does
not lead to more than primitive recursive growth. The proof of the lowness of CAC is
based on ideas from Chong, Slaman, and Yang. However, we will interpret …0

1-CP
using …0

1-CA and hence are able to eliminate it at the end. Therefore, we do not
need any nonstandard techniques. More importantly and in contrast to the proof of
Chong, Slaman, and Yang our proof is finitary in the sense of Hilbert’s program.

Compared to their result ours is, on the one hand, weaker in the sense that we only
obtain…0

3-conservativity not full…1
1-conservativity (strictly speaking we also obtain

conservativity for sentences of the form 8f 9yA.f; y/, where f 2 NN and y 2 N
and A quantifier free). On the other hand, our result is stronger since it, additionally,
allows term extraction and the simultaneous treatment of WKL. Conservativity for
…0
3 sentences is optimal for our approach since we eliminate …0

1-CP and there are
†03 consequences of…0

1-CP which are not provable in RCA0; see [1]. Moreover, our
conservativity is obtained over a system containing all primitive recursive functionals
(in the sense of Kleene) and hence many more statements than in RCA0 are quantifier
free.

The paper is organized as follows. First we give a brief introduction into the
logical systems we use. In Section 2 we refine Howard’s ordinal analysis of bar re-
cursion. In Section 3 we use this result to refine our techniques from [21] and in
Section 4 we show that CAC is proofwise low over a suitable system not containing
†01-induction and conclude that CAC is …0

3-conservative over RCA!0 . In Appen-
dix A we discus the Erdős-Moser principle. This principle is the counterpart to CAC
in the sense that RT22 splits into those two principles.

Logical systems We will work in fragments of Heyting and Peano arithmetic in all
finite types T. The set of all finite types is defined to be the smallest set that satisfies

0 2 T; �; � 2 T) �.�/ 2 T:

The type 0 denotes the type of natural numbers and the type �.�/ denotes the type of
functions from � to � . The type 0.0/ is abbreviated by 1 the type 0.0.0// by 2. The
degree of a type is defined by

deg.0/ WD 0; deg.�.�// WD max.deg.�/; deg.�/C 1/:

The type of a variable will sometimes be written as superscript.
The systems RCA!0 , RCA!0

� are the extensions of RCA0, respectively, RCA�0 to
all finite types. For a detailed definition see [18].

The Grzegorczyk arithmetic in all finite types G1A! is defined to be the system
that includes �-abstraction, each branch of the Ackermann function (but not the Ack-
ermann function), bounded search, bounded recursion, and quantifier-free induction.
Since this system contains each branch of the Ackermann function it contains every
primitive recursive function but it does not contain unbounded primitive recursion
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itself nor unbounded recursors (and hence no function iterator). The closed terms of
G1A! will be called G1R! .

The system 2WE-PA!� is equivalent to G1A! plus†01-IA and primitive recursion
(of type 0); for a detailed definition see, for instance, [19, Section 3]. The systems
2WE-HA!�;G1A!i are the intuitionistic counterparts.

Note that 2WE-PA!� and G1A! do not satisfy full extensionality. The different
variants of extensionality are important in [21] and in the extension of the results
from there in Section 3 of this paper. We do not discuss them here and refer the
reader to [21, Section 2]. These systems do not satisfy the deduction theorem (this
is a consequence of the restricted form for extensionality used). To indicate that an
axiom is an implicative assumption we use ˚, for example, G1A! ˚WKL ` A
means G1A! `WKL! A.

Let QF-AC be the schema

8x9yAqf.x; y/! 9f 8xAqf.x; f .x//:

RCA!0 can be embedded into 2WE-PA!� C QF-AC and RCA!0
� can be embed-

ded into G1A! C QF-AC. The systems with weak König’s lemma WKL!0
and WKL!0

� can be embedded into 2WE-PA!� C QF-AC ˚ WKL, respectively,
G1A! CQF-AC˚WKL. (Strictly speaking one has to eliminate the extensionality
first; see, for instance, [19, Section 10.4].)

A functional ' is provably continuous if there exists a function ˛' such that

8f 9n˛'. Nf n/ ¤ 0;

8f 8n
�
˛'. Nf n/ ¤ 0! '.f / D ˛'. Nf n/

:
� 1

�
:

The function ˛' is called associate. All closed terms except B in the system used in
this paper are provably continuous; see, for instance, [19, Proposition 3.57].

2 Ordinal Analysis of Bar Recursion of Terms in G1R!

The goal of this section is to show that a single application of the bar recursor B0;1 to
terms in G1R! does only lead to primitive recursive terms (in the sense of Kleene),
that is, terms with computational size < !! . We use here the definition of compu-
tational size from Howard; see [13, 14]. Roughly speaking, the computational size
of a term t of type 0 is an upper bound on the number of term reductions one has to
apply to obtain a numeral. The computational size of a higher type term t is defined
to be the computational size of t .H0; : : : ;Hn/whereHi are fresh variables such that
the term is of type 0. Like Howard, we assume that a term t has deg.t/ � 2 and is
semi-closed (i.e., contains only variables of degree 1 free) whenever we speak about
the computational size of a term t .

