Notre Dame Journal of Formal Logic
Volume 53, Number 2, 2012

The Set of Restricted Complex Exponents
for Expansions of the Reals

Michael A. Tychonievich

Abstract  We introduce the set of definable restricted complex powers for ex-
pansions of the real field and calculate it explicitly for expansions of the real field
itself by collections of restricted complex powers. We apply this computation to
establish a classification theorem for expansions of the real field by families of
locally closed trajectories of linear vector fields.

1 Introduction and Preliminaries

In this paper we extend the notion of the field of exponents for expansions of
the field of real numbers, introduced by Miller [10], to allow for complex expo-
nents. In this we seek to better understand the definable functions of the structure
RRE := (R, exp 0, 1], sin }O, 1]), in particular the model theoretic implications
of expanding o-minimal (and other tame) structures on the real field by such
functions. Here “RE” stands for “restricted elementary”; we direct the reader to
van den Dries [5] for more information about RRE and [6] for basic results in
o-minimality.

Throughout this paper, “definable” means first-order definable with parameters
and a “term” is a term in the language of the structure being considered. We write
R for the ordered field of real numbers R, +,—,-,<,0,1), and we write C to mean
the field of complex numbers as a definable object in R.

For x > O and a,b € R, we put x?T? = x%(cosblog x + i sinb log x), where
log denotes the real logarithm. For an expansion 3% of R, we say that a + ib is
a restricted complex exponent of R and that x4+ M1,2] is a restricted complex
power if and only if the restriction x4+ M1,2] : [1,2] — C is definable in 9 (the
interval [1,2] is chosen for the sake of convenience; any compact infinite subinterval
of Rt would work just as well). We write E(3R) to denote the set of restricted

Received October 21, 2010; accepted June 22, 2011; printed May 4, 2012
2010 Mathematics Subject Classification: Primary 03C64; Secondary 34A30,
Keywords: o-minimal, exponents, definability

© 2012 by University of Notre Dame ~ 10.1215/00294527-1715671

175


http://www.nd.edu/~ndjfl
http://www.ams.org/mathscinet/msc/msc2010.html
http://www.nd.edu
http://dx.doi.org/10.1215/00294527-1715671

176 M. A. Tychonievich

complex exponents for R, or just E if R is clear from context. Whenever convenient,
a restricted complex power (or any partially defined function) can be extended to be
totally defined by setting it equal to O off its domain.

For a,b € R, notice that x¢ = |x? | and x'® = x?*10/x? soa +ib € E if
and only if botha € E andib € E. Letting K = E N R be the set of real elements
of E, we see that K is a subfield of R and that E is a vector space over K. Note that
E = C if both exp N0, 1] and sin [0, 1] are definable, and that £ < R if one of
the functions exp MO0, 1] or sin |0, 1] is definable but not the other (in fact, £ = R
if exp 0, 1] is definable and sin [0, 1] is not). Lemma 3.1 and Proposition 3.3
characterize structures for which F is a field.

As our main technical results, we calculate E for certain expansions of R. The
first of these results is then applied to solve (Theorem 2.5) a problem of Miller [13]
for expansions of R by locally closed trajectories of linear vector fields. To state
these results, we define an operation on subsets of C as follows. Fix Z C C. Let
X ={Rez:ze Z}U{l}andY = {ilmz : z € Z}. Let F be the subfield
of R generated by X and the set {a/b : b # 0 and a,b € Spangx)Y}. Put
V(Z) = F + Spang (Y). Then we have the following theorems.

Theorem 1.1 For any Z C C, the structure (R, (x? M1,2]),cz) has set of re-
stricted complex exponents V(Z).

Theorem 1.2 For any Z C C, the structure (R, sin }O0, 1], (x% M1,2])zez) has
set of restricted complex exponents V(Z) if Z C R, and has set of restricted complex
exponents C otherwise.

For Z C R, Theorem 1.1 is immediate from a result of Bianconi [3]: The set of
restricted real exponents of the structure (R, (x?),ez) is Q(Z) if Z € R. Our
proof for Theorem 1.1 for complex powers is along similar lines as his proof for real
powers. We omit the proof of Theorem 1.2, as it is a routine modification of that for
Theorem 1.1.

