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Iteratively Changing the Heights
of Automorphism Towers

Gunter Fuchs and Philipp Lücke

Abstract We extend the results of Hamkins and Thomas concerning the mal-
leability of automorphism tower heights of groups by forcing. We show that
any reasonable sequence of ordinals can be realized as the automorphism tower
heights of a certain group in consecutive forcing extensions or ground models, as
desired. For example, it is possible to increase the height of the automorphism
tower by passing to a forcing extension, then increase it further by passing to
a ground model, and then decrease it by passing to a further forcing extension,
and so on, transfinitely. We make sense of the limit models occurring in such a
sequence of models. At limit stages, the automorphism tower height will always
be 1.

1 Introduction

If G is a centerless group, then there is a natural embedding

�G W G �! Aut.G/Ig 7! �g WD
�
h 7! hg WD g ı h ı g�1

�
that maps G to the subgroup Inn.G/ of inner automorphisms of G. An easy compu-
tation shows that � ı �g ı ��1 D ��.g/ holds for all g 2 G and � 2 Aut.G/. Hence
Inn.G/ is a normal subgroup of Aut.G/, CAut.G/.Inn.G// D fidGg and Aut.G/ is
also a group with trivial center.

By iterating this process, we inductively construct the automorphism tower of G.

Definition 1.1 A sequence hG˛ j ˛ 2 Oni of groups is the automorphism tower
of a group G if the following statements hold.

1. G0 D G.
2. G˛ is a normal subgroup of G˛C1 and the induced homomorphism

'˛ W G
˛C1
�! Aut.G˛/Ig 7! �g � G˛
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is an isomorphism.
3. G� D

S
fG˛ j ˛ < �g, if � 2 Lim.

In this definition, we took G˛C1 to be an isomorphic image of Aut.G˛/ of which
G˛ is a normal subgroup. This enables us to take unions at limits. Without this
isomorphic correction, we would have to take direct limits at limit stages and could
have let G˛C1 be Aut.G˛/, as it is sometimes done in the literature.

This definition implies that the center of G is trivial and we can construct such a
tower for each centerless group by induction. It is easy to show that each group G˛

is uniquely determined up to an isomorphism which is the identity on G, and there-
fore we can speak of the ˛th group G˛ in the automorphism tower of a centerless
group G.

We say that the automorphism tower of a centerless group G terminates after ˛
steps, ifG˛ D G˛C1 and thereforeG˛ D Gˇ for all ˇ � ˛. Thomas’s elegant proof
of the following theorem uses Fodor’s Lemma to show that every infinite centerless
group has a terminating automorphism tower.

Theorem 1.2 ([7]) The automorphism tower of every infinite centerless group of
cardinality � terminates in fewer than .2�/C many steps.

Definition 1.3 If G is a centerless group, then �.G/ denotes the least ordinal ˛
such that G˛ D G˛C1. �.G/ is called the height of the automorphism tower of G.

Although the definition of automorphism towers is purely algebraic, it has a set-
theoretic essence, since there are groups whose automorphism tower heights depend
on the model of set theory in which they are computed. In [7], Thomas constructs
a centerless, complete (i.e., �.G/ D 0) group G and a c.c.c. forcing P such that
P  “�.G/ D 1”. In the other direction, he also constructs a centerless group H
such that �.G/ D 2 and Q  “�.H/ D 1” for every forcing Q that adjoins a new
real.

Let M , N be transitive models of ZFC with M � N and G 2 M be a centerless
group. By the above, the height of the automorphism tower of G computed in M ,
�.G/M can be higher or smaller than the height computed in N , �.G/N . This leads
to the natural question whether the value of �.G/M places any constraints on the
value of �.G/N , and vice versa. Obviously, �.G/N D 0 implies �.G/M D 0.
The following result by Hamkins and Thomas suggests that this is the only provable
implication that holds for all centerless groups in the above situation. In short, the
theorem states that the existence of centerless groups whose automorphism towers
are highly malleable by forcing is consistent with the axioms of ZFC.

Theorem 1.4 ([3]) It is consistent that for every infinite cardinal � and every
ordinal ˛ < �, there exists a centerless group G with the following properties.

1. �.G/ D ˛,
2. If ˇ is any ordinal such that 0 < ˇ < �, then there exists a notion

of forcing Pˇ , which preserves cofinalities and cardinalities, such that
Pˇ  “�.G/ D ˇ”.

The proof of this theorem splits into an algebraic and a set-theoretic part. The follow-
ing definition features the key concept of both parts of the proof. The terminology is
taken from [2].
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Definition 1.5 Let � be a cardinal, E� D h�˛ j ˛ < �i be a sequence of rigid
graphs, and E be an equivalence relation on �. We say that a forcing notion P is
able to realize E on E� if P forces that all �˛ are rigid and that, for all ˇ;  < �,
�ˇ Š � , ˇE .

The following theorem sums up the results of the set-theoretic part of the proof.

Theorem 1.6 ([3]) It is consistent that for every regular cardinal � � ! there
exists a sequence E� D h�˛ j ˛ < �Ci of pairwise nonisomorphic connected rigid
graphs with the following property: Whenever E is an equivalence relation on �C,
there exists a notion of forcing PE with the following properties:

1. PE preserves cardinals and cofinalities and adds no new �-sequences;
2. PE is able to realize E on E� .

The algebraic part of the proof then shows that the conclusions of Theorem 1.4 are a
consequence of this theorem. Since we are going to adopt the techniques developed
in these proofs, the next section contains an overview of the construction of the
groups in the algebraic part of the proof.

The consistency result of the former theorem is obtained by a class-sized forcing
over a model of ZFC C GCH. In [2], Fuchs and Hamkins showed that the conclu-
sions of this theorem also hold in the constructible universe L. They deduce these
conclusions from combinatorial principles that hold in L and that we will introduce
presently.

Definition 1.7 Let � be a cardinal and let Cof� denote the set f˛ < �C j cf.˛/ D
�g. Then }�C.Cof�/ is the assertion that there is a sequence ED D fD˛ j ˛ 2 Cof�g
such that for any A � �C the set f˛ 2 Cof� jA \ ˛ D D˛g is stationary in �C.

In L, the hypotheses that 2<� D � and }�C.Cof�/ are known to hold for every
regular cardinal �. Note that}�C.Cof�/ implies that � is regular, for otherwise Cof�
is empty.

For the remainder of this paper, we fix a cardinal � that satisfies the following
assumption.

Assumption 1.8 � is a regular cardinal such that 2<� D � and }�C.Cof�/ holds.

Definition 1.9 Let E be an equivalence relation on �. If  < �, then we let Œ�E
denote the E-equivalence class of  . We call E bounded if there is some N� < � such
that Œ�E D fg for all  2 Œ N�; �/.

Now we are ready to formulate a modified version of the result mentioned above.
This modification follows from the results of [2] by coding trees into connected
graphs1 as in [5, Theorem 4.1.8]. If � .T / denotes the graph coding a tree T , then
the following statements hold and are upward-absolute.

1. Aut.T / is isomorphic to Aut.� .T // for every tree T .
2. Given trees T0 and T1, T0 is isomorphic to T1 if and only if � .T0/ is isomor-

phic to � .T1/.
These absolute properties of the coding allow us to directly conclude the following
result from [2, Theorem 3.1].

