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The Block Relation in Computable Linear Orders

Michael Moses

Abstract The block relation B(x, y) in a linear order is satisfied by elements
that are finitely far apart; a block is an equivalence class under this relation.
We show that every computable linear order with dense condensation-type
(i.e., a dense collection of blocks) but no infinite, strongly η-like interval
(i.e., with all blocks of size less than some fixed, finite k) has a computable copy
with the nonblock relation ¬B(x, y) computably enumerable. This implies that
every computable linear order has a computable copy with a computable non-
trivial self-embedding and that the long-standing conjecture characterizing those
computable linear orders every computable copy of which has a computable
nontrivial self-embedding (as precisely those that contain an infinite, strongly
η-like interval) holds for all linear orders with dense condensation-type.

1 Introduction

Particularly attractive results of mathematical logic are those that establish an equiv-
alence between the (syntactic) definability of a mathematical property in a particular
mathematical language and the (semantic) “algebraic” characteristics of that prop-
erty. Representative of these results is the famous result of Ash and Nerode [1] in
which (under certain “extra decidability” conditions) a relation is shown to be in-
trinsically computable in a computable mathematical structure (meaning that it is
computable in every computable copy of that structure) if and only if it and its com-
plement are definable in the structure by computable 61 Lω1ω formulas. Charac-
terizing the other side of the coin, intrinsically noncomputable relations (for which
no computable copy of the structure exists in which the relation is computable) has
proven more difficult; the defining formulas required will be complex. Tools such as
the “separator” construction of Jockusch and Soare [9] and other techniques used to
analyze the degree spectra of relations and structures suggest approaches that were
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not evident before. The main result of this paper was arrived at as part of a continu-
ing project along those lines; it implies (see Corollary 1) that there is no computable
linear order all of whose nontrivial self-embeddings are intrinsically noncomputable.

A computable linear order L is one with universe N on which the order relation
<L is computable. By a computable copy of a linear order (or an order type) un-
der discussion we will mean a computable linear order that is isomorphic (but not
necessarily computably isomorphic) to the linear order in hand. The block relation
BL(x, y) is that satisfied by elements x, y for which the L-interval [x, y] (or [y, x]

if y <L x) is finite. In one of the earliest results about these structures, Denisov
(see Goncharov and Nurtazin [7]) and Tennenbaum (see Rosenstein [13]) showed
independently that there is a computable linear order of type ω + ω? in which the
block relation is not computable. In [5] Feiner established the existence of a com-
putable linear order no computable copy of which has the block relation computable,
and in [12] Moses characterized intrinsically computable relations on linear orders
(showing that the Ash-Nerode characterization holds for linear orders without the
need for “extra decidability” conditions).

The main result of this paper establishes that every computable linear order with
dense condensation-type but no infinite, strongly η-like interval has a computable
copy with computably enumerable nonblock relation. The condensation-type of a
linear order is the order-type of its “finite condensation,” that is, the linear order
obtained by factoring out by the block relation, clumping each block into a single
point. (See Rosenstein [13] for further details.) A linear order (or interval in a linear
order) is η-like if it is infinite but contains no infinite block; it is strongly η-like if, in
addition, all its blocks are smaller than some fixed, finite k.

In [4] Dushnik and Miller observed that every countably infinite linear order has
a nontrivial self-embedding. The characterization of linear orders every computable
copy of which has a computable nontrivial self-embedding remains open, despite
repeated salvos and despite the straightforward and long-standing conjecture (Kier-
stead [10]): every computable copy of a computable linear order has a computable
nontrivial self-embedding if and only if the linear order contains an infinite, strongly
η-like interval. The main result of this paper establishes (see Corollary 2) that this
conjecture holds for linear orders whose condensation-type is dense. (This extends
slightly a recent result of Downey, Kastermans, and Lempp [3] in which the char-
acterization is shown to hold for all η-like linear orders.) It also establishes (see
Corollary 3) the corresponding characterization for the class of computable linear
orders with computably-enumerable nonblock relation: every copy in this class has
a computable nontrivial self-embedding if and only if the linear order contains an
infinite strongly η-like interval.

2 The Main Result

Theorem 1 Every computable linear order of condensation-type η with no infi-
nite, strongly η-like interval has a computable copy with computably enumerable
nonblock relation.

Proof Let L be a computable linear order of condensation-type η with no infinite,
strongly η-like interval; we shall construct a computable linear order M with com-
putably enumerable nonblock relation and an isomorphism f : L → M .
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Preliminary definitions Consider the universe N of L as being enumerated in
stages, one element at a time, with Ls denoting the finite linear order enumerated
by stage s, on {1, 2, . . . , s}, ordered according to L’s computable order relation <L .
(We take the liberty of leaving 0 out of N so that n is the nth element of N, which ob-
viates some unnecessary, and perhaps confusing, pedantry in what follows.) We will
construct a computable copy M of L by enumerating its universe N in stages (usu-
ally several elements at each stage), with order relation <M derived from L , which
order will never subsequently be changed, thus making M a computable linear order.
We will also enumerate at each stage some pairs of M-elements into M’s nonblock
relation ¬BM (x, y), which enumeration will never subsequently be withdrawn (thus
making it computably enumerable). We will also define at each stage s a partial
function f s

: Ls
→ Ms , which sequence of functions will define the isomorphism

f : L → M as the limit along a particular subsequence of stages; that is, we will
define an infinite subsequence of stages s1, s2, s3, . . . such that, for each a in L and
b in M , f si (a) and ( f si )−1(b) will remain unchanged for all but finitely many i ,
which limiting values are defined to be f (a) and f −1(b).