Recall that the bar recursor B0;1 is defined to be

B0;1AFGc WD1

(
Gc if AŒc� < lth c,
Fc.�u0:B0;1.AFG.c � hui/// otherwise,

where Œc� WD �i:.c/i .
Howard uses for technical reasons an extension of the term system. This extension

is conservative and hence does not lead to any problems. Since we are only going to
modify his analysis we will follow this approach.
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For each type 1 variable ˛ and terms c, t of type 0 add a new term f˛; c; tg to the
system. The term f˛; c; tg has the same type as B0;1A. The subterms of it consist
only of the subterms of t . The purpose of this extension is to bind all occurrences of
˛ in t . The term B0;1AFGc is equal to f˛; c; A˛gFGc and can also be contracted
to this term. The term f˛; c; tg satisfies following contractions:

f˛; c; tg contr f˛; c; t 0g if t contr t 0

f˛; c; igFGc contr Gc if i is numeral < lth.c/

f˛; c; tgFGc contr M

f˛; c; tgFG.c � hni/ contr f˛; c � hni; tgFG.c � hni/

where

M WD

(
Gc if t Œ�i:.c/i=˛� < lth.c/;
F c
�
�u:f˛; c; tgFG.c � hui/

�
otherwise.

(2)

For details we refer the reader to [14]. Note that f˛; c; tg is there defined for bar
recursors of arbitrary types and not only for B0;1.

We now state a modified version of Theorem 2.3 of [14]. The proof of the follow-
ing theorem differs from Howard’s proof only in using other ordinal estimates. The
result of it is more suitable for terms which have finite computational size because
it shows in this case that the resulting term has computational size < !! , whereas
in Howard’s theorem the computational size is always � !! . For parameters which
have computational size of an infinite ordinal Howard’s theorem yields better results.

Theorem 2.1 Let F;G and t have computational sizes f; g and size.t/. Then the
term f˛; c; tgFGc has computational size 2gCf 4h, where h D ! C !size.t/C !.

Proof We assume that f; g � 1. Like Howard, we say for a term f˛; d; sg that the
sequence d is m-critical in s if the term to be contracted in s is of the form ˛m and
m � lth.d/. We define ord.˛; d; s/ to be !C!size.s/C1 if d is not critical in s and s
is not a numeral. If d ism-critical we let ord.˛; d; s/ D !C!size.s/Cm�lth.d/C3.
If s is a numeral n, we let ord.˛; d; s/ D ! C .n :� lth.d//C 2.

Like in [14, Theorem 2.3] we prove by transfinite induction on b D ord.˛; c; t/
that f˛; c; tgFGc has computational size 2gCf 4b .

We consider the following cases:

Case 1 If t is not a numeral and c is not critical then executing a computation step
reduces t to t 0 such that size.t 0/ < size.t/ and hence ord.˛; c; t 0/ < ord.˛; c; t/ and
so 2gCf 4 ord.˛;c;t 0/ < 2gCf 4b .

Case 2 If t is a numeral that is < lth.c/ then f˛; c; tgFGc reduces to Gc which has
computation size g � 2g < 2gCf 4b .

Case 3 The cases where c is critical or t is a numeral� lth.c/ remain. We treat here
at first the former case; the latter will follow from a slight modification of this.

We can reduce f˛; c; tgFGc to M from (2) in one step. For the case distinction
in M we have to compute t Œ�i:.c/i=˛�. By Theorem 2.1 from [14] we can compute
it in !size.t/ steps. By finitely many steps j we then arrive at either

Gc or Fc
�
�u:f˛; c; tgFG.c � hui/

�„ ƒ‚ …
M2

:
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In the case of Gc additionally g more computation steps are needed. In total this
yields

g C j C !size.t/C 1„ ƒ‚ …
<b

< 2gCf 4b : (3)

In the case of M2 we reduce

�u:f˛; c; tgFG.c � hui/x to f˛; c � hni; tgFG.c � hni/

in 3 steps. Let a D ord.˛; c � hni; t /. By definition of ord we have a < b. By
induction hypothesis f˛; c �hni; tgFG.c �hni/ has computational size 2gCf 4a. The
term c has computational size ! � 2gCf 4a. Together with Theorem 2.1 from [14]
this shows that M2 has computation size

.2gCf 4a C 3/f � .2gCf 4a C 2gCf 4a/f .a � !/

� 2gCf 4aC1 � f

< 2gCf 4aC1 � 2fC1 .f < 2fC1/

D 2gCf 4aC1CfC1

� 2gCf 4aCf 3 .f � 1/

Together with the steps for the cases distinction we obtain the following computa-
tional size

.2gCf 4a C 3/f C j C !size.t/C 1„ ƒ‚ …
DWz

< 2gCf 4aCf 3 C 2zC1

� 2max.gCf 4aCf 3;zC1/
� 2

� 2gCf 4b

The last � holds since max.g C f 4a C f 3; z C 1/ < g C f 4b and therefore
max.g C f 4aC f 4; z C 1/C 1 � g C f 4b.

The case where t is a numeral� lth.c/ can be treated similarly. Here t Œ�i:.c/i=˛�
does not need to be computed. Hence, the equation (3) becomes

g C j C 1 < 2gCf 4b :

Since j C 1 < ! < b this is still valid. The rest of the argument remains the same
because also a < b holds.

This proves the theorem.