Toward the end of the paper, we demonstrate conditions under which E ()
and E($’) are isomorphic for elementarily equivalent structures :t and R’ (Theo-
rem 4.4). The article closes with some generalizations, open problems, and a sketch
of how to treat structures over fields other than R.

2 Proof of Main Result

Before proving Theorem 1.1, we first need a few facts regarding the algebraic struc-
ture of E and the behavior of V.

Lemma 2.1 Let R be an expansion of R. The quotient of any two nonzero imag-
inary elements of E is an element of E. If E € R, then E is a vector space of
dimension 2 over the field E N R.

Proof For a nonzero real number a, let g, : [1,exp(27/|a|)) — S! be given
by ga(x) = x'¢, where S! denotes the unit circle in R%Z. Observe that g, is a
bijection and is definable if and only if x’¢ }[1, 2] is definable. Suppose a,b € ENR
are nonzero. Then the function f : [1,exp(2n/|a|)) — [1,exp(27/|b|)) given by
f= gb_1 o g4 is definable and bijective. A calculation then shows that f(x) = x4/?
on the interval [1,exp(27/|al)). If [1,2] C [1,exp(2n/|al)), then f [MN1,2] is the
function x/? M1, 2]. If not, apply the multiplicative property of powers to definably
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extend f to the interval [1, 2]. That E is a vector space of dimension 2 over £ N R
now follows. O

Lemma 2.2 The operation Z + V(Z) is an abstract closure operation on subsets
of C. A set Z is V-closed if and only if Z NR is a field and Z is a vector space over
Z N R of either dimension 1 or 2. For any expansion R of R, E(R) is V -closed.

Proof Let Z,Z' C C. Itis clear that Z C V(Z) and that Z C Z’ implies
V(Z) € V(Z'). We have shown that V(Z) N R is a field, V(Z) is a vector space
over V(Z)NR, and that V(Z) is closed under taking quotients of nonzero imaginary
elements (and hence always of dimension 1 or 2). It is clear from construction that
V fixes exactly the sets satisfying these properties. O

We are now ready for the proof of Theorem 1.1.

Proof of Theorem 1.1 Let Z € C and R = (R, (x7 }M1,2]),cz). We show that
V(Z) = E. We have that V(Z) € E by Lemma 2.2 and that Z C E. For the
opposite inclusion we give details only for the special case Z = {i«,if}, where
the set {&, B} < R is algebraically independent. We do this to avoid difficulties due
solely to notation; the general case is obtained by clerical modification.

Suppose toward a contradiction that V(Z) # E, and let a,b € R be such that
a+ib e E\ V(Z)and x4t? }[1,2] is definable. Since x4+?? }N1,2] is definable if
and only if x? M1, 2] and x?% |[1, 2] are definable, we assume without loss of gener-
ality that either a = 0 or b = 0. By Lemma 2.1, x® }[1, 2] is definable if and only
if x2/% }M1,2] is definable, so we assume without loss of generality that b = 0.

It is convenient from a technical standpoint to work with a structure interdefinable
with < in which the function symbols represent functions that are real analytic on R.
For w € R, define the functions f,, fiw, Cw,Sw : R — C as follows:

Colx) = cos (w 10g(2xz—+1>)’sw(x) = sin (a)log<2x2 * 1))

x2 +1 x2 +1
2x2 4+ 1\@
fo) = (Z57) " i) = o) + 50 ()

Let R = (R, cq, Sa. cg.sg.a, B). That R’ is interdefinable with N is clear, and the
functions cy, S, cg,sg : R — R are real analytic. By [4], & is o-minimal, hence so
is R’. The structure R’ is both existentially and universally interdefinable with the
structure

