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A Silver-like Perfect Set Theorem with
an Application to Borel Model Theory

Joël Combase

Abstract A number of results have been obtained concerning Borel structures
starting with Silver and Friedman followed by Harrington, Shelah, Marker, and
Louveau. Friedman also initiated the model theory of Borel (in fact totally Borel)
structures. By this we mean the study of the class of Borel models of a given first-
order theory. The subject was further investigated by Steinhorn. The present
work is meant to go further in this direction. It is based on the assumption that
the study of the class of, say, countable models of a theory reduces to analyzing
a single ω1-saturated model. The question then arises as to when such a model
can be totally Borel. We present here a partial answer to this problem when the
theory under investigation is superstable.

The editors are grateful to Sedki
Boughattas and Jean-Pierre Ressayre
for their efforts to bring this paper
posthumously into publication. A
tribute to the author can be found in
Section 9.

1 Introduction

This work is organized as follows. In Section 2, we introduce a notion of depen-
dence, which generalizes that of a pregeometry and then we state the Silver-like
theorem, to the effect that if we suppose the dependence notion is coanalytic then
every analytic set which contains an uncountable independent set contains a perfect
one. Section 3 points out a number of corollaries. Section 4 reviews the basics of
the Gandy-Harrington topology. In Section 5, we supply the proof of the theorem.
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It boils down to checking that Harrington’s proof of Silver’s theorem carries over
to the relevant situation. In Section 6, we remind the reader of the required facts
concerning stable theories. Section 7 extends the facts of Section 6 when instead of
models of a stable theory we consider structures of the following form: the quotient
of M0 under an equivalence relation E , where 〈M0, E〉 is a model of a stable theory;
the extension is proved under a strong Borelness assumption on 〈M0, E〉. This is
used as a lemma in Section 8, which proves the model theoretic result of this article:
an ω1-saturated, totally Borel model of a superstable theory is saturated.

2 Statement of the Main Lemma

In this section, we state a generalization of Silver’s theorem on the number of equiv-
alence classes of a coanalytic equivalence relation. The proof is postponed until
Section 5.

2.1 Let X be a set and suppose D = (Dn)n is a family of relations with
Dn ⊆ Xn , for each integer n ≥ 0. Given A ⊆ X , [A]D will denote the D-
closure of A, that is, the set of x ∈ X such that (x, x1, . . . , xn) ∈ Dn+1, for some
x1, . . . , xn ∈ A. Also, we write [x1, . . . , xn] for [{x1, . . . , xn}]D .

2.2 Let X and D = (Dn)n as above. D is said to be a notion of dependence on
X if, for all A ⊆ X ,

1. A ⊆ [A]D ,
2. if x, y 6∈ [A]D , then

x ∈ [A ∪ {y}]D iff y ∈ [A ∪ {x}]D.

D is a pregeometry if it satisfies the additional condition
3. [A]D = [[A]D]D.

Let D = (Dn)n be a notion of dependence on X . (x1, . . . , xn) ∈ Xn is a D-free
sequence if x1 6∈ [x2, . . . , xn]D , . . . , xn−1 6∈ [xn]D and xn 6∈ [∅]D . S ⊆ X is a
D-free set if every finite sequence of distinct members of S is D-free.

A subset S of A spans A if A ⊆ [S]D . A is finitely spanned if it is spanned by a
finite D-free set. Note that a D-free subset of A spans A if and only if it is a maximal
D-free subset of A.

As is well known, free sets behave nicely when we restrict ourselves to prege-
ometries. More precisely, if D is a pregeometry, any two D-free sets spanning the
whole space have the same cardinality, which is called the dimension of the space.
We now introduce a weakening of the concept of pregeometry, where the dimension
is no longer well defined.

2.3 Let D = (Dn)n be a notion of dependence; D is said to satisfy EFSW
(“Every Finitely Spanned set has Weight”) if

for every finitely spanned set A ⊆ X , there exists a positive integer N such
that every D-free subset of A has cardinality ≤ N .

The smallest such integer is called the weight of A and, when it exists, A is said to
have weight.

By Subsection 2.2, every pregeometry satisfies EFSW. The conserve is false.
Some typical counterexamples will be described in Section 3. The full strength of
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this condition will be made use of when we investigate the model theory of super-
stable theories.

2.4 D = (Dn)n is said to be a 0-notion of dependence on X if D is a notion of
dependence on X and Dn is in 0, for all n. Here, 0 is a class of point sets such as
11

1, 61
1 , 11

1(x), and so on, if X = N (= ωω) or Borel, analytic, and so on, if X is an
arbitrary Polish space. Here is our Silver-like perfect set theorem.