Remark 2.2 Define Bezem’s bar recursor BB0;1 to be

BB0;1AFGc WD1

(
Gc if AŒc�B < lth c,
Fc.�u0:BB0;1.AFG.c � hui/// otherwise,

where Œc�B WD

(
.c/i if i < lth .c/
.c/lth .c/ :�1 otherwise.

This bar recursor differs from Howard’s bar recursor only in the definition of Œ � �.
Hence, Theorem 2.1 also holds for BB0;1.

We will use this bar recursor in Theorem 2.5 below to define a majorant for B0;1.
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In the following we will treat B.B/0;1 as a constant satisfying the defining equations of
the bar recursor, but which is not provably total.

Theorem 2.3 The system 2WE-PA!� proves that for all semi-closed terms
A;F;G; c with provably finite computational size B0;1AFGc is total; that is,
there exists a term that provably satisfies the defining equations. The same holds for
BB0;1AFGc.

Proof Let f; g; a be the computational sizes of F;G;A. The proof of The-
orem 2.1 for f˛; c; A˛gFGc can be formalized in a system containing †01 �

LNP.2gDf 4.!C!aC!//. Since

2gCf 4.!C!aC!/ D 2!.aC2/ D !aC2 < !!

this is equivalent to †01-induction (over N); see [10, II.3.18] and also Theorem 18
in [21]. Hence the system 2WE-PA!� suffices.

The conservativity of Howard’s extended term system can also be formalized in
2WE-PA!�. Therefore this system also proves the totality of B0;1AFGc.

For the analysis of terms in G1R! we use the following property.

Proposition 2.4 ([16, Proposition 2.2.22], [19, Corollary 3.42]) Let �D0�k : : : �1
with deg.�i / � 1. For each term t� 2 G1R! there exists a term t�Œx

�1

1 ; : : : ; x
�k

k
�

such that
(i) t�Œx1; : : : ; xk � contains at most x1; : : : ; xk as free variables,

(ii) t�Œx1; : : : ; xk � is built up only from x1; : : : ; xk ; 0
0; A0; A1; : : : ; where Ai is

the i th branch of the Ackermann function,
(iii) G1A!i ` �x1; : : : ; xk :t

�Œx1; : : : ; xk � maj t .
In particular, every term t 2 G1R! of degree � 2 is provably majorized by a term
that has provably finite computational size.

Theorem 2.5 Let AŒx1�; F Œx�; GŒx�; cŒx� be terms of appropriated type such that
B0;1AFGc is well-formed and such that �x1:AŒx�; F Œx�; GŒx�; cŒx� 2 G1R! . Then
2WE-PA!� proves that f WD �x1:�y0:B0;1AFGcy is total. Moreover, this system
proves that there exists a majorant to f .

Proof First observe that the totality of the bar recursor in f can be proven using
…0
2-bar induction of type 0 (…0

2-BI0). (Use the bar induction to prove the state-
ment 8u9vB0;1AFGcu D v. For a definition of BI0 see, for instance, [21, Defi-
nition 14].) To make use of the properties described in Proposition 2.4 we will first
show that a majorant to f exists. With this we can bound the 9-quantifier in the bar
induction and obtain that…0

1-bar induction (…0
1-BI0) suffices. By Lemma 15 in [21]

this is included in 2WE-PA!�C QF-AC.
We now show that there exists majorant to f and that it is total. Let

B�0;1 WD �A;F;G; c:B
B
0;1AFGGc ;

B�0;1 WD �A;F;G; c:.B
�
0;1AFGc/

M
; (4)

where

FG tf WD max.Gt; F tf.lth.t/ :�1//; fi .x/ WD f .max.i; x//

and .f /Mx WD max
y�x

f .x/:
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We have B�0;1 maj B0;1 provably in 2WE-PA!�CQF-AC; see Proposition 16 in [21]
and also [2]. In [21, Proposition 16] we use a different majorant but mutatis mutandis
the proof also shows that B�0;1 as defined in (4) majorizes B0;1.1

Applying Proposition 2.4 we obtain majorizing semi-closed termsA�; F �; G�; c�

for A;FG ; G; c with finite computational size.
Since B�0;1 is a specific application of BB0;1, we can apply Theorem 2.3 to

B�0;1A
�F �G�c� to obtain its totality. With this the totality of f and the existence of

a majorant is proven in the system 2WE-PA!�C QF-AC.
Since this statement is 89, the functional interpretation translates this proof into

a proof in 2WE-HA!�.

Corollary 2.6 The term B0;1AFGc where A;F;G; c are semi-closed terms of
G1A! is provably equal to a term in T0 (i.e., the fragment of Gödel’s T where the
recursor is restricted to recursion of type 0).

Proof Apply the functional interpretation (combined with a negative translation)
to the result of Theorem 2.5; see [19, Proposition 10.53]. The term extracted using
this satisfies the corollary.

This result can be used to reprove the following result from Parsons [23, Lemma 4].

Corollary 2.7 Let R1 be the recursor for type 1 objects; that is, R10f Gx D f x
and R1.n C 1/f Gx D G.R1nf G/nx, where x; n; f x are of type 0. (Note that
R1 cannot be reduced to primitive recursion, since G takes an element of NN as
first parameter.) Then the term R1nf G where G is a semi-closed term of G1A! is
provably equal to a term in T0.