Our strategy to make M isomorphic to L while keeping ¬BM (x, y) computably
enumerable is straightforward: at each stage of our construction we will seek to
define an image in M for each L-block and enumerate pairs of M-elements into
¬BM (x, y) if they lie in images of different L-blocks. We will access those L-blocks
via their least-block-elements, that is, the N-least element of each block in L , defined
by the 52 formula

∀y <N x ∀k ∃z >N k ((y <L z <L x) ∨ (x <L z <L y)).

We will use a computable binary relation R(x, y) that underlies this 52 formula (in
the sense that n is a least-block-element if and only if R(n, y) holds for infinitely
many y); an L-element n appears to be a least-block-element at stage s (we will
say that n is on at that stage) if R(n, s) holds. The true least-block-elements in
L , and only the true least-block-elements, will be on at infinitely many stages. As
observed in Jockusch [8], we can select the R(x, y) so that, for each n, there will
be infinitely many stages at which the elements from among 1, 2, 3, . . . , n that are
on are precisely the true least-block-elements from among those first n L-elements.
Our construction will at each stage seek, for the L-elements n that are on, an image
in M for n’s block in L , of the right size and in the right location. The image of an
L-block whose least-block-element is off (i.e., not on) will need to be incorporated
into another M-cluster that is enumerated subsequently (so as not to compromise
¬BM (x, y)), and incorporated whole, ready to come back to life when (if) that least-
block-element next comes back on. The fact that every infinite interval in L contains
arbitrarily large blocks is just what we need in order to accomplish this: a large
enough true block will eventually appear where we need it in order to incorporate the
image of an L-block whose least-block-element is off. Some delicacy, nothing too
onerous, is required to identify the true L-block whose image in M will incorporate
this fallow M-cluster.

The image in Ms of the L-block around the least-block-element n will carry an
identifying label. This labeled cluster of elements will be contiguous in Ms and
will remain so (as long as the cluster carries the label): no element will ever be
introduced into the cluster other than at the margins. Since we can guarantee only that
a true least-block-element n will appear on infinitely often (not that it will appear on
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cofinitely often), we will need to preserve the image of its block through those stages
when it is off. During those stages we will seek to incorporate this M-cluster labeled
for n into images of other L-blocks, causing this cluster to take on additional labels
for some other seeming least-block-elements, which labels will be shaken off when n
next comes back on. Elements that are jettisoned in this way will never subsequently
return to the M-cluster, thus maintaining the integrity of M’s nonblock relation. So,
for each true least-block-element n of L , the image in M of the L-block around n
will (after a few false starts) develop as a contiguous cluster of labeled elements in
M , which may contain within it another labeled cluster, denoting the fallow image
in M of the block around an L-element that was once on but is no longer (which
may contain another fallow block within it, and so on), and will, during those stages
when n is off, become temporarily incorporated into other larger labeled clusters,
which labels will subsequently be shaken off. This image for n’s block will grow
and shrink according to the current size of n’s block in L , our approximation at each
stage (which we define a couple of paragraphs below) to the final L-block around
n, which is, unfortunately, no better than 62-definable. We will, moreover, need to
manage not just the size of the image: if the L-block around n turns out to be infinite
(i.e., one of ω, ω?, or ζ ), we must ensure that its image will be a block of the same
order type.

We will use a modified version of the usual 52 guessing tree to drive our construc-
tion: the standard part imagined as branching downward, with branching at level n
denoting the guess as to whether or not n is indeed a true least-block-element in L ,
with the left branch denoting the positive guess and the right branch the negative
guess. The (finite) path that is on at stage s is the one from the root to the sth level
that branches left at each level n if n is on at stage s and branches right otherwise.
The (infinite) true path is the one that branches left at each level n precisely if n is
a true least-block-element in L . We have the usual features: for each level n, the
true path is the leftmost one that coincides infinitely often with the on path at the
first n levels. Our construction will mesh finitely many separate constructions, one
along each path of an initial segment of the tree, acting along the on path at each
stage and using as labels on clusters in M the node σ at which those labels were
created, which labeled M-cluster will denote the image of the L-block around the
element that σ references. As it is, however, this tree is too simple for our purposes:
as described, it will produce an image in M , of the right size and in the right lo-
cation, for each L-block around a true least-block-element; it will, however, leave
scattered throughout M the fallow images of L-blocks centered around elements
that once seemed to be least-block-elements but are no longer. In order to incorpo-
rate into these constructions the search for an appropriate preimage for each fallow
M-cluster, that is, an L-block centered around a true least-block-element into whose
image we can incorporate the fallow M-cluster, we will expand our 52 guessing tree
by adding immediately below each level n two additional sublevels (described three
paragraphs below), which levels will be dynamic, in that the L-elements referenced
by those nodes will (may) change as the construction progresses.

The block at stage s around an L-element n (a potential least-block-element) is
defined to be the contiguous cluster of Ls-elements around n extending as far as
possible on both sides without including any element N-less than n, nor any element
that was enumerated into L at or after the last stage (previous to s) when n was on
(or stage 1 if n was never on), nor any element (other than n) that came on at or
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after the last stage when n was on. This is the collection of elements that, under the
assumption that n is a least-block-element, stands a chance at stage s of being part of
n’s (true) block. There is, of course, no guarantee that they will remain contiguous
as the L-enumeration continues, nor even that they are members of n’s (true) block.
Notice that there is a block at stage s around each Ls-element n (of size one, if
not larger) and that, if m is not a true least-block-element, the block around m will
eventually stop changing, and will then be a subblock of the (true) block around
m (centered around some least-block-element n). And, if n is a true least-block-
element and m is truly in n’s block, then, after finitely many stages, m and all of
m’s block will always be in n’s block (there will come a stage after which no new
elements are enumerated between m and n and after which no elements between m
and n are ever on). Notice also that, if m and n are in separate blocks in L , there will
be infinitely many stages at which they will not be members of each other’s blocks
(since infinitely often there will be points between them that are on). Unfortunately,
it could well happen that they also will be members of each other’s blocks infinitely
often; we must make sure that this does not inhibit the growth of the separate images
in M of their separate blocks in L . Finally note that our definition allows adjacent
blocks in Ls to overlap.