Lemma 2.1 (Main Lemma) Let D = (Dn)n be a 51
1 notion of dependence on N .

If D satisfies EFSW, then there exists a set H ⊆ N , depending only on D, such that
1. H is 51

1;
2. every D-free subset of H is countable;
3. for every 61

1 subset S of N , either S ⊆ H or S contains a perfect, D-free
subset.

Note that if every free set is countable, H = N works. Also, if [A]D = A for every
A, H = the set of hyperarithmetical reals does the job.

The proof will easily be seen to relativize, thus yielding the following classical
version.

Corollary 2.2 (Main Corollary) Let D = (Dn)n be a coanalytic notion of depen-
dence on a Polish space X. If D satisfies EFSW, then every analytic subset of X
containing an uncountable D-free set has a perfect D-free subset.

3 Some Easy Corollaries

The main lemma trivially implies a variety of perfect set theorems. We collect here
some typical examples.

Corollary 3.1 (Silver) Let E be a coanalytic equivalence relation on N = ωω,
equipped with the usual product topology; then, either the quotient set N /E is count-
able or there exists a perfect subset of N , any two elements of which are pairwise
inequivalent.

Proof Define
1. Do = D1 = ∅;
2. for n ≥ 1, (x, x1, . . . , xn) ∈ Dn+1 iff x Ex1 or . . . or x Exn ;
3. D = (Dn)n .

The family D is a coanalytic pregeometry. �

Corollary 3.2 (Kuratowski-Mycielski) Let X be the set R of real numbers, construed
as a vector space over the field Q. If S ⊆ R is an analytic subset of R, then either S is
K -dimensional for some K ≤ ω, or S contains a perfect set of linearly independent
points over Q. In particular, there exists a perfect subset of R, the elements of which
are linearly independent.

Proof This is Exercise (19.2) of [7]; here we can deduce it from the main result by
using the remark that follows. Define

1. Do = ∅;
2. D1 = ∅;
3. for n ≥ 1, (x, x1, . . . , xn) ∈ Dn+1 iff ∃ α, α1, . . . , αn ∈ Q s. t. α 6= 0 and

αx +
∑

αi xi = 0;
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4. D = (Dn)n .

D is Borel pregeometry. �

The following result was proved in [2].

Corollary 3.3 (van Engelen, Kunen, Miller) Let X = R2 and suppose S ⊂ X is
analytic. Then either S is covered by countably many lines or S contains a perfect
set, no three points of which are collinear.

Proof Set

1. 10 = ∅,
2. (z, z1, . . . , zn) ∈ 1n+1 iff z ∈ {z1, . . . , zn},

and define

1. if n 6= 3, Dn = 1n ,
2. (z, z1, z2) ∈ D3 iff z1 6= z2 and z, z1, z2 are collinear,
3. D = (Dn)n .

Clearly, D is a notion of dependence.
We contend that D is Borel. To see this, note that the question as to whether

z = (x, y) , z1 = (x1, y1), z2 = (x2, y2) are collinear reduces to solving for α and β
the following system of linear equations.

αx + βy = 1
αx1 + βy1 = 1
αx2 + βy2 = 1

 (S)

Hence,

(z, z1, z2) ∈ D3 iff ∃α, β ∈ Q(x, y, x1, y1, x2, y2) such that (S) holds true.

This shows that D is Borel.
Moreover, if A is a D-free set of cardinality n, there are n(n − 1)/2 lines through

two points of A. Moreover, if B ⊆ [A]D is D-free, it cannot have more than 2 points
lying on the same line among those listed above. Thus, B contains at most n(n − 1)
points. This shows that D satisfies EFSW. �

The proof of Corollary 3.3 presented in [2] is not easy to generalize. The one given
above is, as shown by the following result.

Corollary 3.4 Let X = R2 and suppose S is an analytic subset of X. Then either
S is covered by countably many lines or S is covered by countably many conics or
S contains a perfect set, no three points of which are collinear and no six points of
which lie on the same conic.

Proof Define

1. Dn = 1n , if n 6= 3, 6;
2. (z, z1, z2) ∈ D3 iff z1 6= z2 and z, z1, z2 are collinear;
3. (z, z1, . . . , z5) ∈ D6 iff the zi s are distinct and there exists a conic through

(z, z1, . . . , z5);
4. D = (Dn)n .

Clearly, D is a notion of dependence.
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Testing whether six given points lie on a single conic amounts to solving a system
of six linear equations with five unknowns. Arguing as above, we conclude that D is
Borel.