(R, exp(c arctan(x)), exp(B arctan(x)), a, B),

which is model complete by Wilkie [16, First Main Theorem], so i’ is model com-
plete. Since x“ M1, 2] is definable in i, we have that f, is definable in & and hence
definable in R’. By basic facts about real closed fields, there is a term F(x, y, w)
such that y = f,(x) if and only if Jw(F(x,y,w) = 0). By Wilkie desingular-
ization [16, Corollary 3.2], there are positive integers p,q and terms gi ; in the
language of 3’ in which the functions f;, and fig are only applied to variables such
that y = f,(x) if and only if

Jw \p/(< /q\ 8k,j(x.y. w) = 0)/\det(M)# 0).

j=1" k=0 Ay, wi,..., wy)
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Without loss of generality, we assume that this ¢ is minimal over all such nonsingular
systems, even if terms from (R, (f2)zev(z), (2)zev(z)) are allowed. Then g > 0
since a ¢ V(Z). We assume that f, is defined at O by the first system of equations,
thatis y = f,(0) if and only if

(A0 7.0 = ) s (G 0 0)

k=0 a(yswls"'9wq)

By o-minimality and the Implicit Function Theorem, this formula defines f,(x)
for x in an open interval I containing O such that there are real analytic functions
wy, ..., Wy with /\Z:0 8k (x, fa(x), wi(x),..., wy(x)) = 0forall x € /. Notice
that g 1 (x, y, w) is a polynomial in terms z, ¢4 (2), 5¢(2), cg(2), and sg (z), where z
can be any unary term occurring in x, y, or w. Let C be the ring generated by series
of the form z, 54(2), sg(2) for z = x, fu(x), wi(x), ..., wy(x). Since ¢, and s, are
algebraically dependent, the above shows that

trdegc (C) <3(g+2)—(¢g+1) =2q +5.

The remainder of the proof consists of deriving a contradictory lower bound for
trdegc (C). For ease of notation, put wo(x) = (2x2 + 1)/(x2 + 1), fo = wo o f;
and w; = wg o w; for j > 0. Consider the set W made up of the formal series

log fa(x)—log fa(0).ia(log fa(x)—log f4(0)). and if(log fa(x)—log fa(0)), along
with the series

1. logwj(x) —logw;(0),j =0,...,q,

2. ia(logw;j(x) —logw;(0)),j =0,....q,

3. iB(logw; (x) —logw;(0)),j =0,....q.
We assume that for each j we have w;(0) > 0. Each of the series in W has zero
constant term, and each series converges on a neighborhood of zero.

Suppose toward a contradiction that the set W is QQ-linearly dependent. Each
element of W is either real or purely imaginary, so any Q-linear dependence re-
lation that holds among the elements of W must hold among the real elements
and the imaginary elements of W separately. Suppose that the set of imag-
inary elements of W is Q-linearly dependent. Then the set of formal series
W' = {log fa(x) —log fa(0):logw; (x) —logw;(0) : j = 0,....q}is Q(a/p)-
linearly dependent. The linear dependence relation witnessing this must involve
nontrivially at least one of the terms log w; (x) —log w; (0), j > 1, and without loss
of generality we take j = g. Solving this dependence relation for log w, (x) and
exponentiating, we present the function wy (x) as wy(x) = ¢ - h( Fa(x), Wo(x), ...,
Wy—1(x)), where ¢ € R and the function h(u, Wy, ..., Wy—1) is a product of the
terms i, Wy, . . . , Wg—1 raised to powers from Q(«/B). We see that h(u, wo, ...,
Wgy—1) is a term in the language of ', and that ¢4 (2), 54(z), cp(z), and sg(z),z =
h(it, Wo, ..., Wwg—1), are equal to polynomials in terms (fz(z'))¢ev(z), Where 2’
ranges over u and the unary terms occurring in w (as before we denote X = wg(x)).
Thus, we may replace wy by wy ! (¢ - h(it, W, . . ., Wg—1)) in the system of equations
defining f,. Expand the determinant d(go,1. - -, &q,1)/0(y. W1, ..., wy) by minors
along the gth column. Since

NSo.x:22801) (1 (0) (0. ... wg(0)) # 0.
Ay, wi,...,wy)



Restricted Complex Exponents 179

we have that one of these minors is nonsingular at 0, and hence in a neighborhood
of 0. Delete the corresponding equation and note that w;(0) # 0; it is a calculus
problem to check that the resulting system is nonsingular, a contradiction. Thus
the set of imaginary elements of W is Q-linearly independent. A nontrivial Q-linear
dependence relation among the real elements of W would yield a nontrivial Q(«/S)-
linear dependence relation on W', so W itself is Q-linearly independent.

