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Being Wrong: Logics for False Belief

Christopher Steinsvold

Abstract We introduce an operator to represent the simple notion of being
wrong. Read W p to mean: the agent is wrong about p. Being wrong about
p means believing p though p is false. We add this operator to the language
of propositional logic and study it. We introduce a canonical model for logics
of being wrong, show completeness for the minimal logic of being wrong and
various other systems. En route we examine the expressiveness of the language.
In conclusion, we discuss an open question regarding K4.

1 Introduction

If agent 1 claims that p is true, and agent 2 responds with “You’re wrong about p,”
or more simply “You’re wrong,” agent 2 means that agent 1 believes p and p is false.
Given the language of modal logic, we can define being wrong about ϕ with,

Wϕ
def
= (�ϕ ∧ ¬ϕ).

Our interest is in studying the logic of Wϕ in isolation from the basic modal lan-
guage. This is best compared to the study of logics of contingency, where an opera-
tor representing ♦ϕ ∧ ♦¬ϕ is studied. In similar fashion we take W as primitive and
define the language of being wrong, LW , with,

LW
= {W,⊥,→, ( , ), p1, p2, . . . }.

We define the set of formulas, FW , with the following BNF,

ϕ ∈ FW
:= p |⊥| (ϕ1 → ϕ2) | Wϕ.

In comparison, the modal logic KT can be viewed as the minimal logic of being
correct. That is, we may view KT as the logic of an operator representing �ϕ ∧ ϕ.
With this in mind, we are simply inspecting the other side of a well-known coin.
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Definition 1.1 For any normal modal logic L, let LW be the set of all theorems of L
expressible only in terms of the Boolean connectives and W (where W represents
�ϕ ∧ ¬ϕ).

The focus here is on completeness results for various LW . Given the doxastic nature
of being wrong, our focus will be on those LW where L contains a common axiom for
belief. We present a simple canonical model to show completeness for the minimal
logic of being wrong, among others. Though we were able to show completeness
for a number of LW where L contains the 4 axiom (e.g., K45W ), we were unable
to find a complete set of axioms for K4W itself. We conclude with a discussion of
this problem. Along the way, we examine what is expressible in the language of
being wrong (in comparison with the usual modal language). One simple result is a
completeness proof for KTW . Epistemically speaking this is awkward (it is the logic
of being wrong for an agent who is never wrong), but technically it tells us much
information about the expressiveness of our language.

Thematically, the study of logics of being wrong is related to the study of logics
of ignorance (see Lomuscio and van der Hoek [7], Steinsvold [12], where an oper-
ator representing as ¬Kϕ ∧ ¬K¬ϕ is studied). Though the motivation differs, the
study of logics of ignorance is formally the same as the study of contingency logics,
where contingency represents ♦ϕ ∧ ♦¬ϕ (viz., Aristotle—see Brogan [2], Cress-
well [3], Humberstone [4], Kuhn [5], Montgomery and Routley [9], Mortensen [10],
Zolin [14]). There is also the study of logics of essence and accident (see Marcos [8],
Steinsvold [11], [13], Kushido [6]), where an operator symbolizing ϕ∧♦¬ϕ is stud-
ied. Though there is no obvious alethic interpretation for the operator studied here,
the study of logics of being wrong seems like a natural next step in such studies.

2 Possible World Semantics

A frame F = 〈W, R〉 is a nonempty set W together with R ⊆ W × W . Members
of W are worlds or points. A valuation V is a function from the set of propositional
variables into the power set of W. M = 〈W, R, V 〉 is a model. We define truth in a
model at a world as follows:

M, w |H p iff w ∈ V (p),

M, w |H ⊥ iff 0 = 1,
M, w |H ϕ → ψ iff if M, w |H ϕ then M, w |H ψ,

M, w |H Wϕ iff M, w 6|H ϕ and (∀x)(if wRx then M, x |H ϕ).

ϕ is valid in model M if and only if ϕ is true at every point in M . ϕ is valid in a
frame F if and only if ϕ is valid in every M based on F .

Worlds which relate to themselves and only to themselves turn out to be surpris-
ingly useful.