Suppose a D-free subset A of X has n members. By imitating again the proof of
the preceding corollary, it is easily shown that any other D-free set spanning [A]D
has at most n(n − 1) + 5

(n
5
)

members. Hence, D satisfies EFSW. �

4 Preliminaries on the Gandy-Harrington Topology

In this section, we review the basics of the Choquet Space Theory together with
the Gandy-Harrington topology (see [4]). We follow closely [12] and [5] and also
state and prove a straightforward generalization of a theorem of Louveau concerning
Choquet spaces (3.3).

4.1 Let X be a Hausdorff space. The Choquet game on X is a two player game
which runs as follows. Player ∅ chooses a nonempty open set V0. Then player ¬∅
chooses a nonempty open set V1 ⊆ V0. Then player ∅ chooses a nonempty open set
V2 ⊆ V1, and so on. ∅ wins if

⋂
{Vi ; i < ω} = ∅. Otherwise, ¬∅ wins. X is a

Choquet space if ¬∅ has a winning strategy for the Choquet game on X .

4.2 We now present some well-known facts about Choquet spaces that will be
needed in the sequel.

1. If V is an open subset of a Choquet space, then V is Choquet.
2. The Baire category theorem holds for Choquet spaces: no open subset of a

Choquet space is meager.
3. The product of two Choquet spaces is Choquet.
4. The Kuratowski-Ulam theorem carries over to Choquet spaces; in other

words, the following are equivalent, whenever X is Choquet and R ⊂ X2 has
the Baire property:
(A) { x ∈ X; {y ∈ X; (x, y) ∈ R} is comeager in X } is comeager in X ;
(B) R is comeager in X2;
(C) { y ∈ X; {x ∈ X; (x, y) ∈ R} is comeager in X } is comeager in X .

5. Complete metric spaces and compact Hausdorff spaces are Choquet.

4.3 First, we introduce some terminology. Given a set X , we define (X)n to be
the set of length n sequences from X whose components are pairwise distinct. A
regular family I = (In)n on X is a collection such that In ⊆ (X)n . If I = (In)n is a
regular family, a subset A of X is I -free if (A)n

⊆ In , for all n.
Sn is the set of permutations of {1, . . . , n}; for R ⊆ (X)n , R′ denotes the set of

(x1, . . . , xn) ∈ (X)n such that (xπ(1), . . . , xπ(n)) ∈ R, for some π ∈ Sn and Ř is
defined to be R − (Xn

− R)′. Call R ⊆ (X)n symmetric if (xπ(1), . . . , xπ(n)) ∈ R
whenever π ∈ Sn and (x1, . . . , xn) ∈ R. Clearly,

1. R′ and Ř are symmetric,
2. R ⊆ R′ and Ř ⊆ R,
3. if R is a closed, nowhere dense subset of Xn , so is R′,
4. if R is an open, dense subset of Xn , so is Ř.

Theorem 4.1 Let X be a perfect, second countable, Choquet space refining a met-
ric space and let I = (In)n be a regular family on X. If each In is a comeager subset
of the product space Xn , then there exists a perfect, I -free subset of X.
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Proof This is close to the Kuratowski-Mycielski Theorem, see (19.1) in [7]. Here
it is natural to prove it in the following way. Fix the metric on X ; since the Ins are
comeager, for all n, one can find a family (I k

n )k of dense, open subsets of Xn such
that ⋂

{I k
n ; k < ω} ⊆ In .

Define Jm ⊆ (X)2m
by (x1, . . . , x2m ) ∈ Jm if and only if ∀n ≤ m ∀i1, . . . , in such

that 1 ≤ i1 < . . . in ≤ 2m
∀k ≤ m we have (xi1 , . . . , xin ) ∈ Ǐ k

n . It is easily seen that

1. Jm is dense, open in X2m
;

2. Jm is symmetric.
Let (Un)n be a countable basis for X and suppose σ is a winning strategy for the
Choquet game on X . After fixing enumerations {s1, . . . , s2n } of {0, 1}

n for each
n < ω we build a family Vs , s ∈ {0, 1}

<ω of nonempty open sets such that
(1) Vs1 × · · · × Vs2n ⊆ Jn ;
(2) if s ∈ {0, 1}

n , diam Vs ≤ 1/2n ;
(3) if n is odd and s ∈ {0, 1}

n , then Vs ⊆ σ(Vs(0), . . . , Vs(n−1));
(4) Vs∗0, Vs∗1 are disjoint for all s.