By Ax [1], we have trdegc (C[W U {e® :w e W}]) > 1+4+3(q+2)=3qg+7.
The set W is C-linearly dependent, however, and hence algebraically dependent over
C. Since dimc (W) < g + 1, the difference between the transcendence degrees of
CWuU{e¥ :we W}and C[{e” : w € W}]is at most g + 1. Thus,

trdegc (C[{e” :w e W}]) >3¢g+7— (¢ + 1) =2q +6.
The rings C[{e™ : w € W}] and C have the same transcendence degree over C, so
2g 4+ 6 < trdegc(C) <2q +5.

This is a contradiction, so f; is not definable, and hence £ = V(Z). O

2.1 Unbounded domains Theorems .1 and 1.2 were stated and proved for powers
defined on bounded intervals, but in some cases we are able to extend the domains of
the powers considered to unbounded intervals while still maintaining those theorems’
conclusions. For real powers, we do this by modifying the proof of Theorem 1.1
in a straightforward manner (see [3]) to see that for Z € C and Z’ € Z N R,
the structure (R, (x? }1,2]);ez. (x")rez’) has set of restricted complex exponents
V(Z). For imaginary powers, we see below that the situation is more interesting.

Proposition 2.3  Let Z C C and let » € R such thatiw € Z. Let R = (R, x'®,
(x% M1, 2])zez). Then E(R) = V(Z).

Proof By [12, Theorem 4], if a function is definable on the interval [1,2] in R,
then a restriction of this function to some open subinterval of [1,2] is definable in
the structure (R, x*® M1,2], (x? M1,2])zez). Apply Theorem 1.1 to this structure,
noting thatiw € Z. O

Even though E behaves nicely for an expansion by real powers or a single imagi-
nary power, the case of two or more imaginary exponents is very different. To put
the following result in context, recall that the sets definable in the structure (R, Z)
form what is called the real projective hierarchy, which is considered wild from a
model theoretic point of view (see Kechris [9], for instance). For any n € N, each
Borel subset of R” is definable in (R, Z), and as a consequence, global complex
exponentiation is definable in (R, Z). In particular, E((R, Z)) = C.

Proposition 2.4  Let a, B € R be Q-linearly independent; let R = (R, x'®, x'P).
Then Z is definable in R.

Proof  For any nonzero real w, the set G, := {x > 0 : x'® € R*} is a cyclic
multiplicative subgroup of R, hence discrete. As « and B are Q-linearly independent,
Gy - Gg is dense in R*. By Hieronymi [8], Z is definable. O
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2.2 Linear vector fields We now apply Theorem 1.1 to the study of expansions of R
by trajectories of linear vector fields as in [13]. Before this, we require a few defi-
nitions. A linear vector field is an R-linear transformation F : R” — R” for some
n > 1, and a enumeratesolution of F is a differentiable function y: I — R” de-
fined on a nontrivial interval / C R such that y'(t) = F(y(¢)) forallt € I. A
enumeratetrajectory of F is the image of a solution, viewed as a set with neither
parameterization nor orientation. A trajectory is enumeratelocally closed if it is the
intersection of an open set and a closed set. The following is a classification, up
to interdefinability, of expansions of R by families of locally closed trajectories of
linear vector fields.

Theorem 2.5 Let '§ be a collection of locally closed trajectories of linear vector
fields. Let Z denote the image of Z + V(Z): P(C) — L (C).