As mentioned previously, our main concern will be to incorporate every fallow M-
cluster into the image of a true L-block. The fallow M-cluster around an M-element
n is the cluster defined by all the labels that n carries of nodes on paths to the left of
the node σ at which we are acting, that is, the cluster of elements around n that also
carry (any one of) those labels. Any preimage that we find for n while acting at σ
must incorporate wholly, into a single L-block, all of this fallow M-cluster around n
(in anticipation of it coming back on at some later stage). If n carries no such labels
(of nodes left of σ ), then there is no fallow M-cluster for us to worry about; however,
rather than set up separate machinery to handle this simpler case, we will consider
the singleton n, by itself, to be the fallow M-cluster around n.

The search for a preimage for the fallow M-cluster around n will begin rather
simply: we will identify the size of the block that we need (the current size of the
fallow M-cluster) and the L-interval (between the L-blocks around higher priority
elements) in which we need it. We will maintain an ordered list of contiguous se-
quences of L-elements of the required size within this interval, adding new contigu-
ous sequences to the right end of the list as they are enumerated into L and removing
from the list those sequences that are no longer contiguous (within which a new L-
element has been introduced). The leftmost on this list will be the selected preimage
at that stage. Notice that, since every infinite interval in L contains arbitrarily large
blocks, the selected preimage will, after a finite number of stages, settle on a truly
contiguous sequence of L-elements suitable for use as the preimage for the fallow
M-cluster around n.

Since our construction is centered around least-block-elements, we will need to
identify the least-block-element in L within whose block this selected preimage lies.
We will maintain an ordered list of possible least-block-elements consisting of all i
that are N-less than the N-least element of the selected preimage (no other i could
possibly be the least-block-element whose block contains that preimage). We will
order the i on the list according to the last time that a new element was introduced
between i and the selected preimage, moving i to the right end of the list each time a
new element is introduced between i and the selected preimage (ordering them as in
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N if there is more than one such i being moved). Notice that, for a particular selected
preimage, this procedure will eventually identify, as the leftmost element in this list
that appears on infinitely often, the true least-block-element i in L whose block truly
contains that selected preimage. This i will eventually cease being moved to the right
end of the list and any elements to its left on the list will be in i’s L-block, that is,
the same block as the selected preimage, but will not be true least-block-elements
and, consequently, will eventually cease appearing on. We manage this procedure
by splitting our 52 guessing tree according to this list of all the i that could possibly
be the least-block-element whose L-block contains the selected preimage, which
splitting will be dynamic in that the i that these nodes will reference will (may)
change from stage to stage. As noted, the i’s referenced by the leftmost of these
nodes will eventually cease changing, and one of them, the true least-block-element
whose block contains the selected preimage, will appear on infinitely often.

An obvious problem will occur if the true least-block-element i so identified
(whose block contains the selected preimage) turns out to be an n of higher pri-
ority. The L-block around that n will already have an image in M and M’s nonblock
relation ¬BM (x, y) will not allow us to incorporate the fallow M-cluster into that
existing image. So we need to make sure that the selected preimage for the fallow
M-cluster is not contained within the blocks around the higher priority n. We do this
by identifying a pair p, q of true least-block-elements within the appropriate interval
in L (strictly between the higher priority n) and conducting our search for a preimage
within the L-interval [p, q]. In order to settle on one such pair p, q we will maintain
an ordered list of pairs p, q of L-elements (ordered according to when the pair was
introduced into L) that lie within the appropriate interval between higher priority
n, working at each stage within the interval defined by the leftmost pair on this list
both of whose elements are on. Notice that, for a particular set of higher priority n,
this procedure will identify, as the leftmost pair on this list that appears on infinitely
often, a pair p, q of true least-block-elements (within which infinite interval [p, q]

we are guaranteed to find a preimage that is not part of the block around any higher
priority n). All the pairs to the left of p, q will eventually cease appearing on and
the preimage searches conducted between those pairs will be abandoned; all preim-
age searches conducted between pairs to the right of p, q will be rescinded the next
time p, q comes on. We manage this procedure with another branching of our 52
guessing tree, with the nodes referencing in the order that they were enumerated into
L , from left to right, the p, q in the above-mentioned list, and conduct a search as
described in the previous paragraph within each interval [p, q] for a preimage for
the fallow M-cluster and for the true least-block-element i whose block contains the
selected preimage. The pairs p, q that these nodes reference will not change but new
nodes will be added to the right end as new elements are enumerated into L .