Theorem 1.10 ([2], under Assumption 1.8) There is a sequence E� D h�˛ j
˛ < �i of rigid, pairwise nonisomorphic connected graphs and a sequence EC D
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hC˛;ˇ j ˛ < ˇ < �i of �C-Souslin trees such that whenever E is a bounded equiva-
lence relation on �, the full support product forcing

CE WD
Y
<�

¤minŒ�E

CminŒ�E ;

has the following properties.
1. CE preserves cardinals and cofinalities and adds no new �-sequences.
2. CE is able to realize E on E� .

The aim of this paper is to show that this theorem already implies the existence of
groups whose automorphism tower is even more malleable by forcing than those of
the groups mentioned in Theorem 1.4. It gives rise to groups whose automorphism
tower heights can be changed multiple times to any nonzero height by passing from
one model of set theory to another, either by always going to a forcing extension, by
always passing to a ground model, or by mixing these possibilities. In fact, for the
given cardinal �, we will use Assumption 1.8 to construct a single complete group,
G D G� , the height of whose automorphism tower can be changed in each of these
ways, repeatedly.

Let us now formulate precisely the three ways in which the height of the automor-
phism tower of G can be changed repeatedly. The first main result, Theorem 3.10,
addresses the possibility of passing from models to larger and larger forcing exten-
sions in each step.

Theorem (Under Assumption 1.8) For every function s W � �! .� n f0g/, there
is a sequence of partial orders hP s j 0 <  < �i such that the following statements
hold for each 0 < ˛ < �.

1. P s˛ preserves cardinals and cofinalities and adds no new �-sequences.
2. P s˛C1  “�.G/ D s.˛/”.
3. If ˛ is a limit ordinal, then P s˛  “�.G/ D 1”.
4. If ˇ < ˛, then P s˛ extends P s

ˇ
.

Moreover, if t W � �! � n f0g, and s �  D t �  for some 0 <  < �, then
P s D P t .

The next main theorem addresses the possibility of producing a model with the prop-
erty that the height of the automorphism tower of G can be changed by passing to
smaller and smaller ground models.

Theorem (Under Assumption 1.8) For every ordinal � < �, there is a notion of
forcing Q� with the following properties.

1. Q� preserves cardinals and cofinalities and adds no new �-sequences.
2. Q�  “�.G/ D 1”.
3. In every Q�-generic forcing extension the following holds.

For every sequence s W � �! .� n f0g/ there exists a decreasing sequence of
ground models hM s

˛ j 0 < ˛ < �i such that for all 0 < ˛ < � the following
statements hold.
(a) M s

˛C1 ˆ “�.G/ D s.˛/”.
(b) If ˛ is a limit ordinal, then M s

˛ ˆ “�.G/ D 1”.
Moreover, if t W � �! .� n f0g/, then s.˛/ D t .˛/ implies M s

˛C1 D M s
˛C1

for all ˛ < � and M s
� DM

t
� for all limit ordinals � < �.
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This is Theorem 4.1, proven in Section 4.
Next, the possibilities of passing to a ground model or to a forcing extension can

be mixed. In order to make sense of models that are reached by unboundedly often
passing to a forcing extension and unboundedly often passing to a ground model,
we need a suitable notion of limit. We make this precise and prove in Theorem 5.2,
vaguely speaking, that all patterns can be realized, provided that the set of ˛ < � at
which one passes to a forcing extension contains a club.

Finally, the last section shows that the lightface Closed Maximality Principle at
the successor of a cardinal � such that 2<� D � implies the existence of a center-
less group satisfying the statements mentioned in (2) and (3) of Theorem 4.1 with
� D �C in V.

2 Preliminaries

In general, it is very difficult to compute the automorphism tower of a given group.
We will use a technique developed by Thomas that makes the construction of groups
with a certain automorphism tower height easier. The Normalizer Tower Technique
was developed in [6].

Definition 2.1 If H is a subgroup of the group G, then the normalizer tower
hN˛G .H/ j ˛ 2 Oni of H in G is defined inductively as follows.

1. N0G .H/ D H ,
2. N˛C1G .H/ D NG

�
N˛G .H/

�
D
˚
g 2 G j gN˛G .H/ g

�1 D N˛G .H/
	
,

3. N�G .H/ D
S˚

N˛G .H/ j ˛ < �
	
, if � 2 Lim.

An easy cardinality argument shows that for each group G of cardinality � and each
subgroup H of G there is an ˛ < �C such that N˛G .H/ D N˛C1G .H/. The normal-
izer length �nlgG .H/ of H in G is the least such ˛.

The following theorem reduces the problem of manipulating automorphism
towers to the problem of manipulating normalizer towers in automorphism groups
of first-order structures. It is implicitly proved in [6]. A detailed explanation of
this result and the absoluteness of the corresponding construction can be found
in [3, Section 2].

Theorem 2.2 Let M be a structure for the first-order language L and let H be a
subgroup of Aut.M/. Then there exists a centerless group G such that the statement

�.G/ D �
nlg

Aut.M/
.H/

holds and is upward-absolute between transitive models of ZFC.

We will now summarize the results that we need in order to construct structures
whose automorphism groups can be changed by forcing.

We call a pair .G;˝/ a permutation group if G is a subgroup of Sym.˝/. Given
a family h.Gi ; ˝i / j 2 I i of permutation groups, the direct product of the family is
defined to be the permutation groupY

i2I

.Gi ; ˝i / D

 Y
i2I

Gi ;
G
i2I

˝i

!
;

where the direct product of groups acts on the disjoint union of sets in the ob-
vious manner. We say that two permutation groups .G;˝/ and .H;�/ are
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isomorphic if there is a bijection f W ˝ ! � such that the induced isomor-
phism f � W Sym.˝/ ! Sym.�/; � 7! f ı � ı f �1 maps G onto H . We
write .H0; ˝0/ � .H1; ˝1/ instead of

Q
i<2 .Hi ; ˝i / and �nlg .H;˝/ instead of

�
nlg

Sym.˝/
.H/.

For each ordinal ˛, we inductively define permutation groups .H˛; �˛/ and
.F˛; �˛/ in the following way.

1. �0 D f;g and H0 D F0 D fid�0g,
2. If ˛ > 0, then we define

.H˛; �˛/ D .H0; �0/ �
Y
ˇ<˛

�
Fˇ ; �ˇ

�
;

F˛ D N˛Sym.�˛/
.H˛/ :

Note that the second clause directly implies

.H˛; �˛/ Š
�
Hˇ ; �ˇ

�
�

Y
ˇ�<˛

�
F ; �

�
for all ˇ < ˛. In order to keep our calculation clear, we also define�

H�˛ ; �
�
˛

�
D .H˛; �˛/ � .F1; �1/ � .F1; �1/

for ˛ > 1.
An easy induction shows max.f!; ˛g/ is an upper bound for the cardinality of�˛

and this means that the definitions of .H˛; �˛/ and .F˛; �˛/ are absolute between
models with the same ˛-sequences of ordinals, because the symmetric group of �ˇ
is the same in those models for all ˇ � ˛.