Definition 2.1 Callw narcissistic if and only ifw relates to itself and only to itself.
Call a frame narcissistic if and only if all the worlds are narcissistic; that is,

(∀x)(x Rx ∧ (∀y)(x Ry → x = y)).

The following will be useful in showing completeness for K45W .
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Lemma 2.2 Let M = 〈W, R, V 〉, let W r
= {x ∈ W |x Rx}, and let R+

⊆ W r
× W .

Where M+
= 〈W, R ∪ R+, V 〉, and w ∈ W ,

M, w |H ϕ iff M+, w |H ϕ.

Proof The nonmodal cases are straightforward. First, observe that for all x /∈ W r

and y ∈ W we have
〈x, y〉 ∈ R iff 〈x, y〉 ∈ R ∪ R+.

Clearly, R ⊆ R∪ R+. And if x is not reflexive and 〈x, y〉 ∈ R∪ R+, then 〈x, y〉 ∈ R.
This fact makes our proof simple.

Assume M, w |H Wϕ, by the definition of truth, M, w 6|H ϕ; thus by induction
hypothesis (IH), M+, w 6|H ϕ. Clearly, w can’t bear R to itself; thus w /∈ W r . Thus
〈w, y〉 ∈ R if and only if 〈w, y〉 ∈ R ∪ R+, for all y ∈ W . And if wRz, then
M, z |H ϕ; so by induction hypothesis M+, w |H Wϕ. The converse is similar. �

3 The System SW

Call the following axiom system SW .
A1 Wϕ → ¬ϕ
A2 (Wϕ ∧ Wψ) → W (ϕ ∧ ψ)
R1 ` ϕ → ψ ⇒ ` (Wϕ ∧ ¬ψ) → Wψ ,

with MP, all propositional tautologies, and uniform substitution.

In the next section we show that SW = KW ; that is, SW is the minimal logic of being
wrong. We leave the soundness of SW for the reader. To denote the smallest exten-
sion of SW which includes an axiom A and is closed under all the rules of SW , we
write SW

⊕ A. We now prove some theorems.
From the following we can derive substitution of equivalents in SW .

Theorem 3.1 ` ϕ ↔ ψ ⇒ ` Wϕ ↔ Wψ .

Proof

(1) ` ϕ ↔ ψ , assumption.
(2) ` ¬ϕ ↔ ¬ψ , from (1).
(3) ` ϕ → ψ , from (1).
(4) ` ψ → ϕ, from (1).
(5) ` (Wϕ ∧ ¬ψ) → Wψ , from (3) and R1.
(6) ` ((Wϕ ∧ ¬ψ) → Wψ) → [(¬ψ ↔ ¬ϕ) → ((Wϕ ∧ ¬ϕ) → Wψ)],

instance of the tautology,

((A ∧ B) → C) → [(B ↔ D) → ((A ∧ D) → C)].

(7) ` (¬ϕ ↔ ¬ψ) → ((Wϕ ∧ ¬ϕ) → Wψ), MP, (5), and (6).
(8) ` (Wϕ ∧ ¬ϕ) → Wψ , MP, (2), and (7).
(9) ` Wϕ → ¬ϕ, A1.

(10) ` Wϕ → (Wϕ ∧ ¬ϕ), from (9).
(11) ` Wϕ → Wψ , from (8) and (10).

And, just as we derived line (11), we can give an analogous proof for
(12) ` Wψ → Wϕ.
(13) ` Wψ ↔ Wϕ, from (11) and (12).

�
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Theorem 3.2 ` (W (ϕ ∧ ψ) ∧ ¬ψ) → Wψ .

Proof

(1) ` (ϕ ∧ ψ) → ψ , PC.
(2) ` (W (ϕ ∧ ψ) ∧ ¬ψ) → Wψ , from (1) and R1. �

Theorem 3.3 ` (W (ϕ ∧ ψ) ∧ ¬ϕ ∧ ¬ψ) ↔ (Wϕ ∧ Wψ).