This then is our 52 guessing tree, with three sublevels for each n: branching
at sublevel-one, if necessary, to manage the search for an image in M for the L-
block around the least-block-element n. Each node at the previous level will have
a binary split at sublevel-one for n denoting the guess as to whether n is a true
least-block-element in L (left branch) or not (right), that is, whether or not n is
on. Branching at sublevels two and three, if necessary, to manage the search for a
preimage in L for the fallow M-cluster around n: each of the nodes from sublevel-
one will split at sublevel-two into finitely (but unboundedly) many branches denoting
the ordered list of all pairs p, q that lie in Ls between the higher priority elements
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between whose images the M-element n lies, and within which interval [p, q] we
will seek to identify a preimage for the fallow M-cluster around n. Each of these
sublevel-two nodes p, q will split at sublevel-three into finitely (but unboundedly)
many branches denoting the ordered list of possibilities for the least-block-element
i within [p, q] whose block contains the selected preimage. Note that these second
and third sublevels are dynamic in that the number of branches at sublevel-two will
increase as more pairs p, q become enumerated between the higher priority elements
(although the p, q that each node references will not change), and the L-elements i
referenced by the nodes at sublevel-three will change as elements are introduced into
L between i and the selected preimage (although the number of branches will not
change). Branching at these three sublevels for n occurs only if necessary: if n in
L is already referenced by an earlier sublevel-three node on the branch (as a least-
block-element i whose block contains the preimage for some M-element m <N n),
we do not need the sublevel-one binary split for n. Similarly, branching at sublevels
two and three for n occurs only if the M-element n does not already carry the label
of some earlier node on the branch. The on path through this tree at stage s is defined
in the obvious way: the left or right branch of the sublevel-one binary split for each
n ≤N s depending on whether or not n is on at stage s, followed by the leftmost
sublevel-two pair p, q that are both on (if any), followed by the leftmost sublevel-
three i that is on (if any). Note the “if any”: the on branch at stage s will not extend
beyond sublevel-one for an n if no p, q for that M-element n is on, and not extend
beyond sublevel-two if no suitable i within that [p, q] is on. Note also that, since
the fallow M-cluster around n is determined by (the labels from nodes on branches
to the left of) the node p, q at which we’re acting, we can give a precise definition
of the on path at each stage only later, as part of the description of our construction.
For the same reason, the existence of the true path, the leftmost infinite path whose
initial segments will coincide with the on path infinitely often, can be established
only after the description of our construction.

So we imagine our 52 guessing tree as a subtree of the infinite tree branching
downward from the root with three sublevels for each n = 1, 2, 3, . . . : a binary split
at sublevel-one for n (from each of the sublevel-three nodes for n − 1), followed
by an ω split from each of these nodes at sublevel-two, followed by another ω split
from each of these nodes at sublevel-three. Our 52 guessing tree will employ at
each stage a finite, left-most collection of these nodes at each level. If branching at
sublevel-one (or sublevels two and three) for an n is unnecessary, we imagine our
tree as taking the leftmost branch, with that sublevel-one node referencing no L-
element n (or the sublevel-two node referencing no p, q and the sublevel-three node
no i), merely providing a path through to the next level. Otherwise, our guessing tree
will include the nodes at sublevels one, two, and three as described in the previous
paragraph. We will drive the constructions described in the previous paragraphs
along each path of this dynamic 52 guessing tree, acting along the on path at each
stage. The infinite true path will be the leftmost one whose initial segments coincide
with the on path infinitely often. Construction along paths to the left of the true path
will eventually cease; construction along paths to the right will always subsequently
be rescinded; only the construction along the true path will drive inexorably forward.
The only nodes σ at level n that will be used as labels are sublevel-one nodes (to label
the image in M of the L-block around the least-block-element n referenced by σ )



296 Michael Moses

and sublevel-three nodes (to label the image in M of the L-block around the least-
block-element i that σ references, which image will include the fallow M-cluster
around n). At the end of the construction at each stage the L-block around the
least-block-element referenced by a node σ along the on path will be in one-to-one
correspondence with the M-cluster labeled σ .

The union of these bijective correspondences over all the nodes σ along the on
path at stage s, between the L-block around the element that σ references and the M-
cluster labeled with that σ , will be used to define the partial function f s

: Ls
→ Ms .

We have to be a little careful here since, as mentioned before, L-elements may belong
to more than one L-block (and so have more than one image in M). L-elements ref-
erenced by nodes along the on path will correspond to just one M-element at stage s.
L-elements a that are off at this stage may belong to as many as two of the L-blocks
around elements referenced by nodes along the on path and, consequently, corre-
spond to more than one M-element at that stage. If a has several such images, we
define f s(a) to be the one defined by the highest priority node σ (closest to the root).
This will make each f s

: Ls
→ Ms a partial bijective function, which functions will

allow us to define our f : L → M isomorphism: we will establish the existence
of a subsequence s1, s2, s3, . . . of stages on which the construction will resemble a
“finite injury” construction of the isomorphism f in that the f si will eventually in-
clude each L-element and each M-element and will remain fixed on each of these
elements for all but finitely many i . (The existence of this subsequence is predicated
on the fact, guaranteed by Jockusch [8], that the computable R(x, y) underlying our
52 least-block-element formula was chosen so that, for each n, there will be infin-
itely many stages at which the elements from among 1, 2, 3, . . . , n that are on are
precisely the true least-block-elements from among those first n L-elements.) As
mentioned before, M-elements will be ordered when introduced, which order will
be preserved, thus making M a computable linear order. Pairs of Ms-elements not
tagged with a common label will never assume a common label at a later stage and
will end up in separate blocks in M , which ensures that the enumeration at each
stage of all pairs of elements in Ms that do not have a common label will provide a
computable enumeration of M’s nonblock relation ¬BM (x, y).

A delicacy in our setup, crucial to its success, bears highlighting: the fallow M-
cluster around n and its selected preimage within an interval [p, q] are determined
at the sublevel-two node referencing that p, q (in step 5 of the construction), not
at the sublevel-three nodes below, at which we will act (in step 8) to incorporate n
and its fallow M-cluster into the image of an L-block around an on element i within
[p, q]. That fallow M-cluster around n is defined by the labels that n carries from
nodes on paths to the left of this node p, q , whereas, when acting at the sublevel-
three node i below this node p, q , we must in fact incorporate into the image of the
L-block around i the larger fallow M-cluster around n defined by all labels that n
carries from nodes on paths to the left of the node i , which is one sublevel below the
node p, q . The additional labels on n that make this fallow M-cluster larger would
come (only) from the sublevel-three nodes j immediately below this node p, q and
to the left of the node i at which we’re acting, labels that were placed to mark the
images of the L-blocks around those j . We are able to skirt this obstacle by dint
of the fact that, if i is indeed the true least-block-element whose block contains the
selected preimage of the fallow M-cluster around n as calculated at the node p, q ,
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then, eventually, those j and their L-blocks will all be contained within the L-block
around i .