These permutation groups are the first ingredient in our construction. The fol-
lowing theorem summarizes their important properties deduced in the algebraic part
of [3].

Theorem 2.3 For each ordinal ˛, the following statements hold.
1. �nlg .H˛; �˛/ D ˛.
2. �nlg .F˛; �˛/ D 0.
3. If ˛ > 1, then �nlg

�
H�˛ ; �

�
˛

�
D 1.

Proof The first statement is [3, Lemma 2.10] and the second statement follows
directly from the first, together with the definition of F˛ . The third statement
is [3, Lemma 2.14] with ˇ D 1.

The sequence E� D h�˛ j ˛ < �i of rigid, pairwise nonisomorphic connected graphs
and the sequence hC˛ j ˛ < �i of �C-Souslin trees constructed in Theorem 1.10 are
the second ingredient in our construction.

If E and F are equivalence relations on �, then we define

E � F , E � F ^ .8˛ < �/.Œ˛�E ¤ f˛g ! minŒ˛�E D minŒ˛�F /:

Note that, as the notation suggests, � is a reflexive, transitive relation. Moreover, by
checking the definition of the forcing CE in Theorem 1.10, we arrive at the following
observation.

Observation 2.4 (Under Assumption 1.8) If E � F are bounded equivalence
relations on �, then the forcing CF extends CE in the strong sense that there is a
partial order Q such that CF Š CE �Q.
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The following construction allows us to combine the two ingredients.
If h�i D .Xi ; Ei / j i 2 I i is a family of graphs, then we define the direct sum of

the family to be the graph M
i2I

�i D

 G
i2I

Xi ;
G
i2I

Ei

!
obtained by taking the disjoint unions of the sets of vertices and edges, respectively.

We call a pair .G; � / a graph permutation group if � is a graph and G is a sub-
group of Aut.� /. As above, if a h.Gi ; �i / j i 2 I i is a family of graph permutation
groups, then we define the direct product of the family to be the graph permutation
group Y

i2I

.Gi ; �i / D

 Y
i2I

Gi ;
M
i2I

�i

!
;

where the product of groups acts on the direct sum of graphs in the obvious way.
We say that two graph permutation groups are isomorphic if there is an isomor-
phism of the underlying graphs such that the induced isomorphism of automorphism
groups maps the subgroups correctly. Again, we write .G0; �0/ � .G1; �1/ instead
of
Q
i<2.Gi ; �i / and �nlg.G; � / instead of �nlgAut.� /.G/.

If ˝ is a set and � is a graph, then we define

G˝.� / D
M
x2˝

�

to be the graph obtained by replacing each element of ˝ by a copy of � . We can
embed Sym.˝/ into Aut.G˝.� // in a natural way and if � is connected and rigid,
then it is not hard to show that this embedding is an isomorphism.

If .G;˝/ is a permutation group, then we get a new graph permutation group
.G.� /;G˝.� //, where G.� / is the image of G under the above embedding of
Sym.˝/ into Aut.G˝.� //.

In the following lemma, we list facts about graph permutation groups used in the
algebraic part of [3]. They will play an important role in our later constructions,
because they will enable us to compute normalizer towers in products of graph per-
mutation groups.

Lemma 2.5 If E� D h�i j i 2 I i is a sequence of connected rigid graphs and
h.Gi ; ˝i / j i 2 I i is a sequence of permutation groups, then following statements
hold for all i0 2 I .

1. �nlg
�
Gi0.�i0/;G˝i0 .�i0/

�
D �nlg.Gi0 ; ˝i0/.

2. If E� consists of pairwise nonisomorphic graphs, �nlg
�
Gi0 ; ˝i0

�
� 1 and

�nlg
�
Gj ; j̋

�
� 1 holds for all j 2 I n fi0g, then

�nlg

 Y
i2I

�
Gi .�i /;G˝i .�i /

�!
D �nlg

�
Gi0 ; ˝i0

�
:

3. If E� consists of pairwise isomorphic graphs and .G;˝/ D
Q
i2I .Gi ; ˝i /,

then �
G.�i0/;G˝.�i0/

�
Š

Y
i2I

�
Gi .�i /;G˝i .�i /

�
:
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Proof By the assumption, the embedding of Sym.˝i / into Aut.G˝i .�i // is an
isomorphism and maps G onto G.�i /. This proves the first statement.

The set of connected components of
Q
i2I

�
Gi .�i /;G˝i .�i /

�
consists of a copy

of �i for each element of ˝i and each i 2 I . If all �i ’s are pairwise nonisomor-
phic, then each subgraph of the form G˝i .�i / is invariant under all automorphisms
and therefore each automorphism of the graph is induced by an element of the groupQ
i2I Aut.G˝i .�i // acting on the graph in the obvious way. By the rigidity of the

�i ’s, this means that the automorphism group of
L
i2I G˝i .�i / is isomorphic toQ

i2I Sym.˝i / and this isomorphism sends
Q
i2I Gi .�i / to

Q
i2I Gi . An easy in-

duction then shows

NQ̨
i2I Sym.˝i /

 Y
i2I

Gi

!
Š N˛Sym.˝i0 /

�
Gi0

�
�

Y
j2Infi0g

N1Sym. j̋ /

�
Gj
�

for all ˛ > 0 and, by the existence of the above isomorphism, this proves the second
statement.

Each automorphism of
L
i2I G˝i .�i / that fixes a connected component setwise

also fixes it pointwise by rigidity. This shows that the natural isomorphism be-
tween

L
i2I G˝i .�i / and

L
j2I G

j̋
.�i0/ induced by the isomorphisms between

�i0 and the �i ’s is also an isomorphism between the graph permutation groups�
G.�i0/;G˝.�i0/

�
and

Q
i2I

�
Gi .�i /;G˝i .�i /

�
.

We now introduce the group G which is the protagonist of the present article. Fix,
once and for all, a sequence h.G˛; ˝˛/ j ˛ < �i of permutation groups such that
each .G˛; ˝˛/ is of the form .F N̨ ; � N̨ /, for some N̨ < �, and such that for every
ˇ < �, the set of ı < � such that .Gı ; ˝ı/ D

�
Fˇ ; �ˇ

�
is unbounded in �. So, for

example, using the Gödel pairing function, we could let
�
G ; ˝

�
D .F˛; �˛/, if

 D �˛; ˇ� < �. We write G˛.� / instead of G˝˛ .� /.

Definition 2.6 If Ĕ D h˘˛ j ˛ < �i is a sequence of graphs, then we define

G . Ĕ / D
Y
˛<�

.G˛.˘˛/;G˛.˘˛// :

As noted above, the definition of G . Ĕ / is absolute between models with the same
�-sequences of ordinals that contain Ĕ .

Under Assumption 1.8, we also fix a sequence E� D h�˛ j ˛ < �i of graphs and
a sequence EC D hC˛;ˇ j ˛ < ˇ < �i of trees as in Theorem 1.10.

Definition 2.7 Let G D G� be the centerless group the existence of which is
postulated in Theorem 2.2, with respect to G . E� /.

So, by definition, �.G/ D �nlg.G . E� // holds and is upward-absolute. Hence we can
change the height of the automorphism tower of G by changing the height of the
normalizer tower of G . E� / in the corresponding symmetric group.