Proof Corollary 2.6 and the fact that R1 is elementarily definable from B0;1.

3 Proofwise Low Relative to G1A!

In [21] we showed that principles P of the form

.P/W 8c19g1 8u1Pqf.c; g; u/„ ƒ‚ …
�WP.c;g/

; (5)

where Pqf is quantifier free, which are proofwise low relative to 2WE-PA!� C
QF-AC˚WKL are conservative over 2WE-PA!�C†02-IA for sentences of the form
8x19y0Aqf.x; y/.

We now show that for principles P which are proofwise low relative to G1A! C
QF-AC˚WKL the system 2WE-PA!�C QF-AC˚WKL˚ P is conservative over
2WE-HA!� for sentences of the form 8x19y0Aqf.x; y/. (Actually we only treated

the case of RT22 but mutatis mutandis this works for each principle of this form.) For
notation and a discussion of the techniques involved in this proof we refer the reader
to [21].

Let now P be a principle that is proofwise low over G1A! C QF-AC˚WKL (a
fortiori it is sufficient that P is proofwise low over WKL!0

� since this system can be
embedded into the other). This means we have for each provably continuous term '

a provably continuous term � such that

G1A! C QF-AC˚WKL ` 8c
�
…0
1-CA.�c/! 9g

�
P.c; g/ ^ …0

1-CA.'cg/
��
:
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A functional interpretation of this statement yields

G1A!i ˚ .B/ `

8c8U8f�8X' ; Y'9x� ; y�9g9f'

��
…0
1-cCA.�f /

�
qf.f� ; x� ; y�/

!
�
P.c; g; Ugf'/ ^ …

0
1-cCA.'fg/

�
qf.f' ; X'gf' ; Y'gf'//

�
; (6)

and that there exist terms in G1R! realizing x� ; y� ; g; f' ; cf. to Theorem 49 in [21].
Using (6) in the proof of Proposition 50 from [21] instead of Theorem 49 of [21]

we obtain a variant of Proposition 50 where 2WE-HA!� is replaced by G1A!i , RT22
is replaced by P and T0ŒR� is replaced by G1R! ŒR� (here R is now a solution
functional for PND). In the same way we obtained Corollary 51 from Proposition 50
in [21] we can extend the previous statement to terms in G1R! ŒR; R0; ˆ00� (which
is equal to T0ŒR; ˆ00�) but of course not to terms containing R1. As consequence we
obtain the following modification of Proposition 52 from [21].

Proposition 3.1 Let Aqf be a quantifier-free formula that contains only the shown
variables free and let P be a principle of the form (5) which is proofwise low over
G1A! C QF-AC˚WKL. If

1N-PA!�C QF-ACCWKLC P ` 8x19y0Aqf.x; y/

then one can find terms ty ; tu; tv; � 2 G1R! such that

G1A!i ˚ .B/ ` 8x
1
8f

��
…0
1-cCA.�x/

�
QF.f; tuf x; tvf x/! Aqf.x; tyf x/

�
:

Similarly to the discussion preceding Theorem 53 in [21], we interpret …0
1-cCA.�x/

with a single application of B0;1 (or in other words using a single application of the
rules of bar recursion). With this we obtain

2WE-HA!�˚ .B/C R-.B0;1/ ` 8x1Aqf.x; tx/;

where t 2 G1R! ŒB0;1;B� and t contains only a single application of B0;1 to semi-
closed terms AŒx�; F Œx�; GŒx�; cŒx� and R-.B0;1/ is the rule of B0;1 which states
that applications of B0;1 to semi-closed terms of G1R! exist. We strengthened
the verifying theory to 2WE-HA!� because we do not know whether one can show
without †01-IA that an application of B0;1 solves the functional interpretation of an
instance of …0

1-CA.
We now build a majorant t� of t . The application of B0;1 will be majorized like

in the proof of Theorem 2.5. By Proposition 16 in [21] and the fact that the theory
used in this proposition has a functional interpretation in 2WE-HA!�, we obtain that
B�0;1 applied to majorants of A;F;G; c majorizes B0;1AFGc. Hence we obtain

2WE-HA!�˚ .B/C R-.B0;1/ ` 8x19y � t�x Aqf.x; y/;

where t� 2 G1R! ŒB0;1� and t� contains only a single application of B0;1 to semi-
closed terms with finite computational size.

Applying bounded search we obtain a new realizer t 0 for y:

t 0x WD

(
minimal y � t�x with Aqf.x; y/, if such a y exists;
0 otherwise.
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Now using the ordinal analysis of B0;1 we obtain a term t 00 that is provably equal to
t 0 and that is definable using transfinite primitive recursion up to < !! and hence in
2WE-HA!�; see [10, II.3.18] and also [21, Theorem 18]. So that

2WE-HA!�˚ .B/ ` 8x1Aqf.x; t
00x/:

The principle .B/ may be eliminate from the system with a monotone functional
interpretation like in [21]; see [15], [19, Section 10.3]. We obtain

2WE-HA!� ` 8x1Aqf.x; t
00x/:

Combining this discussion with Proposition 3.1 we obtain the following theorem.