This is done inductively. Suppose Vss are already constructed for s ∈ {0, 1}
n . We

define for 1 ≤ i ≤ 2n , Ui = σ(Vsi (0), . . . , Vsi (n−1)). Then pick disjoint V ′

i , V ′′

i ⊂ Ui
of diameter < 2n such that V ′

1 × V ′′

i × · · · × V ′

2n × V ′′

2n ⊂ Jn+1. This is possible
because X is perfect, Jn+1 is open, dense and so Jn+1

⋂
(U 2

1 ×· · ·×U 2
2n ) is open. �

4.4 Our main tool will be a specific Choquet space, known as the Gandy-
Harrington topology. We now state the basic facts on the subject. (See, e.g., [13] or
[5] for a more detailed account of this material, together with references.) As usual,
N = ωω. N n is endowed with two distinct topology structures.

1. Tn : the open sets are (necessarily countable) unions of 61
1 subsets of N n .

2. Tn is T × · · · × T n times, where T = T1.
Both Tn and Tn define a second countable Choquet space on N n .

The following fact has been singled out by Louveau. It unravels the connection
between Tn and Tn .

Theorem 4.2 If A ⊆ N is comeager (with respect to T ) and R ⊆ N n is 61
1 and

nonempty, then An
∩ R 6= ∅.

Proof Let A be comeager and let R ⊆ N n be 61
1 . There exists a decreasing family

(Vn)n<ω of dense, open subsets of N (with respect to T ) such that

B =

⋂
{Vn : n < ω} ⊆ A.

Set
Ai

n = N i−1
× Vi × N n−i .

Then
1.

⋂
{Ai

k : 1 ≤ i ≤ k, k < ω} = Bn
⊆ An ;

2. each Ai
n is dense, open with respect to Tn ; this is because if S ⊆ N n is 61

1
and 6= ∅, the relation S′ defined by S′(x) if and only if ∃x1 . . . xi−1xi+1 . . . xn
such that S(x1, . . . , xi−1, x, . . . , xn) is 61

1 and nonempty;
3. R is nonempty and open with respect to Tn ; thus, by the Baire Category

Theorem for the topology Tn , R ∩ Bn
6= ∅ and so, R ∩ An

6= ∅. �
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5 Proof of the Main Lemma

5.1 From here until the end of this section, we assume

D = (Dn)n is a 51
1 notion of dependence on N satisfying EFSW.

Also “free” means D-free, [.] is short for [.]D , and so on.

5.2 We introduce an auxiliary definition. Let A ⊆ X be finitely spanned and
let N be the height of A. Then the weak closure of A, denoted by 〈A〉, is the set of
x ∈ X such that x ∈ [x1, . . . , xN ], for all free (x1, . . . , xN ) ∈ AN .

Fact 5.1 Let A be finitely spanned. Then

(1) A ⊆ 〈A〉 ⊆ [A],
(2) 〈A〉 is finitely spanned,
(3) if A is 61

1 , then 〈A〉 is 51
1.

5.3 Define

1. A = {〈A〉 : A is nonempty, finitely spanned, 61
1 subset of N };

2. H =
⋃

A;
3. H c

= N -H .

Fact 5.2

(1) H is 51
1;

(2) every free subset of H is countable.

Proof of (1) First, we claim that

H =

⋃
{〈A〉 : A is nonempty, finitely spanned, 11

1 subset of N }.

To see this, let A be a finitely spanned, 61
1 subset of N . By Fact 5.1(1), A ⊆ 〈A〉.

Moreover, by Fact 5.1(3), A and N −〈A〉 are both 61
1 . Thus, the effective separation

theorem supplies a 11
1 set B such that A ⊆ B and B ∩ (N − 〈A〉) = ∅. This proves

the claim.
From the claim, it follows that x ∈ H if and only if ∃A ∈ 11

1 such that

(i) ∃N∀y1, . . . , yN+1 ∈ A [(y1, . . . , yN+1) is not free],
(ii) x ∈ 〈A〉.

Upon applying the Spector-Gandy theorem (see p. 245 of [14]), we conclude that H
is 51

1. �

Proof of (2) Let X be a free set contained in H . Then

X =

⋃
{ X ∩ B : B ∈ A }

Moreover, X ∩ B is finite for every B ∈ A and A is countable. �

Lemma 5.3 Let S ⊆ N be 61
1 and put A = H c

∩ S; if A 6= ∅, then, for all n, the
set

Rn = { (x1, . . . , xn) ∈ An
: (x1, . . . , xn) is free }.

is comeager with respect to Tn .
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Proof By Fact 5.2(1), A is 61
1 . Thus, so is Rn ; moreover, Tn is a Choquet topology

extending the standard Baire topology. As proved in [7] p. 153–54 (where it is ex-
pressed in terms of Banach-Mazur and Choquet games) this implies that Rn has the
property of Baire with respect to this topology.