Since all �˛ are rigid and pairwise nonisomorphic and �nlg.G˛; ˝˛/ D

�nlg.F N̨ ; � N̨ / D 0, we may use Theorem 2.3 and the second part of Lemma 2.5 to
get the following statement.

Observation 2.8 (Under Assumption 1.8) �.G/ D �nlg.G . E� // D 0.
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3 Consecutive Forcing Extensions

To make the following constructions clearer, we introduce some vocabulary. We
would like to remind the reader that we are working under Assumption 1.8, and that
we have fixed the objects mentioned at the end of the previous section.

Definition 3.1 Let X be a subset of � with monotone enumeration h˛ j ˛
< otp.X/i.

1. We call X active if the order type of X is of the form otp.X/ D ˇ C 1 > 2

and
(a) for all ˛ < ˇ, .G˛ ; ˝˛ / D .F˛; �˛/;
(b) .Gˇ ; ˝ˇ / D .F0; �0/.

2. We call X sealed if the order type of X is of the form otp.X/ D ˇ C 3,
X\ .ˇC1/ is active, and

�
GˇC1 ; ˝ˇC1

�
D
�
GˇC2 ; ˝ˇC2

�
D .F1; �1/.

3. If X is a sealed subset of � with order type ˇ C 3 and 1 < Ň � ˇ, then
f˛j˛ < Ňg [ fˇ g is the active segment of X of order type Ň C 1.

4. We callX trimmed, otp.X/ D 2, and
�
G0 ; ˝0

�
D
�
G1 ; ˝1

�
D .F0; �0/.

If Y is an active subset of � with monotone enumeration hı˛ j ˛ < ˇ C 1i
or a sealed subset of � with monotone enumeration hı˛ j ˛ < ˇ C 3i, then
fı0; ıˇ g is the trimmed segment of Y .

So the permutation groups associated to a sealed subset X of � with monotone enu-
meration h˛ j ˛ < ˇ C 3i appear as follows:

.G0 ;˝0 / .G1 ;˝1 /; .G2 ;˝2 / : : : .Gˇ ;˝ˇ / .GˇC1 ;˝ˇC1 / .GˇC2 ;˝ˇC2 /

D D D D D D

.F0;�0/ .F1;�1/ .F2;�2/ : : : .F0;�0/ .F1;�1/ .F1;�1/

Note that a sealed subset of � must have order type at least 5. By definition, the
following equation holds for the above set X .

Y
ı2X

.Gı ; ˝ı / D .F0; �0/ �

0@Y
˛<ˇ

.F˛ ; �˛/

1A � .F1; �1/ � .F1; �1/ D �H�ˇ ; ��ˇ� : (1)

If Ň � ˇ and Y is the active segment of X of order type Ň C 1, then the following
equation holds.Y

ı2Y

.Gı ; ˝ı/ D .F0; �0/ �
Y
˛< Ň

.F˛; �˛/ D
�
H Ň ; � Ň

�
: (2)

Finally, if Z D f�0; �1g is a trimmed subset of �, then the following equation holds.Y
ı2Z

.Gı ; ˝ı/ D .F0; �0/ � .F0; �0/ D .H1; �1/ : (3)

We extend the above definitions to equivalence relations on � and show how we can
use them to change the height of the automorphism tower of G .

Definition 3.2 Let E be a nontrivial equivalence relation on �.

1. We call E inactive if every nontrivial equivalence class is either a sealed or a
trimmed subset of �.
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2. We call E active if all nontrivial E-equivalence classes are either active,
sealed, or trimmed subsets of � and there is a unique active E-equivalence
class.

Lemma 3.3 (Under Assumption 1.8) If E is a bounded, inactive equivalence re-
lation on �, then CE  “�.G/ D 1”.

Proof We work in VCE . As noted after Definition 2.6, G . E� / D
Q
˛<�.G˛.�˛/;

G˛.�˛// still holds. Let S denote the set of all sealed E-equivalence classes, and
for c 2 S , let hc˛ j ˛ < ˇ

c C 3i be the monotone enumeration of c. Define T to be
the set of all trimmed E-equivalence classes and let d D f�d0 ; �

d
1 g for each d 2 T .

Finally, let N denote the union of all trivial E-equivalence classes. Using the third
part of Lemma 2.5 and the equations (1) and (3), the following holds in VCE .

G . E� / Š

 Y
˛2N

.G˛.�˛/;G˛.�˛//

!
�

 Y
c2S

 Y
ı2c

�
Gı.�c

0
/;Gı.�c

0
/
�!!

�
Y
d2T

�
.G
�d
0
.�
�d
0
/;G

�d
0
.�
�d
0
//� .G

�d
1
.�
�d
0
/;G

�d
1
.�
�d
0
//

�

Š

 Y
˛2N

.G˛.�˛/;G˛.�˛//

!
�

 Y
c2S

.H�
ˇc
.�c

0
/;G��

ˇc
.�c

0
//

!
�
Y
d2T

.H1.��d
0
/;G�1 .��d

0
//:

By assumption, all graphs appearing in this product are rigid and pairwise noniso-
morphic. The first part of Lemma 2.5 and Theorem 2.3 now yield

1. for all ˛ 2 N , �nlg .G˛.�˛/;G˛.�˛// D �nlg .G˛; ˝˛/ D 0;
2. for all c 2 S , �nlg.H�

ˇc
.�c

0
/;G��

ˇc
.�c

0
// D �nlg.H�

ˇc
; ��

ˇc
/ D 1;

3. for all t 2 T , �nlg.H1.��d
0
/;G�1.��d

0
// D �nlg.H1; �1/ D 1.

By definition, there is at least one nontrivial equivalence class and we can therefore
apply the second part of Lemma 2.5 to see that �.G/ D �nlg.G . E� // D 1 holds.

Lemma 3.4 (Under Assumption 1.8) Let E be a bounded, active equivalence
relation on �. If e is the unique activeE-equivalence class, then CE  “�.G/C1 D
otp.e; </”.

Proof We work in VCE . By the definition of active subsets, the monotone enu-
meration of e is of the form h˛ j ˛ < ˇ C 1i for some 1 < ˇ < �. Define N , S , T ,
c˛ , and �di as in the proof of Lemma 3.3. Using the third part of Lemma 2.5 and the
equations (1)–(3), we get the following equalities.

G . E� / Š

 Y
˛2N

.G˛.�˛/;G˛.�˛//

!
�

 Y
c2S

 Y
ı2c

.Gı.�d
0
/;Gı.�d

0
//

!!

�

 Y
d2T

�
.G
�d
0
.�
�d
0
/;G

�d
0
.�
�d
0
//� .G

�d
1
.�
�d
0
/;G

�d
1
.�
�d
0
//

�!
�
Y
ı2e

�
Gı.�0 /;Gı.�0 /

�
Š

 Y
˛2N

.G˛.�˛/;G˛.�˛//

!
�

 Y
c2S

.H�
ˇc
.�c

0
/;G��

ˇc
.�c

0
//

!
�

 Y
d2T

.H1.��d
0
/;G�1 .��d

0
//

!
� .Hˇ.�0 /;G�ˇ .�0 //:

Again, all graphs in these products are rigid and pairwise nonisomorphic and

�nlg
�
Hˇ .�0/;G�ˇ .�0/

�
D �nlg

�
Hˇ ; �ˇ

�
D ˇ > 1:

By the second part of Lemma 2.5 and the computations made in the proof of
Lemma 3.3,

�.G/C 1 D �nlg.G . E� //C 1 D ˇ C 1 D otp.e; </:
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Next we define a family of functions that allows us the construction of special
bounded equivalence relations in our proofs of the theorems. Remember that for
each ˛ < � the set

˚
ˇ < � j

�
Gˇ ; ˝ˇ

�
D .F˛; �˛/

	
is unbounded in �.