The Construction For each s = 1, 2, 3, . . . in turn begin the construction at
stage s by starting at the root of our 52 guessing tree and working downward,
defining the on path through the three sublevels for each n ≤N s, and acting as
described below at each node along that path. Our action will define for some of
those nodes an L-element that the node references and a cluster of M-elements
labeled with that node, which labeled cluster will be in bijective correspondence
with the block around the referenced L-element. The order <M is derived from
<L and defined as elements are introduced into M . At the end of each stage, all
pairs of M-elements that do not have a common label are enumerated into M’s
nonblock relation ¬BM , and the bijective correspondences between the L-elements
referenced by nodes along the on path and the M-clusters labeled with those nodes
are used as already described to define the partial bijection f s

: Ls
→ Ms (each

f s(a) is defined to be the image in the bijective correspondence defined by the
highest priority node along the on path whose L-block includes a). One piece
of the algorithm is executed repeatedly through the construction at each stage
and is presented here as a blanket instruction: as each node along the on path is
defined, delete the effects of all earlier action at nodes on all paths to the right
(i.e., consider those nodes as no longer referencing any L-elements and remove all
labels in M tagged with those nodes).

After the construction at stage s for 1, 2, 3, . . . , n − 1, continue the construction
for n (≤N s) by performing in order the following steps.

At sublevel-one for n:

1. If n is off at stage s, the current on path takes the right branch at sublevel-one
and no further action is performed at this sublevel; go to step 3. If n is on
at stage s, the current on path takes the left branch. If n is on but is already
referenced by an earlier node along the current on path, then no further action is
performed at this sublevel; go to step 3. Otherwise, n is referenced by this node
at sublevel-one for n.

2. Arrange that the M-cluster labeled with this node n is in bijective correspon-
dence with the L-block around n, with the correspondence mapping n to the
N-least element in the M-cluster. Begin with the existing M-cluster around n
labeled with this node; build the cluster from scratch if none exists. Remove
labels from some of the outermost elements in the cluster, or add new elements
labeled with this node to the outer ends of the cluster (using the N-least elements
that have not yet been enumerated into M), as necessary, to make the M-cluster
the same size as the L-block around n at this stage. Do this carefully: remove
labels from elements or add new elements to the left end of the M-cluster so
that there are exactly as many elements in the cluster to the left of its N-least
element as there are to the left of n in the L-block around n; then handle the
right side similarly. If this is a completely new M-cluster, situate it correctly
in M , with order derived from L , with respect to all M-clusters that are labeled
with earlier nodes along the on path (and as far left as possible with respect to
all other M-elements).

At sublevel-two for n:
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3. If the M-element n is labeled with an earlier node along the current on path,
then the current on path goes through the leftmost nodes at sublevels two and
three for n and no further action is performed at these sublevels. Go to step 1 of
the construction for n + 1.

4. Otherwise, consider the location in M of this element n with respect to all M-
clusters labeled with earlier nodes along the current on path. We must find a
preimage for n that lies in the same interval in L with respect to the preimages
of these higher priority labeled M-clusters. The sublevel-two nodes for n are
taken to reference, from left to right, an ordering (according to when they were
enumerated into L) of all pairs p, q that lie within this interval in Ls . If none
of these pairs p, q is on (i.e., both p and q on at stage s), the current on path
does not extend to sublevel-two for n and no further action is performed at these
sublevels; go to step 1 of the construction for n + 1. If at least one of these pairs
p, q is on, then the next node along the current on path is the leftmost of these
p, q that is on at this stage.

5. Consider the selected preimage within [p, q] (the leftmost in the list of contigu-
ous sequences of the right size) for the fallow M-cluster around n (defined by
the labels on n from all nodes on paths to the left of p, q), both of which are
described in the preliminary definitions section. If too few elements have been
enumerated into [p, q] for a preimage to exist, then the current on path does not
extend beyond sublevel-two for n and no further action is performed at these
sublevels; go to step 1 of the construction for n + 1. If this fallow M-cluster
around n or its selected preimage within this [p, q] has changed since the last
time the node p, q was along the current on path, delete the effect of all earlier
action at nodes on all paths below this node.

At sublevel-three for n:

6. Consider the leftmost sublevel-three nodes immediately below the node p, q as
referencing a list of all i in [p, q] that are ≤N the N-least element of the selected
preimage (of step 5), ordered from left to right according to the last time that
an element was enumerated into L between i and the preimage (as described in
the preliminary definitions section). If the i referenced by one of these nodes
has changed since the last stage, delete the effect of all earlier action at that
node and at all nodes on paths below it. For the remaining sublevel-three nodes
(that do reference an i), cut back, if necessary, the M-cluster labeled with that
node so that it is no larger than the L-block around the i that the node references
(i.e., remove that node’s label from all M-elements in the cluster that correspond
to L-elements that were previously in the L-block around i but are no longer).