Theorem 3.2 Let Aqf.x
1; y0/ be a quantifier-free formula and P a principle of the

form (5) which is proofwise low over G1A! C QF-AC˚WKL. If

1N-PA!�C QF-ACCWKLC P ` 8x19y0Aqf.x; y/

then one can extract a term t 2 T0 such that

2WE-HA!� ` 8x1Aqf.x; tx/:

Together with elimination of extensionality (see [22], [19, Section 10.4], and also
[21, Proposition 3]) we obtain the following.

Corollary 3.3 If

1E-PA!�C QF-AC0;1 C QF-AC1;0 CWKLC P ` 8x19y0Aqf.x; y/

then one can extract a term t 2 T0 such that

2WE-HA!� ` 8x1Aqf.x; tx/:

Corollary 3.4 Let P be a principle of the form (5) that is proofwise low over
WKL!0

�. Then the system WKL!0 C P is conservative over RCA!0 for sentences of
the form 8x19y0Aqf.x; y/. Moreover, one can extract from a proof of this state-
ment a term t 2 T0 realizing y (that is a primitive recursive functional in the
sense of Kleene). In particular, WKL!0 C P is …0

3-conservative over RCA!0 and
…0
2-conservative over PRA.

Proof The first part of this corollary is just a reformulation of the previous
corollary. The second part follows from the observation that over RCA!0 each
…0
3-sentence is equivalent to a sentence of the form 8x19y0Aqf.x; y/. The last

statement follows from the fact that RCA!0 is …0
2-conservative over PRA.

4 Chain Antichain Principle

Let the chain antichain principle (CAC) be the principle that states that every partial
order on N has an infinite chain or antichain. For notational ease we assume here
that each (anti)chain is also ordered by the ordering of N. We formalize CAC in the
following way:

.CAC/W 8�P 9H
�
8u; v 2 H

�
u < v ! u �P v

�
_ 8u; v 2 H

�
u < v ! u �P v

�
_ 8u; v 2 H

�
u < v ! u jP v

��
;
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where the set H is given as strictly increasing enumeration; that is, H is a func-
tion such that Hn is the nth element of H .2 The partial order P is given by its
characteristic function �P . The relations �P , jP are defined to be

u �P v W�

8̂<̂
:�P .u; v/ D 0

The relation .Œ0; hu; vi�;�/ with
x � y W� Œhx; yi � hu; vi^�P .x; y/D0�
defines a partial order,

? otherwise,

u jP v W�: .u �P v/ ^ : .v �P u/ :

(We assume here that the paring hx; yi is monotone in both components.) With this
any function �P describes a partial order.

Hirschfeldt and Shore observed in [11] that CAC splits into the cohesive principle
and the, so called, stable chain antichain principle. The cohesive principle (COH) is
the statement that for each sequence .Ri /i2N if subsets of N there exists an infinite
cohesive set X , that is, a set X satisfying

8i
�
X �� Ri _ X �

� Ri
�
;

where X �� Y W� .X n Y is finite/. The stable chain antichain principle (SCAC)
is the restriction of CAC to stable partial ordering, where we call a partial ordering
�P stable if one of the following holds

1. For all x either x �P y for all but finitely many y or x jP y for all but finitely
many y.

2. For all x either x �P y for all but finitely many y or x jP y for all but finitely
many y.

Remark 4.1 In [20] we showed that COHC…0
1-CP is equivalent to the variant of

the Bolzano-Weierstraß principle that states that every bounded sequence of R has
a—possibly slowly—converging subsequence.

The principle ADS, which is CAC restricted to linear orders, is equivalent to the
statement that every sequence in R has a monotone subsequence. If the sequence is
bounded then the monotone subsequence is a fortiori converging (possible slowly).
Hence ADS and CAC can be seen as generalizations of this variant of the Bolzano-
Weierstraß principle.

To see that ADS implies that the sequence .xn/n2N � R has a monotone sub-
sequence one has take some care since equality on R and hence also �R is not
decidable. To prove the statement one has to make the following case distinction.
Either .xn/ has a constant subsequence or there exists a subsequence of pairwise
different elements. The solution to the former case is trivial and the latter case can
be solved by applying ADS since �R coincides with <R on this sequence and is
therefore decidable.

For the other direction it suffices to show that each countable linear ordering can
be embedded into a subset of Q. This follows from the construction described in the
proof of [8, Theorem 2.1] and by noting that it can be carried out in RCA0. Here it
is also interesting to mention that de Smet and Weiermann did a fine grain analysis
of a density variant of this principle restricted to natural numbers in [6, 7].

We will show in this section that CAC is proofwise low over G1A! C
QF-AC ˚ WKL and hence that Theorem 3.2 and the Corollaries 3.3 and 3.4
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apply to it. This strengthens our result from [21], where we were only able to handle
COH.

Our proof is based on [5]. The nonstandard construction is replaced by the fol-
lowing argument.

4.1 Building infinite sets without †0
1
-induction Call a set X

(i) infinite or unbounded if

8k9n > kn 2 X

and
(ii) strictly increasingly enumerable if there

exists a strictly monotone function f such that rng.f / D X:

It is clear that a strictly increasingly enumerable set is also unbounded. How-
ever, to construct a strictly increasing enumeration for an unbounded set in general
requires †01-IA (e.g., RCA0 or 2WE-HA!�C QF-AC).