Lemma 3.5 For each s W � �! .� nf0; 1g/, there exists a function s� W � ! Œ��<�

with the following properties.
1. If ˇ < ˛, then s�.ˇ/ � min.s�.˛//.
2. For all ˛ < �, s�.˛/ is a sealed subset of � with otp.s�.˛/; </ D s.˛/C 3.2

Proof Assume s� � ˛ is already defined, for some ˛ < �. We define s�.˛/ D
f˛
ı
j ı < s.˛/ C 3g where h˛

ı
j ı < s.˛/C 3i is defined as follows: ˛0 is the

least � < � such that
S
fs�.ˇ/jˇ < ˛g � � and .G� ; ˝�/ D .F0; �0/. If

0 < ı < s.˛/ and h˛
�
j � < ıi is already defined, then ˛

ı
is the least � < �

such that � > sup.f˛
�
j� < ıg/ and .G� ; ˝�/ D .Fı ; �ı/. Finally, ˛

s.˛/
is the least

� < � such that � > sup.f˛
ı
jı < s.˛/g/ and .G� ; ˝�/ D .F0; �0/, ˛s.˛/C1 is the

least � < � such that � > ˛
s.˛/

and .G� ; ˝�/ D .F1; �1/, and ˛
s.˛/C2

is the least
� < � such that � > ˛

s.˛/C1
and .G� ; ˝�/ D .F1; �1/.

From now on, we fix an operator s 7! s� with the above properties. We may also
assume that if s; t W � �! .� n f0; 1g/ are such that s �  D t �  , for some  < �,
then s� �  D t� �  . For each s W � �! .� n f0; 1g/ and each ˛ < � we define a
bounded, inactive equivalence relation Es˛ on � by

Es˛ı,  D ı _ .9ˇ < ˛/; ı 2 s�.ˇ/:

It is easy to see that ˛ < ˇ < � implies Es˛ � E
s
ˇ

.

Definition 3.6 Let E be a bounded equivalence relation on �. If E is active and
e is the unique active E-equivalence class, then we define ht.E/ to be the unique
ordinal ˛ with otp.e; </ D ˛ C 1. If E is inactive, then we define ht.E/ D 1.

As an illustration of the concepts introduced above, note the following observation
which is a direct consequence of Lemmas 3.3 and 3.4.

Observation 3.7 (Under Assumption 1.8) If E is a bounded equivalence relation
on � and E is either active or inactive, then CE  “�.G/ D ht.E/”.

Next, we want to analyze �-ascending and �-descending chains of equivalence re-
lations.

Definition 3.8 Let EA D hA˛ j ˛ < ˇi be a sequence of sets. We say that EA
converges, if for every x there is an ˛ < ˇ such that either x 2 A for all ˛ �  < ˇ
or x … A for all ˛ �  < ˇ. If EA converges, then we define the limit of EA to be the
set

lim
˛!ˇ

A˛ D
[
˛<ˇ

\
˛�<ˇ

A :

If ˇ D 0 or ˇ D ˛ C 1, then EA automatically converges. Namely, lim!0A D ;,
and lim!˛C1A D A˛ . Trivially, if EA is increasing (in the inclusion relation), then
EA converges with limit

S
˛<ˇ A˛ , and if it is decreasing, then it converges with limit
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˛<ˇ A˛ . It is easy to see that if EA is a convergent sequence of equivalence relations

on a set I , then lim EA is also an equivalence relation on I .
We will apply the following facts in the proofs of the first two main results. They

follow directly from the above remarks and the transitivity of “�”.

Observation 3.9 Let hE˛ j ˛ < �i be a sequence of equivalence relations on �.

1. If E � Eˇ holds for all  < ˇ < �, then hEˇ j ˇ < ˛i converges for all
˛ < � and limˇ!N̨ Eˇ � limˇ!˛ Eˇ holds for all N̨ � ˛ < �.

2. If Eˇ � E holds for all  < ˇ < �, then hEˇ j ˇ < ˛i converges for all
˛ < � and limˇ!˛ Eˇ � limˇ!N̨ Eˇ holds for all N̨ � ˛ < �.

We are now ready to apply our methods and constructions in order to prove the main
theorem of this section.

Theorem 3.10 (Under Assumption 1.8) For every function s W � �! �nf0g, there
is a sequence of partial orders hP s j 0 <  < �i such that the following statements
hold for each 0 < ˛ < �.

1. P s˛ preserves cardinals and cofinalities and adds no new �-sequences.
2. P s˛C1  “�.G/ D s.˛/”.
3. If ˛ is a limit ordinal, then P s˛  “�.G/ D 1”.
4. If ˇ < ˛, then P s˛ extends P s

ˇ
(in the sense that P s˛ Š P s

ˇ
� Q, for some

poset Q).

Moreover, if t W � �! � n f0g, and s �  D t �  for some 0 <  < �, then
P s D P t .

Proof For a given s W � �! .� n f0g/, let s C 1 be the function with domain �
defined by s C 1.˛/ D s.˛/ C 1, as usual. We construct a sequence hE˛ j ˛ < �i
of equivalence relations on � by defining the nontrivial equivalence classes of each
relation. For ˛ < �, a subset Z � � is a nontrivial equivalence class of E˛ if and
only if one of the following conditions holds:

1. Z D .s C 1/�.ˇ/, for some ˇ < ˛,
2. s.˛/ D 1 and Z D .s C 1/�.˛/,
3. s.˛/ > 1 and Z is the active segment of .s C 1/�.˛/ of order type s.˛/C 1.

It is easy to check that the following claims hold for all ˛ < �.

Claim 1 E˛ is bounded and either active or inactive. Moreover, ht.E˛/ D
s.˛/.

Claim 2 For all ˇ < ˛, Eˇ � E˛ . In particular, hEˇ j ˇ < ˛i converges and
E�˛ D limˇ!˛ Eˇ is a bounded equivalence relation on �.

For each ˛ < �, we define P s˛ D CE�˛ . These forcings satisfy the first property of the
theorem by the first statement of Theorem 1.10. By the first part of Observation 3.9,
if ˇ < ˛ < �, then E�

ˇ
� E�˛ and we can use Observation 2.4 to see that the forcings

satisfy the last property of the theorem.
Let ˛ < �. We have E�˛C1 D E˛ and therefore P s˛C1DCE˛  �.G/Dht.E˛/D

s.˛/. If ˛ is a limit ordinal, then it is not hard to show that E�˛ D limˇ!˛ Eˇ DS
ˇ<˛ Eˇ D EsC1˛ holds and this means P s˛ D C

E
sC1
˛

 �.G/ D ht.EsC1˛ / D 1,
because EsC1˛ is an inactive bounded equivalence relation on �.
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Finally, if s �  D t �  for s; t 2 �� and  < �, then we also have
s� �  D t� �  and it is easy to check that the above construction yields the
same equivalence relations Eı for all ı <  . Since E� D limı! Eı , the resulting
E� coincide, and therefore P s D P t .