Proof

(1) ` Wϕ → ¬ϕ, A1.
(2) ` Wψ → ¬ψ , A1.
(3) ` (Wϕ ∧ Wψ) → W (ϕ ∧ ψ), A2.
(4) ` (Wϕ ∧ Wψ) → (W (ϕ ∧ ψ) ∧ ¬ϕ ∧ ¬ψ), from (1), (2), and (3).
(5) ` (W (ϕ ∧ ψ) ∧ ¬ψ) → Wψ , Theorem 3.2.
(6) ` (W (ϕ ∧ ψ) ∧ ¬ϕ) → Wϕ, variation of Theorem 3.2.
(7) ` (W (ϕ ∧ ψ) ∧ ¬ϕ ∧ ¬ψ) → (Wϕ ∧ Wψ), from (5) and (6).
(8) ` (W (ϕ ∧ ψ) ∧ ¬ϕ ∧ ¬ψ) ↔ (Wϕ ∧ Wψ), from (4) and (7). �

Presumably there is a shorter proof of the following.

Theorem 3.4 ` W (ϕ ∧ ψ) → (Wϕ ∨ Wψ).

Proof

(1) ` (W (ϕ ∧ ψ) ∧ ¬ψ) → Wψ , Theorem 3.2.
(2) ` (W (ϕ ∧ ψ) ∧ ¬Wψ) → ψ , from (1).
(3) ` W (ϕ ∧ ψ) → ¬(ϕ ∧ ψ), instance of A1.
(4) ` W (ϕ ∧ ψ) → (ψ → ¬ϕ), from (3).
(5) ` (W (ϕ ∧ ψ) ∧ ¬Wψ) → ¬ϕ, from (2) and (4).
(6) ` (W (ϕ ∧ ψ) ∧ ϕ) → Wψ , from (5).

And just as we derived line (6), we can similarly derive
(7) ` (W (ϕ ∧ ψ) ∧ ψ) → Wϕ.
(8) ` (W (ϕ ∧ ψ) ∧ (ϕ ∨ ψ)) → (Wϕ ∨ Wψ), from (6) and (7).
(9) ` (W (ϕ ∧ ψ) ∧ ¬ϕ ∧ ¬ψ) → (Wϕ ∧ Wψ), from Theorem 3.3.

(10) ` (W (ϕ ∧ ψ) ∧ ¬(ϕ ∨ ψ)) → (Wϕ ∧ Wψ), from (9), DeMorgan.
(11) ` (W (ϕ ∧ψ)∧ ¬(ϕ ∨ψ)) → (Wϕ ∨ Wψ), weakening consequent of (10).
(12) ` (W (ϕ ∧ ψ) → (Wϕ ∨ Wψ), from (8) and (11). �

4 The Canonical Model

Let W W be the set of all maximally consistent sets of the logic SW .

Definition 4.1 Wherew ∈ W W , callw awr world if and only if ¬(∃Wϕ)(Wϕ ∈ w),
and call w a w¬r world if and only if (∃Wϕ)(Wϕ ∈ w).

Clearly, every world in W W is either a wr world or a w¬r world.

Definition 4.2 Where w, x ∈ W W , we define RW on W W
× W W with

1. if w is a wr world, let wRW x if and only if w = x , and
2. if w is a w¬r world, let wRW x if and only if (∀Wϕ)(if Wϕ ∈ w then ϕ ∈ x).

Each wr is narcissistic. Each w¬r is nonreflexive (by axiom A1). Let w ∈ V W (p) if
and only if p ∈ w; thus we have MW

= 〈W W RW V W
〉.
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Lemma 4.3 For all w ∈ W W ,

MW , w |H ψ iff ψ ∈ w.

Proof The nonmodal cases are straightforward. Assume Wϕ ∈ w. By axiom A1,
¬ϕ ∈ w. By IH, MW , w 6|H ϕ. Since Wϕ ∈ w, we know w is a w¬r world. Thus
if wRW y, ϕ ∈ y, all y. By IH, if wRW y, then MW , y |H ϕ, all y. By definition of
truth, MW , w |H Wϕ.

Conversely, assume Wϕ 6∈ w. Let λ(w) = {ψ |Wψ ∈ w}. If λ(w) is empty,
then w is a wr world, and since all wr are narcissistic, MW , w 6|H Wϕ. If λ(w) is
nonempty, then w is a w¬r world.