We will now discuss a way to build unbounded sets in a system that does not
contain †01-IA. Let f be a function that maps (codes of) finite subsets of N into
(codes of) finite subsets of N and that is monotone in the sense of

x ¨ f .x/; f .x/ n x � Œmax.x/C 1;1Œ : (7)

Define now X � N by

X WD
[
n2N

f n.;/;

where f n is the nth iteration of f .
The properties of f ensure that

n 2 X  ! n 2 f nC1.;/:

Hence, the function g.n/ WD
�
nth element of f nC1.;/

�
defines a strictly increasing

enumeration of X that is definable, for instance, in RCA0 or 2WE-HA!�C QF-AC
(if f is).

In a system without†01-IA (e.g., RCA�0 or G1A!CQF-AC) it is a priori not clear
whether X is well defined since one cannot build the nth iterate of the unbounded
function f .

To define a set that is provably equal to X let

Qfk.x/ WD

(
f .x/ if f .x/ � Œ0; kŒ,
x otherwise.

The function Qfk is bounded and therefore can be iterated using bounded recursion.
For Qfk we have the following equivalence

n 2 X  ! n 2 f nC1.;/  ! n 2 f
�
. Qfn/

n.;/
�
:

To see that the last equivalence holds let m0 be the least m � n C 1 with
f m.;/ \ Œn;1Œ ¤ ;. By (7) we have f .m

0 :�1/.;/ � Œ0; nŒ and hence . Qfn/n.;/ D
f .m

0 :�1/.;/ and f . Qfn/n.;/ D f m
0

.;/.
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Therefore, we can define that characteristic function �X by

�X .n/ WD

(
0 if n 2 f

�
. Qfn/

n.;/
�

,

1 otherwise.

To show now that X is unbounded assume for a contradiction that X is bounded
by b. By the definition of X we then have that . QfbC1/n.;/ D f n.;/. Hence f
is also bounded (at least along the iteration). Therefore bounded recursion suffices
to iterate the function and the strictly increasing enumeration g of the set X can be
defined. But this contradicts the boundedness of X . Hence X is unbounded.

4.2 Proofwise low We will use the ideas of the preceding section to show that CAC
is proofwise low over G1A! C QF-AC˚WKL. To apply these ideas let uCAC be
the CAC with the exception that it only require an unbounded (anti)chain; that is,

.uCAC/W 8�P 9H D �H ; fH
�
8nmax.fH .n/; n/ 2 H

^

�
8u; v 2 H

�
u < v ! u �P v

�
_ 8u; v 2 H

�
u < v ! u �P v

�
_ 8u; v 2 H

�
u < v ! u jP v

���
:

HereH is given as a characteristic function �H plus a witness for the unboundedness
fH (i.e., fH .n/ � n and its range is included in H ). Let uSCAC be the restriction
of uCAC to stable partial orderings.

For a partial order �P define

A� WD f x j x � y for all but finitely many y g ;

where � 2 f�P ; �P ; jP g. If �P is stable then these sets are disjoint and either
A�P

[ AjP D N or A�P
[ AjP D N. Hence these sets are �02. One can easily es-

tablish that each infinite chain, antichain is a subset of A�P
, respectively, A�P

, AjP .
We will write in the following y �fin X for y is a code for a finite subset of X

and y v X for y is an initial segment of the strictly increasing enumeration of the
set X .

Proposition 4.2 For every closed term ' there exists a closed term � such that

G1A! C QF-AC

` 8�P
�
…0
1-CA.��P /! 9H;fH

�
uSCAC.�P;H/ ^ …

0
1-CA.'�PHfH /

��
:

Here uSCAC.�P ;H; fH ) expresses that H;fH is a solution to uSCAC and the
partial order described by �P . In other words, uSCAC is proofwise low over
G1A! C QF-AC.

Proof Let �P be the characteristic function of a stable partial ordering. Without
loss of generality we assume that (1) from the definition of stability holds; the case
(2) can be handle analogously.

We will start with the following claim.

Claim: Let Y be an infinite†01-set whose characteristic function is given by a term t

which contains only �P and type 0 variables free. This means n 2 Y iff 9xtnx D 0.
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Then Y either has an element in A�P
or one can define an infinite antichain that

solves the lemma.

Proof of the Claim: Suppose that Y does not contain an element of A�P
, that is,

Y � AjP . By an instance of …0
1-CP (which follows from the instance of …0

1-CA)
one can prove that

8y �fin Y .y is an antichain! 9z 2 Y y [ fzg is an antichain/ :

By definition this is equivalent to

8y8x .8i < lth.y/ t.y/i .x/i D 0 ^ y is an antichain/

! 9z; x0
�
tzx0 D 0 ^ y [ fzg is an antichain

�
:

Now let f be the choice function that chooses the minimal z (and x0) extending
y (and x). Iterating f using an instance of †01-IA (which also follows from the
instance of …0

1-CA) yields an infinite antichain H . The instance of comprehension
…0
1-CA.'�PH/ can be reduced to the imposed instance of comprehension using the

following equivalence

8n
�
8k'�PHnk $ 8k8h v H˛'�P

.h; n; k/ � 1
�

and the fact that h v H can be expressed using a quantifier-free formula depending
only on t; h. (This formula just expresses that h; x are the result of the iteration of f .)
The function ˛'�P

.h; n; k/ here is an associate to the function �H:'�PHnk. For
notational ease we assume here that H is given as strictly increasing enumeration.
Since one can define from this a characteristic function for H and fH by a term in
G1A! this does not lead to any problems. This proves the claim.