1. If R, (") reg) does not define exp [0, 1], then it is interdefinable with ex-
actly one of the following:
(a) (R, (x%aeck, (X7 M1,2))zez) for some subfield K of R such that
KCcZeZz,
(b) (R, x%, (x? M1,2])sez) for some nonzero b € R such thatib € Z € Z.
2. If (R, (I')reg) defines exp MO, 1], but neither sin [0, 1] nor exp, then it is
interdefinable with (R, exp M0, 1], (x%)qck) for some subfield K of R.
3. If (R, (I") reg) defines both exp [0, 1] and sin }[0, 1], but not exp, then it is
interdefinable with exactly one of the following:
(a) (RRE, (x%),ex) for some subfield K of R,
(b) (RRE, xb) for some nonzero b € R.
4. If R, (I') reg) defines exp, then it is interdefinable with exactly one of the
following:
(a) (R, exp),
(b) (R, exp, sin 10, 1]),
(c) (R,Z).

Proof A locally closed trajectory I" of a linear vector field either has compact
closure or infinite logarithmic length. Write § = # U K, where every I' € K
has infinite logarithmic length and every I" € K has compact closure. By [13],
(R, (I') reg) is interdefinable with exactly one of the following:

1. (R, (x"),ek) for some subfield K of R,

2. (K, xib ) for some nonzero real b,

3. (K, exp),

4. (R, 7).
An examination of the proof shows that (R, (I') re) is interdefinable with at least
one of the following:

1. (R, (x?M1,2])zez) for some Z € Z,

2. (R,exp M. 1)),

3. RRE
By [2], RRE and (R, exp MO, 1]) are not interdefinable, and by Theorem 1.1, there
isno Z € Z such that (R, (x¥ M1, 2]),cz) is interdefinable with (R, exp 1O, 1]) or
RRE. As (R, (I') reg) can be written as the expansion (R, (I') res. (I') rex), and
s0 (R, (I")reg) is interdefinable with an expansion of one of the structures on the
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first list by the definable functions of one of the structures on the second list. The
claim follows from basic properties of restricted complex powers, Proposition 2.3
and the comments immediately preceding it, and [11]. O

The classes of structures given in the statement of Theorem 2.5 are distinct by The-
orem 1.1 and [2, 3]. As mentioned in [13, Section 3], after suitable normalization it
is possible to calculate the field K and the set Z (when appropriate) in terms of the
of eigenvalues of the vector fields of which the sets in § are trajectories.

3 Complex Powers on Subsets of C

We proceed to study the situation of complex powers defined on open subsets of C.
Bianconi showed in [3] that any holomorphic (complex differentiable) function de-
finable on an open subset of C in the structure (E, (x%)zez), where Z C R, is
definable in R. Thus, in an expansion of R by real power functions, all holomorphic
definable functions are semialgebraic. This is not always the case when restricted
imaginary powers are involved.

Lemma 3.1 Let % be an expansion of R. Let Y be the set of imaginary elements
of E(R). The following are then equivalent:

1. The set E is a field.

2. The set Y \ {0} is closed under the taking of multiplicative inverses.

3. The square of each element of Y lies in E.

4. Either Y = {0} or there are two nonzero elements of Y such that their product
liesin E.

Proof This equivalence is clear if E C R. Otherwise, let i € Y be nonzero
and put K = E N R. Notice that £ = K + iaK is a vector space of dimension 2
over K. Multiplication by a nonzero element of Y induces a nonsingular linear
transformation on C. If one such linear transformation preserves E, then all such
linear transformations preserve E. This shows that the conditions listed above are
equivalent. O

Proposition 3.2 Let Z C C and let R = (R, (x* [1,2])zez).

1. If there exists w € R such that V(Z) contains both i®w and i/w, then the
function x'® [1,2] extends definably to a holomorphic function on some
nonempty open subset of C.

2. If V(Z) contains a nonzero imaginary element, then for any real v € V(Z),
the function x® |1, 2] extends definably to a holomorphic function on some
nonempty open subset of C.