Moreover,

Rn = { (x1, . . . , xn) ∈ An
: (x1, . . . , xn−1) is free and xn 6∈ [x1, . . . , xn−1] }.

Hence, by the Kuratowski-Ulam Theorem for Choquet spaces, it suffices to show
that the set

A ∩ [x1, . . . , xn−1]

is meager in A whenever x1, . . . , xn−1 ∈ A.
Suppose the contrary and pick x1, . . . , xn−1 ∈ A such that [x1, . . . , xn−1] ⊂ A

is not meager in A. [x1, . . . , xn−1] ⊂ A is 5˜ 1
1 and A is 61

1 . Arguing as above, we

conclude that A ∩ [x1, . . . , xn−1] has the property of Baire with respect to T.
It follows from this that an open set B of T can be found such that
(i) [x1, . . . , xn−1] ∩ A ⊆ B ⊆ A;

(ii) [x1, . . . , xn−1] ∩ A is comeager in B.
However, D satisfies EFSW. Thus [x1, . . . , xn−1] has height. Let N be the height of
this set. By Theorem 4.2 in Subsection 4.4 , we know that

[x1, . . . , xn−1]
N+1

∩ RN+1 6= ∅.

This yields a free subset of [x1, . . . , xn−1] whose cardinality is greater than N , a
contradiction. �

5.4 Proof of the Main Lemma Suppose S ⊆ N is 61
1 and contains an uncountable

free subset. By Fact 5.2(2) A = H c
∩ S is nonempty. Using Lemma 5.3, we derive

from this that for all n, Rn ∩ An is comeager in the open set An with respect to Tn .
Moreover, every {x} ∈ 61

1 lies in H and so, A contains no isolated point. Thus, the
requirements for applying Theorem 4.1 in Section 4 are met. This yields a perfect
free subset of S.

6 Preliminaries on Stable Theories

The reader is assumed to have some acquaintance with stability theory. The main
reference is, of course, [15]. More friendly approaches can be found in several text-
books. We suggest [11]. [8] gives an updated treatment together with important new
results. We proceed to remind the reader of a few basic facts that will be needed in
the subsequent part of this article.

6.1 From here on,
1. L is a countable, recursive language,
2. M is a structure for L ,
3. T = Th(M) is the first-order theory of M,
4. |M| is the universe of M.

Also, if A ⊆ |M|, Lm(A) denotes the set of formulas of L with parameters in A and
free variables among the list v1, . . . , vm . Sm(A) is the set of complete types over A
(so, every p ∈ Sm(A) is a subset of Lm(A)). A partial m-type over A is a consistent
subset of Lm(A). If x = (x1, . . . , xm) ∈ |M|

m , the type of x over A ⊆ |M| denoted
by tp(x/A) is the set of formulas ϕ = ϕ(v1, . . . , vm) of Lm(A) such that M |H ϕ(x).
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We extend these notions to the case where m = ω. We will drop mention of m when
it is clear from the context.

6.2 Let B = { yi : i < ω } ⊆ |M|. We do not distinguish between the set B
and the sequence (yi : i < ω). Let A ⊆ |M| and B ∈ |M|

ω and suppose 8 = 8(v)
is a partial type over A ∪ B; 8 divides over A if there exists an elementary extension
M′ of M and an infinite set { Bi : i < ω } of A-indiscernibles such that

1. tp(Bi/A) = tp(B/A) for all i < ω,
2.

⋃
{ tp(Bi/A) : i < ω } is inconsistent.

The following fact was proved by Kim in his Ph.D dissertation. We will use it as a
definition of forking. See [8] for the full statement together with a proof.

Theorem 6.1 If T is stable, A ⊆ |M|, B ∈ |M|
ω and 8 = 8(v) is a partial type

over A ∪ B, then 8 forks over A if and only if 8 divides over A.

6.3 We shall also need the following basic result, a proof of which can be found
in [11].

Theorem 6.2 Let T be stable and suppose M is ω1-saturated. For every A ⊆ |M|

and every p ∈ S(A), there exists a countable subset A0 of A such that p is the
unique nonforking extension of p � A0 over A. Here p � A0 is the type over A0
whose members are the formulas of p with parameters in A0.