7. If there is no i on this list that is on at this stage and whose current block in
L wholly contains the selected preimage of the fallow M-cluster around n and
the block around the L-element referenced by each sublevel-three node below
this p, q and to the left of the node i , then the current on path does not extend
to sublevel-three for n and no further action is performed at this sublevel; go to
step 1 of the construction for n + 1. Otherwise, the next node along the current
on path is the leftmost node i with these properties.
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8. Arrange that the M-cluster labeled with this node i (including the whole labeled
block around n) is in bijective correspondence with the L-block around i , which
correspondence maps the selected preimage to the fallow M-cluster around n.
Begin with the M-cluster around n that includes not only the fallow M-cluster
around n as calculated at the node p, q (see step 5) but also all other labels on
n (from all sublevel-three nodes below p, q and on or to the left of the current
on path). Add, if necessary, new elements to the outer ends (using the N-least
elements that have not yet been enumerated into M) to make this M-cluster
around n (labeled with the node i) the same size as the L-block around i . Note
that i was selected (in step 7) to make this possible. Do this carefully: begin
with the M-cluster around n consisting of all elements that share a label with n
and add, if necessary, new elements to the left end of the cluster so that there
are exactly as many elements in the cluster to the left of the fallow M-cluster
around n as there are to the left of its selected preimage in the L-block around i ;
then handle the right side similarly. This ends the construction for n; go to step
1 of the construction for n + 1.

Final Verification Preliminary observations:
1. M is a computable linear order: elements are ordered as they are introduced

into M , which order is never changed.
2. M’s nonblock relation ¬BM (x, y) is computably enumerable: elements in

M that have a common label will never increase their distance from each
other so long as they retain that label (since no elements are ever introduced
internally into a labeled block), and elements that do not have a common label
will never assume one at a later stage (only new elements are used to grow
M-clusters).

3. All M-clusters with labels from nodes along the on path will be ordered with
respect to each other exactly as their preimages are ordered in L , and no M-
element will ever belong to more than one of these M-clusters (labeled with
nodes along the on path).

4. A labeled M-cluster will grow only at stages when the labeling node is along
the on path and will, at the end of those stages, be the same size as the block
at that stage around the L-element that the node references.

5. An M-cluster labeled with a node will disappear completely (all labels tagged
with that node removed) only if the node is on a path to the right of the
on path, or below a sublevel-two node p, q at which the fallow M-cluster
around n or its selected preimage have been redefined (step 5), or at or below
a sublevel-three node whose referent has changed (step 6).

We show now that there is an infinite true path that, for every level n, is the leftmost
path down to that level that coincides with the on path infinitely often; that every
node on this path will change the L-element that it references only finitely often,
with its final referents (if any) being true least-block-elements; and that every M-
cluster labeled with a node on this path will disappear (completely) only finitely
many times. We will establish these facts simultaneously, by induction on n, through
the three sublevels for each n.

Assume that we have established the above-mentioned facts for 1, 2, . . . n − 1.
Let s be a stage after which the on branch is never to the left of the true branch all
the way down to sublevel-three for n − 1 (such stages, as we have noted before, are
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guaranteed by Jockusch [8]), by which stage all these nodes have taken on their final
referents, and after which stage no M-cluster labeled with one of these nodes ever
(completely) disappears. We will now establish the facts for the three sublevels for
n. All stages mentioned below are intended to be subsequent to s.

1. At sublevel-one for n: if n is not a true least-block-element, consider a stage after
which n never again appears on. At the next stage when the on path coincides
with the true path down to sublevel-three for n − 1, the on path will take the
right branch at sublevel-one for n as will the true path: the on path will never
again be left of this node; this node will never again take on a referent, nor will
it ever again label an M-cluster. If n is a true least-block-element, consider the
next stage when n is on and the on path coincides with the true path down to
sublevel-three for n − 1; the on path will at this stage take the left branch at
sublevel-one for n as will the true path, and the on path will never again be left
of this node. If n is already referenced by some (sublevel-three) node earlier on
the true path, this node will never again take on a referent, nor will it ever again
label an M-cluster. If n is not referenced by any earlier node on the true path,
then it will subsequently always be the referent of this node, which will label an
M-cluster (corresponding to the L-block around n) that will never (completely)
disappear.

2. At sublevel-two for n: consider a subsequent stage by which the M-element n
has assumed its final position (in or out) with respect to all M-clusters labeled
with nodes down to sublevel-one for n on the true path (M-elements that do not
share a label will never subsequently assume a common one), and when the on
path coincides with the true path down to sublevel-one for n. If n belongs to
(precisely) one of the M-clusters labeled with an earlier node on the true path
then, at this stage, the on path (and the true path) will take the leftmost branch at
sublevels two and three for n; the on path will never again be left of these nodes;
neither of these nodes will ever again take on a referent; nor will they ever again
label an M-cluster. If n belongs to no M-cluster labeled with an earlier node
on the true path, consider the interval in L between the elements referenced by
these earlier nodes on the true path between whose images n lies. Since this
interval is infinite (the L-elements referenced by these nodes are all true least-
block-elements), there will be a least pair p, q (least according to when the pair
was enumerated into L) of elements within this L-interval both of which are true
least-block-elements. Consider a subsequent stage when p, q is on (i.e., both p
and q are on) and after which no pair enumerated earlier into this L-interval ever
appears on. At this stage the fallow M-cluster around n as calculated at p, q will
have taken on its final form (no further labels from nodes on paths to the left of
p, q will be added). After this stage, every time the on path coincides with the
true path down to sublevel-one for n, it will take the branch through this node
p, q at sublevel-two for n. Consider a further stage when the selected preimage
within this interval [p, q] for the fallow M-block around n (the leftmost on the
list of candidates) is indeed a true set of contiguous L-elements.