4 Consecutive Ground Models

In this section, we prove the second main result.

Theorem 4.1 (Under Assumption 1.8) For every ordinal � < �, there is a notion
of forcing Q� with the following properties.

1. Q� preserves cardinals and cofinalities and adds no new �-sequences.
2. Q�  “�.G/ D 1”.
3. In every Q�-generic forcing extension the following holds.

For every sequence s W � �! .� n f0g/ there exists a decreasing sequence of
ground models hM s

˛ j 0 < ˛ < �i such that for all 0 < ˛ < � the following
statements hold.
(a) M s

˛C1 ˆ “�.G/ D s.˛/”.
(b) If ˛ is a limit ordinal, then M s

˛ ˆ “�.G/ D 1”.
Moreover, if t W � �! .� n f0g/, then s.˛/ D t .˛/ implies M s

˛C1 D M s
˛C1

for all ˛ < � and M s
� DM

t
� for all limit ordinals � < �.

Before proving this theorem, we would like to comment on the first-order express-
ibility of its statement. It is by now a well-known fact that every ground model is
uniformly definable in a parameter (see [4]). Even this fact, though, may at first not
seem to be first-order expressible. But here is a simple way to state it: There is a
first-order formula '.x; y/ in the language of set theory3 such that the following is
provable in ZFC:

.8P /.8z/

�
.P is a partial order and zDP .P

C

// H) P  LVDfx j '.x; z/g
�

Vice versa, given a set z, it is a simple matter to check whether fx j '.x; z/g is a ZFC
model of which the universe is a forcing extension. So point (3) of the theorem can
be expressed by saying that for every sequence s W � �! � n f0g, there is a sequence
hz˛ j 0 < ˛ < �i of sets such that, for all 0 < ˛ < �, M s

˛ WD fx j '.x; z˛/g is
a ground model and (a), (b) hold as stated. Formulating the additional requirement
in (3) doesn’t pose a problem either. So let’s turn to the proof.

Proof of Theorem 4.1 Let t W � �! � denote the function with constant value
� C 2, and let t� be the function given by Lemma 3.5. We define E to be the
bounded, sealed equivalence relation Et

�
on �; that is,

�E�, � D � _ .9˛ < �/�; � 2 t�.˛/:

Set Q� D CE . By Theorem 1.10 and Lemma 3.3, Q� satisfies the first and the
second statements.

Let VŒG� be a Q�-generic extension and let s W � �! .� n f0g/ be a sequence
in VŒG�. By the above remark, s is already an element of V and we can make the
following definitions there.
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For ˛ < �, we define an equivalence relation E˛ on � by specifying that Z � �
is a nontrivial equivalence class of E˛ if and only if one of the following conditions
holds:

1. Z D t�.ˇ/, for some ˛ < ˇ < �,
2. s.˛/ D 1 and Z D t�.˛/,
3. s.˛/ > 1 and Z is the active segment of t�.˛/ of order type s.˛/C 1.

Again, the following claims are obvious for all ˛ < �.

Claim 1 E˛ is bounded and either active or inactive. Moreover, ht.E˛/ D s.˛/.

Claim 2 For all ˇ < ˛, E˛ � Eˇ . In particular, hEˇ j ˇ < ˛i converges and
E�˛ D limˇ!˛ Eˇ is a bounded equivalence relation on �.

For each ˛ < �, we define P s˛ D CE�˛ and M s
˛ D VŒG \ P s˛�. By the second part of

Observation 3.9, if ˇ < ˛ < �, then E�˛ � E
�
ˇ

and we can use Observation 2.4 to
see that the sequence hM s

˛ j ˛ < �i of ground models is decreasing.
Let ˛ < �. We have E�˛C1 D E˛ and Observation 3.7 yields P s˛C1 D CE˛

 �.G/ D ht.E˛/ D s.˛/. If ˛ is a limit ordinal, then E�˛ D limˇ!˛ Eˇ DT
ˇ<˛ Eˇ , because the sequence hEˇ j ˇ < ˛i is decreasing. As a result, the non-

trivial equivalence classes of E�˛ are precisely the sets ft�.ˇ/ j ˛ � ˇ < �g and this
shows that E�˛ is an inactive bounded equivalence relation on �. By Observation 3.7,
P s˛ D CE�˛  �.G/ D ht.E�˛ / D 1.

If s.˛/ D s0.˛/ for some s; s0 W � �! .� n f0g/ and ˛ < �, then the above con-
struction produces the same equivalence relationE˛ for both functions and therefore
the same model M˛C1 D VŒG \ CE˛ �. Finally, by the above analysis, the equiv-
alence relation E�� D limˇ!� Eˇ is the same for all s W � �! .� n f0g/ and limit
ordinal � < �.

5 The Mix

In this section, we are producing models of set theory, where a given sequence of
nonzero ordinals can be realized as the height of the automorphism tower of G in
consecutive models such that the next one is a forcing extension or a ground model
of the previous one, as desired. There are some limitations on the possible patterns,
and to formalize them precisely, we introduce the notion of a realizable prescription.

Definition 5.1 A function s W � �! .� n f0g/ � 2 is a prescription on �. It
is realizable if the set of ˛ < � such that .s.˛//1 D 0 is not stationary, and if
.s.0//1 D 1.4

The interpretation is that the first coordinate of s.˛/ gives the desired height of the
automorphism tower of G in the .˛ C 1/st model, and the second coordinate says
whether the .˛C 1/st model should be a forcing extension or a ground model of the
˛th model.

Theorem 5.2 (Under Assumption 1.8) For every realizable prescription s on �,
there is a sequence EE WD hE˛ j ˛ < �i of bounded equivalence relations on � with
the following properties:

1. For every limit � < �, EE�� is convergent. For ˛ < �, set

M˛ D VClimˇ<˛ Eˇ :
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2. For every ˛ < �, �.G/M˛C1 D .s.˛//0.
3. If ˛ < � is a limit ordinal, then �.G/M˛ D 1. Of course, M0 D V, so
�.G/M0 D 0.

4. For every ˛ < �, the following is true:
(a) If s.˛/1 D 0, then M˛C1 is a ground model of M˛ , and
(b) if s.˛/1 D 1, then M˛C1 is a forcing extension of M˛ .

Proof Let a realizable prescription s be given. Let C � � be a club of ˛
with .s.˛//1 D 1 such that 0 2 C . Let fC W � >> C be the monotone
enumeration of C . Given ˇ < �, let i.ˇ/ be that ordinal less than � such that
ˇ 2 ŒfC .i.ˇ//; fC .i.ˇ/ C 1//. Let t be the function with domain � defined by
setting t .˛/ D .s.˛//0 C 1.