To get a contradiction, assume MW , w |H Wϕ. By the definition of truth,
MW , w 6|H ϕ, and by IH, ¬ϕ ∈ w. If λ(w) ∪ {¬ϕ} is consistent, we are done (by
Lindenbaum’s lemma and IH).

Assume λ(w) ∪ {¬ϕ} is inconsistent. Thus for some ψ1, . . . , ψn ∈ λ(w),

SW
` (ψ1 ∧ · · · ∧ ψn) → ϕ.

Since ψ1, . . . , ψn ∈ λ(w), by repeated application of Axiom 2, we have

W (ψ1 ∧ · · · ∧ ψn) ∈ w.

We know ¬ϕ ∈ w; thus W (ψ1 ∧ · · · ∧ ψn) ∧ ¬ϕ ∈ w. We use rule R1 to conclude
Wϕ ∈ w. Contradiction. �

Theorem 4.4 SW
= KW .

Proof K is the minimal modal logic. By definition, KW is the minimal logic of
being wrong. Since SW is sound and complete, KW = SW . �

Comment 4.5 We comment on an alternative definition of RW . In our model, all
the reflexive worlds are narcissistic, and this may seem unnatural. It may seem more
natural to simply define RW with

wRW x iff (∀Wϕ)(if Wϕ ∈ w then ϕ ∈ x),

for all w, x . One can show completeness for SW with this definition, but this has a
strange consequence: every wr world will relate to every world.

Let AT be ¬Wϕ.

Theorem 4.6 ¬Wϕ is valid in F if and only if R is reflexive.

Proof For the reader. �

The logic K⊕ϕ ↔ �ϕ, known as Triv, is logic of narcissistic frames.

Theorem 4.7 SW
⊕ AT

= KTW = S4W = S5W = TrivW .

Proof Consider the canonical model for SW
⊕ AT . Since no world contains Wϕ

for any ϕ, each world is a wr world, and so each world is narcissistic (thus SW
⊕

AT
= TrivW ). Since SW

⊕ AT is sound and complete for reflexive models, SW
⊕

AT
= KTW . Since RW is transitive as well, SW

⊕ AT
= S4W . Since RW is also

Euclidean, SW
⊕ AT

= S5W . �

The proof of Theorem 4.7 yields the following semantic information.
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Theorem 4.8 There is no ϕ ∈ FW such that the validity of ϕ corresponds to any of
the following properties of a frame:

(1) transitivity,
(2) Euclidean,
(3) symmetry,
(4) weakly connected (∀x)(∀y)(∀z)((x Ry ∧ x Rz) → (y Rz ∨ y = z ∨ z Ry)),
(5) weakly directed (∀x)(∀y)(∀z)((x Ry ∧ x Rz) → (∃v)(y Rv ∧ z Rv)),
(6) partially functional (∀x)(∀y)(∀z)((x Ry ∧ x Rz) → z = y),
(7) narcissistic (∀x)(x Rx ∧ (∀y)(x Ry → x = y)),
(8) partially narcissistic (∀x)(∀y)(x Ry → x = y).

Proof To get a contradiction assume there is some ϕ ∈ FW and the validity of ϕ
corresponds to one of the properties (1) through (8). Inspection of the canonical
model of KTW in the proof of Theorem 4.7 shows the canonical model for KTW
(trivially) has properties (1) through (8) (since each world is narcissistic). Thus,
our presumed sentence ϕ is valid in the canonical frame for KTW . Since KTW is
complete, ϕ is a theorem of KTW . This means reflexivity implies the property which
ϕ corresponds to. But reflexivity does not imply any of these properties. �

Theorem 4.7 was useful for showing Theorem 4.8, yet we can show something
stronger than Theorem 4.7 syntactically (thanks to an anonymous reviewer): KTW
(i.e., SW

⊕ AT ) is a maximal logic.

Theorem 4.9 For all ϕ,

ϕ 6∈ KTW iff KTW ⊕ ϕ ` ⊥.