6.4 Recall that a theory is superstable if, whenever M is a model of T , A is a
subset of |M| and p is a complete type over A, there exists a finite subset A0 of A
such that p does not fork over A. Every superstable theory is stable.

Fact 6.3 Suppose T is superstable, let A ⊆ |M|, and let x ∈ |M|
n . Then there ex-

ists N such that for every k < ω, if {y1, . . . , yk} is an A-independent set of pairwise
distinct tuples from |M| and for every i , (1 ≤ i ≤ k) tp(yi |A ∪ {x}) forks over A
then k ≤ N .

A proof of this important result can be found in any good book on stability theory,
for example, [11].

6.5 We now present a specific type of notion of dependence. Assume
(i) M is a structure for a countable language,

(ii) T = Th(M) is the first-order theory of M,
(iii) A ⊆ |M|.

Definition 6.4

1. Dk,A
0 = ∅;

2. For x, x1, . . . , xn ∈ |M|
k ,

(x, x1, . . . , xn) ∈ Dk,A
n+1 iff tp(x |B) forks over A

where B denotes the extension of A by the coordinates of (x1, . . . , xn);
3. Dk,A

= (Dk,A
n )n .

Fact 6.5

(1) If T is stable, then Dk,A is a notion of dependence and the Dk,A-free sets are
precisely the A-independent sets of k-tuples in the sense of stability theory.
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(2) If T is superstable, Dk,A satisfies EFSW.

Proof (1) is a direct translation of the exchange principle for forking in a model of
a stable theory. (2) follows from (1) and from Fact 6.3. �

Nota Bene: the case k = 1 will suffice when we shall use the notion of dependence
Dk,A in Section 8.

7 Prestructures and Borel over Borel Structures

7.1 Assume
1. L is a first-order language,
2. M0 is a structure for L ,
3. E is an equivalence relation on |M0|.

M = 〈M0, E〉 is a prestructure for L if the axioms for equality hold true when
the nonlogical symbols of L are interpreted using M0 and the equality symbol is
interpreted by E . Suppose M = 〈M0, E〉 is a prestructure for L; define

1. for x ∈ |M0|, x̃ is the equivalence class of x modulo E ,
2. for x = (x1, . . . , xn) ∈ |M0|

n , x̃ is (x̃1, . . . , x̃n),
3. for A ⊆ |M0|

n , Ã is the image of A under x 7→ x̃ ,
4. the factor structure M̃ is the structure for L whose universe is |M0|/E and

where the nonlogical symbols are given the natural interpretation.
Let M = 〈M0, E〉 be a prestructure for L and suppose ϕ = ϕ(v1, . . . , vn) is a
formula of L with free variables among the list v1, . . . , vn . For x1, . . . , xn ∈ |M0|,
set

M |H ϕ(x1, . . . , xn) iff M̃ |H ϕ(x̃1, . . . , x̃n).

This defines the satisfaction relation for the prestructure M; also, let

ϕM
= {(x1, . . . , xn) : M |H ϕ(x1, . . . , xn)};

the relation R = ϕM on |M0| is said to be defined by ϕ in the prestructure M; we also
refer to such relations as (parameter-free) predefinable relations in M. Predefinable
relations with parameters from some set A ⊆ |M0| are defined similarly.

7.2 We now extend the notions of Borel and totally Borel structure, as defined
in [3] or [16], to make the best of the theory developed thus far. Recall that M0 is a
Borel structure for L if

1. |M0| = ωω;
2. every nonlogical symbol is interpreted in M0 by a Borel object.

Suppose further that every L-definable relation on ωω is Borel. Then M0 is said to
be a totally Borel structure.

Let M = 〈M0, E〉 be a prestructure; M is a Borel prestructure if M0 is a Borel
structure and E is a Borel equivalence relation. If, in addition to this, every prede-
finable relation in M is Borel, M is said to be a totally Borel prestructure. The factor
structure M̃ is totally Borel over Borel if M is a totally Borel prestructure.

Fact 7.1 Let M = 〈M0, E〉 be a totally Borel prestructure and suppose A ⊆ ωω

(= |M0|) is countable. For x, x1, . . . , xn ∈ (ωω)k and if B is the extension of A by
the coordinates of x1, . . . , xn , the condition

tp(x̃ |B̃) forks over Ã
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defines a Borel relation on (ωω)k . As a result, the family Dk,A is Borel, for all
countable A.