3. At sublevel-three for n: let i be the true least-block-element within this L-
interval [p, q] whose (true) block contains the above-mentioned selected pre-
image for the fallow M-block around n. Consider a subsequent stage when the
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. (finite) contiguous part of the L-block around the selected preimage that con-
tains all elements that are ≤N than the N-least element of the selected preimage
have been enumerated into L and after which none of these elements (other than
i) are ever again on. After this stage the leftmost sublevel-three nodes below
node p, q will refer to these elements (that are N-less than the N-least element
of the selected preimage), one of which will be i , and there will be no redefining
of referents at these nodes. Consider a subsequent stage when i is on and when
the on path coincides with the true path down to sublevel-two for n; the on path
will at this stage take the branch through node i at sublevel-three for n as will
the true path; the on path will never again be left of this node; this node will
always refer to i ; and there will be an M-cluster labeled with this node i that
will always contain the fallow M-cluster around n.

This ends the proof of the above-mentioned three facts.

Consider the subsequence s1, s2, s3, . . . of stages in which each sn is the first
stage after sn−1 at which the on path coincides with the true path down to sublevel-
three for n, after which the on path is never to the left of these nodes, after which
the L-elements that these nodes reference are never changed, and after which the
M-clusters labeled with these nodes are never (completely) deleted. If, at this stage
sn , the node σ on the true path at sublevel-one for n references n, then, since the
bijection defined at σ between the L-block around n and its image always maps n to
the N-least element of the image, we have that f sn (n) = limi→∞ f si (n). Similarly,
if, at this stage sn , the node σ on the true path at sublevel-three for n references an
L-element i , then, since the bijection defined at that σ is centered around a map of
the selected preimage onto the fallow M-cluster, it follows that the f si have by stage
sn taken on their final limiting value on the M-element n. Moreover, since no more
elements will be enumerated into L between i and the selected preimage after this
stage, these functions have by this stage also taken on their final limiting value on the
least-block-element i . So the partial bijections f si eventually take on final limiting
values on every M-element and on every least-block-element in L .

For the other elements a of L observe that, once all the elements between a and
the least-block-element n of a’s block have been enumerated into L and have ceased
coming on, the image of a in the bijection between the L-block around n and its
image will remain fixed. The only complication is that a may appear to be in the
L-blocks around more than one of the elements referenced by nodes on the true path
and f si (a) may be defined via the L-block around the element referenced by some
node earlier than that which references n (an erroneous definition in that a is not truly
a member of that earlier L-block). But, once the on path coincides at these stages
si with the true path far enough down to include a pair of true least-block-elements
around n that separates it from the elements referenced by all earlier nodes on the
true path, then, at all subsequent stages, the f si (a) will be defined correctly, via the
correspondence between the L-block around n and its image.

Thus f (x) = limi→∞ f si (x) over these stages si defines an isomorphism from
the given computable linear order L to the constructed M , which is a computable
linear order with computably enumerable nonblock relation ¬BM (x, y). �

Extending the theorem: our construction requires that the condensation-type of L is
not just dense but is dense without endpoints (i.e., η rather than 1 + η, η + 1, or
1 + η + 1); the result carries over nonetheless.



302 Michael Moses

Theorem 1 Extended Every computable linear order with dense condensation-type
and with no infinite, strongly η-like interval has a computable copy with computably
enumerable nonblock relation.

Proof Consider any computable linear order L with condensation-type 1 + η and
with no infinite, strongly η-like interval. Form the computable linear order L ′ by
adding to the left of L a decidable copy of ω × η to produce a computable linear
order L ′ of condensation-type η with no infinite, strongly η-like interval. Apply
Theorem 1 to L ′ to produce a computable copy M ′ with computably enumerable
nonblock relation. Produce from this M ′ an M ∼= L by deleting everything in M ′ to
the left of the element that corresponds to the leftmost point of L . If L has no leftmost
point, that is, if its leftmost block is of type ω? or ζ , then delete everything in M ′

to the left of an element that corresponds to some point in this leftmost block of L ,
and add to the left of the resulting linear order a decidable copy of ω?. In either case,
this will produce a computable copy M of L with computably enumerable nonblock
relation. Computable L with condensation-types η + 1 and 1 + η + 1 are handled
similarly. �

Situations in which the theorem does not apply: crucial use is made in our construc-
tion (in step 4) of the existence of the pair of least-block-elements p, q in L between
least-block-elements of higher priority. Their existence could not be guaranteed if
L’s condensation-type were not η; nor does the result carry over to such linear or-
ders: there is a computable linear order with no infinite, strongly η-like interval that
has no computable copy with computably enumerable nonblock relation. (A discrete
example of such a linear order, that is, with every block of type ζ , is presented in
Moses [11].)

Similarly, crucial use is made (in step 5) of the existence of arbitrarily large blocks
within every infinite L-interval, which could not be guaranteed if L had an infinite
strongly η-like interval; nor does the result carry over to such linear orders: there
is a computable linear order with dense condensation-type that has no computable
copy with computably enumerable nonblock relation. (In [2] Coles, Downey, and
Khoussainov present an example of such a linear order, with condensation-type η+1,
which in fact has no computable copy in which the initial segment with condensation-
type η, that is, everything but the final ω?-block, is computably enumerable.)