For ˇ < �, we define an equivalence relation Eˇ on � by specifying its nontrivial
equivalence classes. Namely, X is a nontrivial equivalence class of Eˇ if and only if
one of the following holds:

D.1. There is an ˛ < ˇ such that .s.˛ C 1//1 D 1 and X D t�.˛/.
D.2. There is an ˛ < ˇ such that .s.˛ C 1//1 D 0 and X is the trimmed segment

of t�.˛/.
D.3. There is an ˛ 2 .ˇ; fC .i.ˇ/C 1// such that .s.˛//1 D 0 and X D t�.˛/.
D.4. .s.ˇ//0 > 1 and X is the active segment of t�.ˇ/ of order type t .ˇ/ (which

is .s.ˇ//0 C 1), or .s.ˇ//0 D 1 and X D t�.ˇ/.
This defines the sequence hEˇ j ˇ < �i of equivalence relations. Obviously, each
Eˇ is bounded. IfEˇ is active, then its active equivalence class is the active segment
of t�.ˇ/ of order type .s.ˇ//0C1. In particular, inMˇC1 D VCEˇ , �.G/ D .s.ˇ//0.
IfEˇ is not active, then .s.ˇ//0 D 1, Eˇ is inactive, and inMˇC1, �.G/ D .s.ˇ//0,
as well.

We have to show the sequence has the desired properties. To this end, we verify
the following claims.

Claim 1 For every ˛ � �, the sequence hEˇ j ˇ < ˛i converges. Let E�˛ denote its
limit.

Proof of .1/ Fix a limit ordinal ˛ � �. Let ; ı < � be given. We have to find N̨ < ˛
such that either for all ˇ 2 . N̨ ; ˛/, Eˇ ı holds, or for all ˇ 2 . N̨ ; ˛/, Eˇ ı fails. This
is trivial if  D ı, and it is also trivial if there is no � < ˛ such that E�ı holds. But
if there is such a �, then this means that ; ı 2 t�.�/, for some � < fC .i.�/C 1/—
this is easily confirmed by looking at the definition of E� above. If � < ˛, then for
all ˇ; ˇ0 2 .�; ˛/, Eˇ ı ” Eˇ 0 (again, this is easily checked by referring to
the clauses D.1–D.4 defining the equivalence relations), so we can let N̨ D �. But
if � � ˛, then this means that t�.�/ is a nontrivial equivalence class of E� due to
condition D.3, so � 2 .�; fC .i.�/C 1/. But then, for all ˇ 2 Œ�; ˛/, i.ˇ/ D i.�/,
and again, by D.3, t�.�/ will be a nontrivial equivalence class of Eˇ . So in this case,
we can set N̨ D �. �.1/

It is also easy to see that in case ˛ is a limit, E�˛ is inactive, so that in VCE�˛ ,
�.G/ D 1.

Claim 2 For ˛ < � with .s.˛//1 D 0, it follows that E˛ � E�˛ .

Proof of (2) Note that if .s.˛//1 D 0, then ˛ 2 .fC .i.˛//; fC .i.˛/ C 1/, since
˛ … C . There are two cases to consider here.
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The first case is that ˛ is a limit ordinal. In that case, it follows that the only
disagreement between E�˛ and E˛ is that the ˛th nontrivial equivalence class of E�˛
is t�.˛/, while the ˛th nontrivial equivalence class of E˛ is the active segment of
t�.˛/ of order type .s.˛//0 C 1. So E˛ � E�˛ .

The second case is that ˛ is a successor ordinal, say ˛ D N̨ C 1. In this case,
E�˛ D E N̨ , and we have to show that E˛ � E N̨ . Since ˛ 2 .fC .i.˛//; fC .i.˛/C 1/,
it follows that the ˛th nontrivial equivalence class of E N̨ is t�.˛/, while the ˛th non-
trivial equivalence class ofE˛ is the active segment of t�.˛/ of order type .s.˛//0C1
(using clause D.4 in the definition of E˛ and clause D.3 in the definition of E N̨ ).
Moreover, the N̨ th nontrivial equivalence class of E N̨ is the active segment of t�. N̨ /
(by clause D.4 in the definition ofE N̨ ), and the N̨ th nontrivial equivalence class ofE˛
is the trimmed segment of t�. N̨ / (by clause D.2 in the definition of E˛). E˛ and E N̨
agree about the other nontrivial equivalence classes, so it follows that E˛ � E N̨ , as
desired. �.2/

Claim 3 If ˛ < � is such that .s.˛//1 D 1, then E�˛ � E˛ .

Proof of (3) As in the proof of Claim (2), we distinguish two cases. The first case
is that ˛ is a limit ordinal. As before, E˛ and E�˛ agree about the  th equivalence
classes. The ˛th equivalence class of E˛ is the active segment of t�.˛/ of order type
.s.˛//0C1, while for  2 t�.˛/, fg D Œ�E�˛ . E˛ andE�˛ agree about the other non-
trivial equivalence classes, which are of the form t�.ˇ/, for ˇ 2 .˛; fC .i.˛/C 1//.
So E�˛ � E˛ , as claimed.

In the second case to consider, ˛ is a successor ordinal, say ˛ D N̨ C 1. So
E�˛ D E N̨ , and we have to show that E N̨ � E˛ . The ˛th nontrivial equivalence class
ofE˛ is the active segment of t�.˛/ of order type .s.˛//0C1 (using clause D.4 in the
definition of E˛), and for  2 t�.˛/, fg D Œ�E N̨ . The N̨ th nontrivial equivalence
class ofE N̨ is the active segment of t�. N̨ / (by clause D.4 in the definition ofE N̨ ), and
the N̨ th nontrivial equivalence class of E˛ is t�. N̨ / (by clause D.1 in the definition
of E˛). E˛ and E N̨ agree about the other nontrivial equivalence classes, so that it
follows that E N̨ � E˛ , as desired. �.3/

This finishes the proof of the theorem.

6 The Effect of Closed Maximality Principles

It was shown in [1, Section 3.3] that Closed Maximality Principles imply the exis-
tence of groups with malleable automorphism tower heights. The Lightface Closed
Maximality Principle at a regular cardinal �, MP<�-closed.f�g/, says that every state-
ment about � that can be forced by <�-closed forcing in such a way that it stays
true in further forcing extensions obtained by <�-closed forcing is already true in
the ground model. It is a scheme of first-order statements involving � as a parameter.

It might be viewed as a defect in the previous results of this article that in The-
orems 4.1 and 5.2, one first has to pass to a forcing extension in order to be able to
change the height of the automorphism tower of G by passing to ground models. But
of course, there is no way around it, if one just makes our assumption }�C.Cof�/C
2<� D �. This assumption holds in L, and there is no way to pass to a proper ground
model of L.

But it is one of the merits of Maximality Principles that they imply that there are
many ground models. For example, the statement “the universe is a nontrivial forc-
ing extension of a ground model” can be forced to be true, and once true, it stays
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true in further forcing extensions—see [1, Section 6] for the relevance of this obser-
vation. The hope is that we get groups for which we may realize a given sequence
of ordinals as the automorphism tower heights in consecutive grounds without being
required to pass to a forcing extension in the first step. So let’s replace }�C.Cof�/
in our assumption by MP<�C-closed.f�

Cg/, meaning that our revised assumption now
reads as follows.