We assume from now on that there is no †01-set Y � AjP given by such a term t .
Otherwise we would be done. The assumption implies that A�P

has infinitely many
elements. (If not the set Y WD

�
max.A�P

/C 1;1
�

would be an infinite subset
of AjP which could be easily described by a term.) We will show that we can con-
struct an unbounded �P -chain H � A�P

for which we can prove the instance of
…0
1-CA.
First we define a function g1.n; h/ that for a given n extends a given �P -chain

h �fin A�P
to a finite �P -chain h0 �fin A�P

such that for all �P -chains X with
h0 v X and X � A�P

the following holds:

8n0 < n
�
8k '�PXn

0k D 0$ 8k ˛'�P
.h0; n0; k/ � 1

�
: (8)

In other words, we extend h to h0 such that the instance of comprehension
…0
1-CA.'�PH/ is decided up to the index n.
Define for each D � Œ0; n� the set

SD;h WD fh
0
j h0 is a �P -chain ^ h v h0 ^

ˇ̌
h0
ˇ̌
<1

^ 8n0 2 D9k˛'�P
.h0; n0; k/ > 1g:

The elements of this set are those extensions of h which make the comprehension
…0
1-CA.'�PH/ for the indices in D false. This set is †01 and can be defined by a

fixed term containing only the parameters �P ;D; h.
The statement that there is no extension of h in SD;h whose elements are in A�P

is
8y

�
y … SD;h \P fin.A�P

/
�
: (9)
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This formula is …0
2. We will show that there exists a †02 formula that is equivalent

and hence that the statement is �02.
Consider the set MD;h WD fmaxP .y/ j y 2 SD;hg. This set is also †01 and again

does only depend on �P and the type 0 objects D;h. (Recall that we assume that a
�P -chain is also ordered by < on N.) We will distinguish the following cases.

Case 1: The set MD;h is infinite. In this case there exists by the assumption and
the claim an element of MD;h that is also in A�P

. This means that there exists a
�P -chain y in SD;h whose maxP is in A�P

and hence the whole �P -chain is in
A�P . Therefore (9) fails.

Case 2: The set MD;h is finite. Each chain in SD;h contains only elements which
are �P x for some x 2MD;h. By stability for each x 2MD;h there are only finitely
many elements y with x �P y. Applying …0

1-CP to this yields that there are only
finitely elements y with 9x 2MD;hy �P x and hence that SD;h is finite.

In total (9) is equivalent to

9x
�
8y
�
y is �P -chain ^ maxP .y/ > x ! y … SD;h

�
^ 8y

�
y is �P -chain ^ maxP .y/ � x ! y … SD;h \P fin.A�P

/
��

where the second quantification over y can be bounded and hence (9) is �02.
Therefore an instance of �02-IA (which is provable from an instance of …0

1-CA,
see [21, Lemma 10(iii)]) is sufficient to prove that there exists a maximalD0 � Œ0; n�
for which SD;h \P fin.A�P

/ is not empty; that is,

9D0 � Œ0; n�9h0
�
h0 2 SD0;h \P fin.A�P

/

^ 8E
�
D0 � E � Œ0; n�! 8h0

�
h0 … SE;h \P fin.A�P

/
�� �
:

Since D0 is maximal each h0 2 SD0;h \P fin.A�P
/ satisfies (8).

Hence taking for g1.n; h/ the function that chooses for h and n an h0 2 SD0;h

\ P fin.A�P
/ for this maximal D0 has the desired properties. This choice function

exists by an instance of †02-AC which is also provable from an instance of …0
1-CA.

Now define g2 to be a function which extends each chain h �fin A�P
by one

element in A�P
, for instance,

g2.h/ WD h [
˚

minfx 2 A�P
j max.h/ < x ^ maxP .h \ A�P

/ �P xg
	
:

This function exists also by an instance of †02-AC.
The function f .h/ WD g2.g1.max.h/; h// now satisfies the properties in (7) on

page 257. By the discussion in the previous section the set H WD
S
n f

n.;/ is
definable in this system and provably unbounded. The values of f are finite �P -
chains that are included in A�P

. Hence H defines an unbounded �P -chain.
Furthermore, one can prove …0

1-CA.'�PH/: To decide whether

8k'�PHnk D 0 (10)

holds for an n take an element x 2 H with x > n. By the unboundedness this
exists. In particular, there exists a smallestm such that x 2 f m.;/. For this we have
f m.;/ D f

�
. Qfx/

x.;/
�

. By the definition g1 and (8) we have that (10) is true if
and only if

8k˛'�P
.g1.jf

m.;/j; f m.;//; n; k/ � 1:
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(We assume here again that H is given as strictly increasing enumeration.) This is
again by the definition of g1 true if and only if

8k˛'�P
.f mC1.;/; n; k/ � 1;

which is the same as

8k˛'�P

�
ff

�
. Qfx/

x.;/
�
; n; k

�
� 1

and thus can be computed using the imposed instance of comprehension.
The different instances of …0

1-CA can be coded together into a term �; see [21,
Remark 11] and for a reference [17]. This solves the proposition.