Proof The direction from right to left is straightforward (KTW is consistent). As-
sume ϕ 6∈ KTW . Note that Wψ ↔ ⊥ ∈ KTW , for all ψ . Let ϕ′ be the result of
replacing every occurrence of Wψ in ϕ with ⊥. Using Theorem 3.1, we have that
KTW ` ϕ ↔ ϕ′. Thus ϕ′

6∈ KTW . Furthermore, ϕ′ is a sentence of the propositional
calculus, and so we know it is not a theorem of PC either. But by a classic result for
PC we know

ϕ′
6∈ PC iff PC ⊕ ϕ′

` ⊥.

Thus, PC ⊕ ϕ′
` ⊥; moreover, KTW ⊕ ϕ′

` ⊥. And since ϕ and ϕ′ are equivalent
in KTW , KTW ⊕ ϕ ` ⊥. �

As a consequence we have the following corollary.

Corollary 4.10 If KT ⊆ L and L is consistent,

LW = KTW .

Proof If KT ⊆ L, then KTW ⊆ LW . Assume ϕ ∈ LW but ϕ 6∈ KTW . By Theo-
rem 4.9, KTW ⊕ ϕ is inconsistent, and so LW is inconsistent. �

Besides completeness for the minimal logic of being wrong and KTW , we have fo-
cused on negative results and the lack of expressiveness in the language. This lack
of expressiveness largely revolves around the fact that our language becomes rather
mute at reflexive worlds. We now focus on the positive. Let AD be ¬W⊥.

Theorem 4.11 ¬W⊥ is valid in F if and only if R is serial.
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Proof For the reader. �

Theorem 4.12 SW
⊕ AD

= KDW .

Proof Since KD is the modal logic of serial frames, KDW is the logic of being
wrong for serial frames. Consider the canonical model for SW

⊕ AD . All the wr

worlds relate to something, namely, themselves. Suppose some w¬r related to no
world, and let λ(w¬r ) = {ψ | Wψ ∈ w¬r

}. λ(w¬r ) must be inconsistent.
Thus for some ψ1, . . . , ψn ∈ λ(w¬r ),SW

⊕ AD
` (ψ1 ∧ · · · ∧ ψn) → ⊥. By

Axiom 2, W (ψ1 ∧ · · · ∧ ψn) ∈ w¬r . Since W (ψ1 ∧ · · · ∧ ψn) ∧ ¬⊥ ∈ w, we use
rule R1 to conclude W⊥ ∈ w. Contradiction. �

Let AQ be Wϕ → W (¬Wψ ∧ ϕ), and let Q be �(�ϕ → ϕ).

Theorem 4.13 Wϕ → W (¬Wψ ∧ ϕ) is valid in F if and only if

(∀x)(∀y)(if (x Ry ∧ x 6Rx) then y Ry).

Proof For the reader. �

Theorem 4.14 SW
⊕ AQ

= KQW = K4QW .

Proof KQ is the logic of secondarily reflexive frames; that is,

Q is valid in F iff (∀x)(∀y)(if x Ry then y Ry).

We show that the canonical model for SW
⊕ AQ is secondarily reflexive, which will

imply the validity of axiom AQ . Being narcissistic, each wr world is secondarily
reflexive. Thus considering any w¬r world, we know Wϕ ∈ w¬r , for some Wϕ.
Suppose w¬r RW y. If y is a wr world, done. If not then some Wψ ∈ y. We know
that Wϕ → W (¬Wψ ∧ ϕ) ∈ w¬r . So W (¬Wψ ∧ ϕ) ∈ w¬r , and since w¬r RW y,
¬Wψ ∧ ϕ ∈ y; thus ¬Wψ ∈ y. Contradiction.

Thus SW
⊕ AQ

= KQW . To see that SW
⊕ AQ

= K4QW , note that we have
already shown our frame is secondarily reflexive, which implies that if wRW y then
y is narcissistic. Thus RW is transitive. �

We now show SW
⊕AQ

= K45W . The canonical frame is not Euclidean, but we can
straightforwardly manipulate the frame and make it so.

Theorem 4.15 SW
⊕ AQ

= K5W = K45W .

Proof K45 is the modal logic of transitive and Euclidean frames. Consider any
world w in the canonical model for SW

⊕ AQ and let M = 〈W, R, V 〉 be the sub-
model generated by w. Note that our language is modal, so we don’t need to prove a
separate generated submodel theorem for it. Thus we know, for all x ∈ W ,

M, x |H ϕ iff MW , x |H ϕ.