Proof  For (1), suppose that > 0 and let f : [1,exp(7/w)) — S! be given by
f(x) = x** M1, exp(w/w)). Notice that f is a bijection, its inverse is a branch of the
analytic function z1/® = x~i/® on Sl,_and f is definable if and only if iw € V(Z).
Suppose iw € V(Z) and let S = {re?? : 1 <r <exp(n/w),0 < 0 < n}. We
define the function f : S — C by

; Sz

f@ ===

f=Hz/1zD

Observe that f is an analytic continuation of x'® |1, exp(r/w)) to S and that f is
definable.
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The proof of (2) is similar: given ia € V(Z) with a € R nonzero, conjugate
x® M1,2] by x*¢ M1,2] to define z% on a nontrivial arc of the unit circle. Then
proceed as above to define z% on a nonempty open subset of the plane. O

Remark. If & is o-minimal, then by cell decomposition, algebraic properties of
power functions, and some basic results in complex analysis, the preceding proof
can be extended to allow S to be any bounded definable subset of C which lies
within some compact, simply connected subset of R? \ {0}.

Combining Lemmas 2.2 and 3.1 with Proposition 3.2, we have the following char-
acterization.

Proposition 3.3 The set E is a field if and only if either E C R or each restricted
complex power definable on a nonempty open interval extends definably to a holo-
morphic function on a nonempty open subset of the plane.

Combined with Proposition 2.3, this yields a curious dichotomy.

Corollary 3.4 Let w € R. A branch of z' is definable on some nonempty open
subset of C in the structure (R, x'®) if and only if w is either rational or quadratic
irrational.

Proof By Proposition 2.3, the set of restricted complex exponents for the structure
(R, x*?)is V({iw}) = Q 4+ iwQ, which is a field if and only if w is either rational
or quadratic irrational. Apply Proposition 3.3. O

4 Invariance of E under Elementary Equivalence

Fix an expansion i of R. We show that E£(9t) and E(R) are isomorphic when R is
an o-minimal expansion of R that does not define exp 0, 1] and It is elementarily
equivalent to Ji. We start with this lemma.

Lemma 4.1 Let I € RY be a nonempty open interval. The following are equiva-
lent:

1. R defines expz | 2.

2. R defines x| 2.

3. J defines exp [ and sin 1.

Proof The _equivalence (1) & (3) is clear, so we consider the implication (2) =
(3). Since x” = (cos(y log x), sin(y log x)), this follows from o-minimality via
partial derivatives. O

With this, we turn our attention to definable families of functions. We show that
a definable family of functions can contain only finitely many restricted complex
powers unless there is a nonempty open interval such that exp [/ is definable.

Proposition 4.2 Suppose that no restriction of expz to a nonempty open sub-
set of C is definable. Let A C R”", let I be a nonempty open interval, and let
f 1 Ax I — R be definable. Then the set

Q:={weR:JaecAVxel, fax)=x"*
is finite. If N does not define exp |'J for any nonempty open interval J, then the set
B={decR:3aec A, Vxel, f(a,x) =xb}

is finite.
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Proof  Suppose toward a contradiction that £2 is infinite. By o-minimality, £2 must
contain a nonempty open subinterval J. Thus the map x* : I xJ — R? is definable,
a contradiction. The proof that B is finite if i does not define exp ['J is similar. [

Corollary 4.3

1. Suppose that no restriction of exp z to a nonempty open subset of C is de-
finable and that v € R is such that iw € E. Let I be a nonempty, open,
@-definable interval such that x*® } is definable. Then the restricted power
xi® M is @-definable.

2. Suppose that exp J is not definable for any open interval J and that b € R
is such that b € E. Let I be a nonempty, open, B-definable interval such that
x? M is definable. Then the restricted power xP } I is @-definable.

Proof  For (1), suppose that x!® '] is not @-definable. By standard o-minimal
arguments (see [10], for instance) there is a function f : A x I — R such that
f(a,x) = x'®forx e I. Theset{o e R :3a € A: f(a,x) = x*forx € I}
is a definable subset of R, and so must be a finite union of intervals. If one of these
intervals is infinite, then the set §2 as defined in Proposition 4.2 is infinite. Thus A
must be a finite set, a contradiction to the assumption that x’® } [ is not #-definable.
The proof for (2) is similar. O

Subject to the condition that exp ['J is not definable for any nonempty open inter-
val J, the proof of Corollary 4.3 shows that definable restricted complex powers
xZ M are (-definable up to parameters used to define 7. Over R we can always take
[1,2] € I, so all restricted complex powers are actually @-definable.