Corollary 4.3 CAC is proofwise low over G1A! C QF-AC˚WKL.

Proof Lemma 11 from [21] for n D 0 shows that one can iterate fH in the results
of Proposition 4.2 while retaining the instance of comprehension. With this one
can define a strictly increasing enumeration of H and hence show that SCAC is
proofwise low over G1A! C QF-AC.

The result follows from the fact that COH is proofwise low of G1A! C
QF-AC˚WKL ([21, Corollary 32]) and from noting that the proof

SCACC COH! CAC

in [11, Proposition 3.7] can be carried out in G1A! while retaining the proofwise
low property.

Theorem 4.4 The system

2WE-PA!�C QF-AC˚WKL˚ CAC

is conservative over 2WE-HA!� for sentences of the form 8x19y0Aqf.x; y/. More-
over, one can extract a primitive recursive realizing term t Œx� for y. In particular,

WKL!0 C CAC

is conservative for sentences of the from 8x19y0Aqf.x; y/ and a fortiori…0
3-conser-

vative over RCA!0 .

Proof Corollary 4.3 and Corollaries 3.3, 3.4.

This result raises the question whether one can extend it and show that RT22 is proof-
wise low over a system like WKL!0

� or any other system without †01-induction and
thus can show that RT22 does not imply †02-induction.

Let the Erdős-Moser principle (EM) be the principle that states that every tourna-
ment on N contains an infinite transitive subgraph. A tournament is a directed graph
hN;!i such that for each pair of nodes x; y either x ! y or x  y. The principle
RT22 is equivalent to CACCEM (in fact, even to ADSCEM); see Appendix A. Corol-
lary 4.3 shows that it is sufficient to show that EM is proofwise low over a system
without †01-induction in order to show that RT22 does not imply †02-induction.
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Appendix A The Erdős-Moser Principle

A tournament is a directed graph hE;!i such that for each pair of nodes x; y with
x ¤ y either x ! y or x  y but not both. The Erdős-Moser principle (EM) states
that each tournament on N contains an infinite transitive subtournament. It is easy
to see that EM follows from RT22 if one identifies the tournament with the following
2-coloring of pairs of N: For x < y let

c.fx; yg/ D 0 iff x ! y;

c.fx; yg/ D 1 iff x  y:
(11)

On any homogeneous set of c the relation ! is transitive. Hence RT22 yields an
infinite transitive subtournament.

In the other direction EM and ADS (the principle CAC restricted to linear or-
derings) imply RT22. To see this let for some coloring c the relation ! be defined
by (11). Using EM one finds an infinite subset on which! is a linear ordering. The
principle ADS yields an infinite!-chain. By definition c is constant on this chain.

The principle EM was introduced by Bovykin and Weiermann in [3]. They also
proved the above-stated equivalence.

We now give some lower bounds on the strength of EM.

Proposition A.1

RCA0 ` EM! …0
1-CP:

Proof We show that EM proves the infinite pigeonhole principle. The result fol-
lows from this by [12].

Let f WN ! n be coloring of N with n colors. We consider the following infinite
tournament. For x < y let

x ! y iff f .x/ D f .y/;

x  y iff f .x/ ¤ f .y/:

Applying EM yields an infinite set X on which ! is transitive. We claim that f
restricted to X eventually becomes constant. Suppose not; then

8k 2 X9x 2 X .k < x ^ f .k/ ¤ f .x//

which is by definition of!

8k 2 X9x 2 X .k < x ^ k  x/ :

Now applying †01-induction we obtain nC 1 elements x1; : : : ; xnC1 2 X with

x1 < x2 < � � � < xnC1 and x1  x2  � � �  xnC1:

By transitivity and definition of! we obtain that f .xi / are pairwise different. But
this contradicts the fact that f is bounded by n.

The infinite pigeonhole principle for f and hence the proposition follows from
this.

Proposition A.2 There exists a computable tournament hN;!i that has no low
infinite transitive subtournament, that is, no set X such that ! is transitive on X
and X 0 �T 00.
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Proof By [9] there exists a computable stable 2-coloring of pairs c such that there
is no low homogeneous set. Let ! be the corresponding tournament as described
by (11).

Suppose now that there is a low set X on which! is transitive and hence a linear
ordering. Since c is stable this ordering is also stable. By Theorem 2.11 of [11] there
exists an infinite chain Y that is low relative to X and hence low. Since on this chain
the coloring c is homogeneous, this contradict the choice of c.
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Notes

1. We do not use here the majorant of B0;1 as defined in [19] or [21] which would build in-
ternally paths through the tree A which are not monotone. Before applying the majorant
A� to such paths they have to be made monotone such that they are majorants. But this
cannot be done using only terms with finite computational size.

2. Strictly speaking we cannot quantify over strictly monotone functions. Officially, we
quantify over all functions from N ! N and replace every occurrence of H.n/ by

QH.n/ WD

(
H.n/ if n D 0 or H.n/ > QH.n :� 1/,
QH.n :� 1/C 1 otherwise.
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