Note also that, whereas our ¬BM (x, y) is computably enumerable, we cannot
guarantee the same of its complement BM (x, y): every time its node comes on,
a labeled M-block shakes off those “outer” elements labeled also with nodes on
branches to the right. Nor can the result be strengthened to make BM (x, y) com-
putable: there is a computable linear order with dense condensation-type and no
infinite, strongly η-like interval no computable copy of which has its block relation
B(x, y) computably enumerable. To construct such a linear order, begin with a 52
suborder of the standard computable linear order of type η that has no 51 copy. (A
5n linear order is that defined as a suborder of the standard computable linear of
type η, or indeed of any computable linear order, by a 5n subset of the universe N.
That there is, for each n, a 5n+1 linear order that has no 5n copy is well known; see
Rosenstein [13].) Produce a computable linear order L from this computable copy of
η by replacing each element i with a block of size pi , the i th prime, if i is an element
of the 52 suborder, and a block of type ζ if it is not. (That such a computable linear
order can be produced from any 52 linear order is established in Fellner [6].) L
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has condensation-type η and, since no two finite blocks are of the same size, has no
infinite, strongly η-like interval. And it has no computable copy M with computable
block relation since, if it did, the set {x : ∀y >M x (¬BM (x, y))} defines a 51 copy
of the 52 linear order that we began with, which does not exist.

3 Self-Embeddings

In [4] Dushnik and Miller observed that every countably infinite linear order has a
nontrivial self-embedding. The linear orders constructed independently by Denisov
(see Goncharov and Nurtazin [7]) and Tennenbaum (see Rosenstein [13]) show that
this does not carry over to computable linear orders: not every infinite computable
linear order has a computable nontrivial self-embedding. A long-standing open con-
jecture (see [10] Kierstead) characterizes the infinite computable linear orders every
computable copy of which has a computable nontrivial self-embedding as precisely
those with an infinite, strongly η-like interval. Theorem 1 allows us to establish the
conjecture for all linear orders with dense condensation-type (see Corollary 2 below).
This is a slightly stronger result than the main theorem of Downey, Kastermans, and
Lempp [3], which establishes this result for all η-like linear orders (which have dense
condensation-type but no infinite blocks).

Theorem 1 also allows us to characterize, and this time completely, the other side
of the coin.

Corollary 1 Every computable linear order has a computable copy with a com-
putable nontrivial self-embedding.

Proof If the linear order has a pair of adjacent blocks then it has an interval of
type ω + 1 or 1 + ω? or ω + ω?. Create a computable copy of the linear order by
replacing this closed interval with a decidable copy of the same type (and leaving
everything else the same). This computable copy has a computable nontrivial self-
embedding (the identity everywhere outside the interval and, inside it, mapping each
element to its immediate successor in the ω-block and its immediate predecessor in
the ω?-block, both of which are computably identifiable). If the linear order has
an infinite, strongly η-like interval then it clearly has a computable nontrivial self-
embedding (mapping elements within that interval into separate blocks). By our
Extended Theorem 1, the remaining computable linear orders all have computable
copies with computably enumerable nonblock relation, which, as in the strongly η-
like interval case, can be used to define a computable nontrivial self-embedding of
that copy by mapping elements into separate blocks. �

Corollary 2 The self-embedding conjecture holds for linear orders with dense
condensation-type: every computable copy of a computable linear order with dense
condensation-type has a computable nontrivial self-embedding if and only if the lin-
ear order contains an infinite, strongly η-like interval.

Sketch of proof Consider the straightforward technique for constructing, from a
computable linear order L , a computable copy M with no computable nontrivial self-
embedding: a “finite-injury” construction, meshing the enumeration of a computable
copy with the diagonalization across all partial computable functions, the candidates
for a possible nontrivial computable self-embedding. The requirements for n, with
priority decreasing as n increases, would arrange for an image in M for n ∈ L , for
a preimage in L for n ∈ M , and that the nth partial computable function ϕn is not
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a self-embedding on M , with, as usual, action to meet the requirements for n being
conducted without redefining the L → M isomorphism on the points that witness
our meeting the requirements with priority higher than n. An obvious strategy for
ensuring that ϕn is not a self-embedding on M , used for instance to similar purpose
in Moses [11], is to wait until images ϕn(a) and ϕ2

n(a) are defined for some a ∈ M
with all three within the same interval between points of higher priority (on which the
L → M isomorphism cannot be redefined) and with either a <M ϕn(a) <M ϕ2

n(a)

or a >M ϕn(a) >M ϕ2
n(a). Then, every time a new point is enumerated into this

interval (between higher priority points) in L , redefine the L → M isomorphism
within this higher-priority interval to “feed” the M-interval [a, ϕn(a)] until it is larger
than [ϕn(a), ϕ2

n(a)]. Once this has been achieved, all that remains is to ensure that
the M-interval [ϕn(a), ϕ2

n(a)] stops growing, which can be arranged by identifying
a contiguous set of L-elements of the right size within this higher-priority interval
and making it the preimage of the M-interval [ϕn(a), ϕ2

n(a)]. Since every infinite L-
interval contains arbitrarily large blocks, such a contiguous set of L-elements must
exist. We can identify one such contiguous set by maintaining a list of all contiguous
sets of the right size (ordered according to when they were enumerated into L) and
deleting those that cease being contiguous (as we did in selecting a preimage for
the fallow M-block in the proof of Theorem 1). This will eventually leave a true
contiguous set as the leftmost in the list. The problem is that we may not be able
to redefine the isomorphism from L to M sufficiently so as to make this selected
contiguous sequence the preimage of [ϕn(a), ϕ2

n(a)], which would (could) happen
if the selected preimage is in fact in the same block as one of the higher-priority
elements. This was resolved in our proof of Theorem 1 by using the points p, q ,
which ensured that the selected preimage was in a separate block from those of the
higher-priority elements. If L has its nonblock relation computably enumerable, we
can use it to select a preimage for [ϕn(a), ϕ2

n(a)] that is in a separate block from all
higher-priority elements, and so carry through the construction. �

Note that this in fact establishes a result that is stronger than Corollary 2.

Corollary 3 Every computable linear order that has a computable copy with com-
putably enumerable nonblock relation has a computable nontrivial self-embedding
if and only if it contains an infinite, strongly η-like interval.
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