Let Z(w) = {x ∈ W |wRx}. As shown in the proof of Theorem 4.14, the canonical
model for SW

⊕ AQ is secondarily reflexive, and so all the worlds in Z(w) are
reflexive. Create a new model M ′

= 〈W, R′, V 〉, where R′
= R ∪ Z(w)× Z(w). By

Lemma 2.2,
M, x |H ϕ iff M ′, x |H ϕ.

M ′ is clearly Euclidean, and we know Q is a theorem of K5. Thus since any nonthe-
orem of SW

⊕ AQ fails in a Euclidean model, SW
⊕ AQ

= K5W . Since M ′ is also
transitive, SW

⊕ AQ
= K45W . �
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Putting previous results together we have SW
⊕ AQ

⊕ AD
= KD45W .

5 K4W ?

As mentioned in the Introduction, a complete set of axioms for K4W has eluded
us. In conclusion we informally enumerate various ideas which may help resolve
this. As shown in Theorem 4.8, the property of transitivity is not definable in our
language. This, however, is not the main obstacle.

The simpler difficulty is that iterations of W do not mimic iterations of �.
The 4 axiom is �ϕ → ��ϕ, but we do not have Wϕ → W Wϕ in K4W (in fact, SW

` Wϕ → ¬W Wϕ). Besides being technically recalcitrant, W Wϕ is an epistemic
bogey monster. To be wrong that you are wrong about ϕ implies B(Bϕ ∧ ¬ϕ) (a
Moorean paradox).

Aiming to show completeness for K4DW might be easier than aiming for com-
pleteness of K4W . The following sentence is a member of K4DW and may be helpful
to this end:

Wϕ → W (¬W¬ϕ ∧ ϕ).

As an extension of K4, the logic GL (K⊕�(�ϕ → ϕ) → �ϕ) is of interest here
(see Boolos [1]). Again, perhaps aiming for a complete set of axioms for GLW may
help resolve our question about K4W . The following theorem of GLW may be of use
to this end:

(W (¬Wϕ ∧ ψ) ∧ ¬ϕ) → Wϕ.

Note that we showed in Theorem 4.14 that SW
⊕ AQ

= K4QW ; this tells us that
K4W ⊆ SW

⊕ AQ , which narrows the search for our missing axiom(s) down some-
what. We end with some observations regarding K4W due to an anonymous reviewer.
Call the following sentence A3.9:

(Wϕ ∧ ¬W⊥) → ¬W (W¬ϕ ∧ ¬W⊥).

We have the following two results.

Theorem 5.1 A3.9
∈ K4W and A3.9

6∈ KW .

Proof To see A3.9
∈ K4W , assume A3.9 fails in some transitive model. Thus,

M, w |H Wϕ ∧ ¬W⊥ ∧ W (W¬ϕ ∧ ¬W⊥).

Since M, w |H Wϕ ∧ ¬W⊥, there is some x , wRx and M, x |H ϕ. We also know
that M, x |H W¬ϕ∧¬W⊥, and so for some y, x Ry and M, y |H ¬ϕ. By transitivity,
wRy, thus M, y |H ϕ, contradiction. To see that A3.9

6∈ KW , consider a three-world
model W = {a, b, c}, R = {〈a, b〉, 〈b, c〉}, where V (p) = {b}. A3.9 fails at a. �

Theorem 5.2 A3.9 is valid in a frame if and only if, for all x, either ¬(∃y)x Ry, or
(∃y)(x Ry ∧ ¬(∃z)y Rz), or (∃y)(∃z)(x Ry ∧ y Rz ∧ x Rz).