Proof Let A = {yi ; i〈ω} ⊆ ωω, where the yi s are pairwise inequivalent modulo E .
It follows from Subsection 6.2 that the question as to whether

tp(x̃ | Ã ∪ {x̃1, . . . , x̃n}) forks over Ã

reduces to deciding whether a uniquely defined first-order theory, obtained from the
theory of 〈M0, E, x, x1, . . . , xn, y0, y1, . . . 〉 by adding a countable set of individual
constants together with a given set of axioms is consistent. Since M is totally Borel,
this expresses a Borel condition on x, x1, . . . , xn, y0, y1, . . . . �

7.3 The foregoing facts can be rephrased in terms of notions of dependence on
a prestructure. Assume

1. M = 〈M0, E〉 is a totally Borel prestructure;
2. T = Th(M̃);
3. A ⊆ ωω (= |M0|) is countable.

X ⊆ (ωω)k is transversal if it does not contain two distinct k-tuples (x1, . . . , xk),
(y1 . . . , yk) such that xi Eyi for each i .

Definition 7.2

1. Dk,A
0 = ∅.

2. for x, x1, . . . , xn ∈ (ωω)k , (x, x1, . . . , xn) ∈ Dk,A
n+1 iff (x̃, x̃1, . . . , x̃n) ∈ Dk, Ã

n+1.
3. Dk,A

= (Dk,A
n )n .

Fact 7.3

(1) Dk,A is Borel.
(2) If T is stable, then Dk,A is a notion of dependence. Every Dk,A-free set is a

transversal and its image under x 7→ x̃ is Ã-independent in M̃ in the sense of
stability theory.

(3) Conversely, if T is stable, X is a transversal and X̃ is Ã-independent in M̃,
then X is Dk,A-free.

(4) If T is superstable, then Dk,A satisfies EFSW.

Proof

(1) Follows from Fact 7.1 proved in Subsection 7.2.
(2) In view of Fact 6.5(1), it is left to show that Dk,A-free sets are transversals.

To see this, note first that, for D a notion of dependence, A ⊆ [A]D . This
implies that any D-free sequence (x1, . . . , xn) must have no repetition. In
particular,

(x, x1 . . . , xn) ∈ D1,A
H⇒ (x̃, x̃1 . . . , x̃n) ∈ D1, Ã

H⇒ M̃ |H ¬x̃ = x̃i for all 1 ≤ i ≤ n

H⇒ M̃ |H x 6E xi for all 1 ≤ i ≤ n.

A similar statement holds true when Dk,A is substituted for D1,A.
(3) This is clear.
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(4) This follows from Subsection 6.5 and the observation (Remark 5.6.5, p. 283
of [1]) that every finitely generated part of a model of a superstable theory
has finite weight. �

8 Forking in Totally Borel Models of a Superstable Theory

8.1 The chief purpose of this section is to establish a result on the saturated mod-
els of superstable theories using the machinery developed in the preceding sections.
Some preliminary remarks are in order.

Let T be an ω1-categorical theory and let M be the unique model of T in power
c = 2ω. M is known to be saturated. Moreover, Friedman’s completeness theorem
(see [3] or [16]) implies that, up to isomorphism, M is totally Borel. Thus, there
are some theories having a totally Borel, saturated model. A moment’s thought will
convince the reader that the class of theories having such a model is fairly rich, as
classifiable theories in the sense of Shelah [15] tend to be of that kind.

However, there are also some theories having no model of this kind. For ex-
ample, let T be a theory implying that there exists a total ordering of the universe
(e.g., Peano arithmetic or the theory of real closed fields). Then T cannot have a
totally Borel over Borel ω1-saturated model. This follows from a result of Shelah [6]
to the effect that a Borel total ordering has no chain of length ω1.

Moreover, other theories lie somewhere between these two simple cases. For
example, let T be the theory of atomless Boolean algebras and let B = P (ω)/fin,
where P (ω) is equipped with the usual Boolean operations and fin is the ideal of
finite sets. Clearly, B |H T .

Example 8.1 B is totally Borel over Borel.

To prove this, identify P (ω) with {0, 1}
ω and let E0 be the equivalence relation

defined by x E0 y if and only if x(n) = y(n) for all sufficiently large n. Set
M = 〈P (ω), E0〉. Then B = M̃, which proves the desired result.

Example 8.2 B is ω1-saturated.

See [9], 5.5.

Example 8.3 B is not ω2-saturated. Thus, if ω1 < c, B is not saturated.

This follows from a well-known result of Hausdorff to the effect that B has an
(ω1, ω

∗

1)-gap (see [10], Chap. II, ex. 2.4).
Of course, the theory of atomless Boolean algebras is not stable. The following

result shows that a model of a superstable theory cannot exhibit the same pattern
as B.