To state the final theorem of this section, we need a more general definition of
the set of restricted complex exponents. Let i be an o-minimal expansion of a
real closed field with underlying set R, and write C to mean the algebraic closure
of R considered as a definable object in R. A restricted complex power is a partial
multiplicative homomorphism f : / — C such that / € R is a nontrivial interval
and 1 € /. By o-minimality, f is differentiable in a neighborhood of 1. We say
that the restricted complex exponent of f is the value f”(1), and we define the ser of
restricted complex exponents E in the obvious way. These definitions are equivalent
to our earlier definitions if R = R. If & is elementarily equivalent to an o-minimal
expansion of R, then the results of this section apply with no additional argument
required, and we have the following theorem.

Theorem 4.4 Suppose R is an o-minimal expansion of R that does not define
exp MO, 1] and suppose that I is elementarily equivalent to . Let M be the un-
derlying set of M. Then M N E(IMN) and RN E(N) are isomorphic as ordered fields.
If E(RN) is a field, then the isomorphism extends to a field isomorphism of E(IN) and
E(R). Otherwise, the isomorphism extends to an isomorphism of E(IN) and E(N)
as vector spaces over R N E(NR).

5 Optimality

5.1 O-minimal expansions of real closed fields Many of the results in this article
can be stated and proved for o-minimal expansions of real closed fields. Let i be
an o-minimal expansion of a real closed field with underlying set R, and write C to
mean the algebraic closure of R considered as a definable object in i. The proofs of
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the results regarding the behavior of V' on subsets of C and the definability of powers
on open subsets of C carry over in an obvious way, while our proof for Theorem 1.1
depended on results from [16] that only apply to expansions of R (Foster [7] con-
tains a generalization of [16]). The invariance results for £ generalize with a little
work. If 3 supports abstract exponential and arctangent functions, that is, defin-
ably continuous functions f,g : R — R such that f(x + y) = f(x)f(y) and
g(x) + g(1/x) = ¢ € R, then the proofs given above work modulo an argument at
the end involving quantification over parameters and the existence of prime models
for o-minimal structures (Pillay and Steinhorn [14]). If not, then a more delicate
treatment as in [11] can be used.

5.2 Other expansions of R For at least one other kind of expansion of o-minimal
expansion of R, Theorem 1.1 generalizes. Let 3% be an expansion of R, and for
z € R, put g;(x,y) = (cos(z arccos x), sin(z arcsin y)). Let E’(R) be the set of
all z € R such that there is a nontrivial arc S of the unit circle and the restriction
gz 'S is definable in Jt. If a nontrivial restricted imaginary power is definable, then
an examination of the proof of Proposition 3.2 shows that E/ = E. Otherwise,
argument along the lines of our proof of Theorem 1.1 yields the following result.

Proposition 5.1 Let Z,Z' CR, andput S = {e'® : 0 < 0 < w/4} C C. Then

1. E'(R,exp M0, 1], g2/ 1)zrez7)) = V(Z'),
2. E'((R, (x* M[1.2D)zez, (82 1 S)zrez))) = V(Z'),
3. E(R, (x* M1.2Dzez. (82 1S)zrez’) = V(Z).

How else might Theorem 1.1 generalize? Let 3% be an o-minimal expansion of R
such that neither sin [0, 1] nor exp [0, 1] is definable. Though the structure
(M, (x* M[1,2])zez) is known to be o-minimal and exponentially bounded as a
consequence of Speissegger [15], it is not known at this time if (R, (x? M1, 2])zez)
must be polynomially bounded, let alone what its set of restricted complex exponents
is. In fact, it is not known if E((R, (x? M1,2])zez)) = V(E(R) U Z) holds, even
assuming that E((R, (x7 M1,2]);ez)) # C and that R is an expansion of R by
restrictions of analytic functions.
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