Proof For the reader. �



Logics for False Belief 253

References

[1] Boolos, G., The Logic of Provability, Cambridge University Press, Cambridge, 1993.
Zbl 0891.03004. MR 1260008. 252

[2] Brogan, A. P., “Aristotle’s logic of statements about contingency,” Mind, vol. 76 (1967),
pp. 46–81. 246

[3] Cresswell, M. J., “Necessity and contingency,” Studia Logica, vol. 47 (1988), pp. 145–
49. Zbl 0666.03015. MR 999771. 246

[4] Humberstone, I. L., “The logic of non-contingency,” Notre Dame Journal of Formal
Logic, vol. 36 (1995), pp. 214–29. Zbl 0833.03004. MR 1345745. 246

[5] Kuhn, S. T., “Minimal non-contingency logic,” Notre Dame Journal of Formal Logic,
vol. 36 (1995), pp. 230–34. Zbl 0833.03005. MR 1345746. 246

[6] Kushida, H., “The modal logic of Gödel sentences,” Journal of Philosophical Logic,
vol. 39 (2010), pp. 577–90. Zbl 1205.03066. MR 2721775. 246

[7] Lomuscio, A., and W. van der Hoek, “A logic for ignorance,” Electronic Notes in
Theoretical Computer Science, vol. 85 (2004). 246

[8] Marcos, J., “Logics of essence and accident,” Bulletin of the Section of Logic, vol. 34
(2005), pp. 43–56. Zbl 1117.03305. MR 2186213. 246

[9] Montgomery, H., and R. Routley, “Non-contingency axioms for S4 and S5,” Logique
et Analyse. Nouvelle Série, vol. 11 (1968), pp. 422–24. Zbl 0169.30003. MR 0235990.
246

[10] Mortensen, C., “A sequence of normal modal systems with non-contingency bases,”
Logique et Analyse. Nouvelle Série, vol. 19 (1976), pp. 341–44. Zbl 0347.02014.
MR 0497945. 246

[11] Steinsvold, C., “Completeness for various logics of essence and accident,” Bulletin of
the Section of Logic, vol. 37 (2008), pp. 93–101. MR 2460598. 246

[12] Steinsvold, C., “A note on logics of ignorance and borders,” Notre Dame Journal of
Formal Logic, vol. 49 (2008), pp. 385–92. Zbl 1180.03017. MR 2456654. 246

[13] Steinsvold, C., “The boxdot conjecture and the language of essence and accident,” The
Australasian Journal of Logic, vol. 10 (2011), pp. 18–35. 246

[14] Zolin, E. E., “Completeness and definability in the logic of noncontingency,”
Notre Dame Journal of Formal Logic, vol. 40 (1999), pp. 533–47. Zbl 0989.03019.
MR 1858241. 246

Acknowledgments

I thank an anonymous reviewer for a constructive and thoughtful response.

Department of Philosophy
Brooklyn College
City University of New York
2900 Bedford Avenue
Brooklyn NY 11210
USA
steinsvold1@verizon.net

http://www.emis.de/cgi-bin/MATH-item?0891.03004
http://www.ams.org/mathscinet-getitem?mr=1260008
http://www.emis.de/cgi-bin/MATH-item?0666.03015
http://www.ams.org/mathscinet-getitem?mr=999771
http://www.emis.de/cgi-bin/MATH-item?0833.03004
http://www.ams.org/mathscinet-getitem?mr=1345745
http://www.emis.de/cgi-bin/MATH-item?0833.03005
http://www.ams.org/mathscinet-getitem?mr=1345746
http://www.emis.de/cgi-bin/MATH-item?1205.03066
http://www.ams.org/mathscinet-getitem?mr=2721775
http://www.emis.de/cgi-bin/MATH-item?1117.03305
http://www.ams.org/mathscinet-getitem?mr=2186213
http://www.emis.de/cgi-bin/MATH-item?0169.30003
http://www.ams.org/mathscinet-getitem?mr=0235990
http://www.emis.de/cgi-bin/MATH-item?0347.02014
http://www.ams.org/mathscinet-getitem?mr=0497945
http://www.ams.org/mathscinet-getitem?mr=2460598
http://www.emis.de/cgi-bin/MATH-item?1180.03017
http://www.ams.org/mathscinet-getitem?mr=2456654
http://www.emis.de/cgi-bin/MATH-item?0989.03019
http://www.ams.org/mathscinet-getitem?mr=1858241 
mailto:steinsvold1@verizon.net

	1. Introduction
	2. Possible World Semantics
	3. The System SW
	4. The Canonical Model
	5. K4W?
	References
	Acknowledgments