Theorem 8.4 Let M be a totally Borel over Borel model of a superstable theory. If
M is ω1-saturated, then M is saturated.

This section is devoted to proving this fact. First we need a lemma. (This is where
our main lemma in Section 2 comes into the picture).

Lemma 8.5 Let T be superstable and let M̃ be a totally Borel over Borel model of
T . Suppose further that Ã is a countable subset of |M̃| and that p̃ is a type over Ã.
If p̃ is realized by an uncountable, Ã-independent set, then p̃ is realized by an Ã-
independent set of power c.
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Proof of the Lemma Assume
1. M̃ is the factor structure of some totally Borel prestructure M = 〈M0, E〉,
2. Ã is the image under x 7→ x̃ of some countable A ⊆ ωω

= |M0|,
3. there exists some p which is a type over A in the sense of prestructure theory

and such that
p̃ = {ϕ(v, x̃) : p ` ϕ(v, x)},

4. S is the set of realizations of p in M.

Suppose further that S̃ contains an uncountable set X̃ which is Ã-independent. We
can assume that X is a transversal. Hence, by Fact 7.3(3), X is Dk,A-free, where k is
the number of variables of the type p. Moreover, by Fact 7.3(1), Dk,A is Borel and
by Fact 7.3(2) and 7.3(4), Dk,A is a notion of dependence satisfying EFSW. Thus,
the main lemma (Lemma 2.1 in Section 2.4) implies that the Borel set S contains a
perfect Dk,A-free subset P . P has cardinality c. Therefore, by Fact 7.3(2), P̃ has
also cardinality c. Also, by the same token, P̃ is Dk, Ã-free, which implies that it is
Ã-independent. �

We now complete the proof of Theorem 8.4.

Proof of the Theorem Let B be a subset of M̃ of cardinality k < c and suppose p
is a type over B with one variable. We show that p is realized in M̃.

First notice that B can be assumed to contain an elementary substructure of M̃.
This implies that p is stationary (i.e., it has a unique nonforking extension on ex-
tensions of B). By stability theory, there exists a countable subset A of B such that
p0 = p � A is stationary.

Since M̃ is ω1-saturated, there exists an uncountable A-independent subset X of
M̃ whose elements realize p0. By Lemma 8.5, X can be assumed to have cardinality
c.

Let F ⊆ B be finite. Define X F = {a ∈ X; tp(a/A ∪ F) forks over A}. By
stability theory, X F is countable (in fact, we can use Fact 6.3 in Subsection 6.4 to
show that it is finite). Now, set

Y = ∪{X F ; F is a finite subset of B}

and pick a ∈ X − Y . This is possible because Y has power k < c = power of X .
tp(a/B) is a nonforking extension of p0. Therefore, since p0 ⊆ p is stationary,
tp(a/B) = p. Hence, a realizes p. �

9 Final Remarks

The time has come to give questions and perspectives beyond the paper. The ref-
eree asked whether the last theorem holds when superstability is reduced to stability.
Velickovic suggested to reexamine the work using the methods introduced by Miller
in place of the Gandy-Harrington topology (for an account of Miller’s alternative
approach, we suggest his five “Paris Lectures,” available on his home page at the
Westfälische Wilhelms-Universität Münster, Germany). The author Joël Combase
had a whole program to pursue the investigation of Borel model theory under as-
sumptions related to stability, but he died without writing down his conclusion. The
friends who took care that his work be published want to replace the missing part by
a final “adieu.”

http://wwwmath.uni-muenster.de/persdb/show_perspage.php?id=674
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Joël Combase, 1947–2010

Joël was accepted as a graduate student at Stanford University, due to his brilliant
undergraduate career in Paris University. In 1984 he obtained a Ph.D. under the
guidance of J. Barwise and S. Feferman and returned to France where he became
a teacher in the philosophy department at La Sorbonne. He taught philosophy with
emphasis on mathematical logic to his students all his life except in the long peri-
ods where he was too ill to work. His lessons in logic where fascinating. . . for those
who were good enough to follow. One of these students, now professor at the Uni-
versity of Lausanne, is certain that he would have missed his love and vocation for
mathematical research if Combase had not been his teacher in philosophy. Joël used
to explain to the members of the Equipe de Logique his mathematical ideas, which
always bore the distinctive mark of his personal approach to logic. To those who
became his friends, he has made an unforgettable impression by his intelligence,
melancholy, and kindness.
JP Ressayre
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