Assumption 6.1 � is a regular, uncountable cardinal such that
1. 2<� D �;
2. MP<�C-closed.f�

Cg/ holds.

By [1, Theorem 3.15] and the coding of trees into graphs mentioned in the Introduc-
tion, this assumption implies that there is a sequence E� D h�˛ j ˛ < �Ci of pairwise
nonisomorphic connected rigid graphs such that for any equivalence relation E on
�C (not just any bounded one) there is a partial order PE that preserves cofinalities
and cardinalities and is able to realize E on E� . Here is the version of Theorem 4.1
using Maximality Principles.

Theorem 6.2 (Under Assumption 6.1) There is a group H such that
1. �.H/ D 1;
2. for every function s W �C �! .�C n f0g/ there exists a decreasing sequence

of ground models hM s
˛ j 0 < ˛ < �

Ci such that for all 0 < ˛ < �C the
following statements hold:
(a) M s

˛C1 ˆ “�.H/ D s.˛/”.
(b) If ˛ is a limit ordinal, then M s

˛ ˆ “�.H/ D 1”.
Moreover, if t W �C �! .�Cnf0g/, then s.˛/ D t .˛/ impliesM s

˛C1 DM
s
˛C1

for all ˛ < �C and M s
� DM

t
� for all limit ordinals � < �C.

Proof We adopt the proof of [3, Theorem 3.1]. The argument works as follows:
First force with the <�C-closed partial order Q to add the sequence ET of Souslin
trees. Q consists of conditions q D htq˛ j ˛ < �Ci such that for all but � many ˛,
t
q
˛ D ;, and for all ˛, tq˛ is an initial segment of the ˛th Souslin tree to be added.

The ordering is the obvious one—the forcing can be viewed as a product of the Jech
partial order to add a Souslin tree. The sequence ET will consist of rigid, mutually
nonisomorphic �C-Souslin trees and, if E� is the sequence of rigid, pairwise non-
isomorphic graphs coding the trees as described before Theorem 1.10, then every
equivalence relation on �C can be realized on E� by a cofinality and cardinality pre-
serving notion of forcing.

Now, in a second step, we force to a model where a maximal equivalence rela-
tion E on �C is realized on E� . This will be a model from which we can pass down
to consecutive grounds in order to realize the desired patterns of automorphism tower
heights. We follow the construction in Theorem 4.1, but this time, we don’t need to
be as careful as before, since we can realize every equivalence relation. On the other
hand, we have to set things up a little differently, since our equivalence classes will
have to have order type �C. Since this is a limit ordinal, the notion of a sealed
equivalence class has to be changed slightly.

The maximal equivalence relation E on �C has the equivalence classes fC˛ j
˛ < �Cg, where

C˛ D f�˛; �� j � < �
C
g:
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So E has �C many equivalence classes each of which has order type �C. We’ll
define a group H so that in a slightly changed sense, E is sealed with respect to H.
Thus, we define permutation groups hP˛ j ˛ < �Ci so that

(i) P�˛;0� D .F0; �0/,
(ii) P�˛;1� D .F1; �1/,

(iii) P�˛;2� D .F1; �1/,
(iv) P�˛;3Cˇ� D .Fˇ ; �ˇ /, for ˇ < �C.

Let H be defined relative to hP˛ j ˛ < �Ci and ET like G was defined relative to
h.G˛; ˝˛/ j ˛ < �i and the sequence of Souslin trees we worked with before.

Now, in VŒ ET �, let PE be the following variant of the usual forcing to realize E
on E� : It consists of sequences of the form p D hp�˛;�� j ˛; � < �p; � ¤ 3i, where
�p < �C and for each ˛; � < �p , � ¤ 3, there is a � < �C such that p�˛;��
is an isomorphism between T�˛;3�j.� C 1/ and T�˛;��j.� C 1/, the restrictions of
these trees to levels less than or equal to � . The ordering is by pointwise inclusion.
The reason for choosing �˛; 3� instead of min.C˛/ is that we want the forcing
that realizes the equivalence relation with nontrivial equivalence classes of the form
C˛ n .�˛; 3�C 1/ to be completely contained in PE . For the active segment of C˛
of order type  < �C will now be the set f�˛; 3C �� j � < g.

Assuming that 2<� D � and 2� D �C it was shown in [3, Lemma 3.12] that
PE realizes E on E� . These assumptions follow from our current working Assump-
tion 6.1 (MP<�C-closed.f�

Cg/ implies that 2� D �C; see [1, Section 3]). Moreover,
Q � PPE has a dense suborder that is <�C-closed, as was shown in [3], Proof of
Lemma 3.12. So, letting I be PE -generic over VŒ ET �, what needs to be shown now is
that the statements (1) and (2) of the theorem are <�C-closed-necessary in VŒ ET �ŒI �.
For then, the existence of a group satisfying the statements (1) and (2) is<�C-closed-
forceably necessary. The only parameter occurring in these statements is �C, so that
it follows by MP<�C-closed.f�

Cg/ that they are true, finishing the proof.
So let P 2 VŒ ET �ŒI � be <�C-closed, and let G be P -generic over VŒ ET �ŒI �. First,

note that each T˛ is a rigid �C-Souslin tree in VŒ ET �ŒI �ŒG�. This is because this is
the case in VŒ ET �ŒI �, and that property of T˛ is <�C-closed-necessary (since it is
˘1
1 .H�C/ in T˛—see [1, Lemma 3.5]). More generally, forcing with P won’t add

any isomorphisms between �C-Souslin trees, for the same reason. So in VŒ ET �ŒI �ŒG�,
E is still realized on E� . In particular, statement (1) holds, since every equivalence
class of E is “sealed,” in the obviously modified sense, and the proof of Lemma 3.3
still works in this situation.

The proof of statement (2) is very similar to the proof of Theorem 4.1: Given
a function s W �C �! .�C n f0g/, define a sequence of equivalence relations
hE˛ j ˛ < �Ci by specifying that Z is a nontrivial equivalence class of E˛ if
and only if one of the following holds:

(i) Z D Cˇ , for some ˇ 2 .˛; �C/,
(ii) s.˛/ D 1 and Z D C˛ ,

(iii) s.˛/ > 1 and Z D f�˛; 3C �� j � < s.˛/g.

Letting E�˛ D limˇ!˛ Eˇ , the desired sequence of ground models will be given by
M˛ D VŒ ET �ŒPE�˛ \ I �, for ˛ > 0, and, of course, M0 D VŒ ET �ŒI �ŒG�. So in passing
fromM0 toM1, all of the forcing P is undone. The verifications that this sequence of
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models has the desired properties work as before, with the necessary, straightforward
modifications in the proofs of Lemma 3.3 and 3.4 caused by the change of the notion
of “active” and ‘sealed” equivalence classes.
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Notes

1. By a graph (without further qualification), we mean a nondirected graph.

2. Remember that a sealed subset of � must have order type at least 5. This is why we require
s.˛/ > 1 here.

3. Of course, this existential quantification can be eliminated by writing down the formula '
explicitly, but the details of its definition are irrelevant for our purposes.

4. Here, we use the following notation for components of ordered pairs: .hx; yi/0 D x,
.hx; yi/1 D y.
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