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A Natural Model of the Multiverse Axioms

Victoria Gitman and Joel David Hamkins

Abstract If ZFC is consistent, then the collection of countable computably
saturated models of ZFC satisfies all of the Multiverse Axioms of Hamkins.

1 Introduction

The multiverse axioms that are the focus of this article arose in connection with a
continuing debate in the philosophy of set theory between the Universe view, which
holds that there is a unique absolute set-theoretical universe, serving as set-theoretic
background for all mathematical activity, and the Multiverse view, which holds that
there are many set-theoretical worlds, each instantiating its own concept of set. We
refer the reader to [5] and to several other articles in the same special issue of the
Review of Symbolic Logic for a fuller discussion of this philosophical exchange (see
also [6; 7]). The multiverse axioms express a certain degree of richness for the set-
theoretic multiverse, flowing from a perspective that denies an absolute set-theoretic
background.

Meanwhile, the multiverse axioms admit a purely mathematical, nonphilosophical
treatment, on which we shall focus here. We shall internalize the study of multiverses
to set theory by treating them as mathematical objects within ZFC, allowing for
a mathematized simulacrum inside V of the full philosophical multiverse (which
would otherwise include universes outside V ). Specifically, in this article we define
that a multiverse is simply a nonempty set or class of models of ZFC set theory.
The multiverse axioms then correspond to the features listed in Definition 1.1, which
such a collection may or may not exhibit.

Definition 1.1 (Multiverse Axioms) Suppose that M is a multiverse, a nonempty
collection of models of ZFC.

(1) The Realizability axiom holds for M if whenever M is a universe in M and
N is a definable class of M , with a set-like membership relation, satisfying
ZFC from the perspective of M , then N is in M .
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(2) The Forcing Extension axiom holds for M if whenever M is a universe in M
and P is a forcing notion in M , then M has a forcing extension of M by P, a
model of the form M[G], where G is an M-generic filter for P.

(3) The Class Forcing Extension axiom holds for M if whenever M is a universe
in M and P is a ZFC-preserving class forcing notion in M , then M has a
forcing extension of M by P, a model of the form M[G], where G is an
M-generic filter for P.

(4) The Countability axiom holds for M if for every universe M in M there is
another universe N in M such that M is a countable set in N .

(5) The Wellfoundedness Mirage axiom holds for M if for every universe M in
M, there is N in M, which thinks M is a set with an ill-founded ω.

Although the next axioms do not appear in [5], we shall nevertheless consider them
here. They follow a suggestion of Reitz, who proposed that whenever a universe M in
the multiverse has a measurable cardinal, then it should be the internal ultrapower of
another universe V , sending its critical point to that cardinal. That is, the suggestion
is that we should be able to iterate large cardinal embeddings backward. Here, we
generalize the idea to other ultrapowers and to embeddings generally.

(6) The Reverse Ultrapower Axiom holds for M if for every universe M in M,
there is a universe N in M such that M is the internal ultrapower of N by an
ultrafilter on ω in N .

(7) The Strong Reverse Ultrapower Axiom holds for M if for every universe M1
in M and every ultrafilter U1 in M1 on a set X1 in M1, there is M0 in M, with
an ultrafilter U0 on a set X0 such that M1 is the internal ultrapower of M0 by
U0, sending U0 to U1.

(8) The Reverse Embedding Axiom holds for M, if for every universe M1 in M
and every embedding j1 : M1 → M2 definable in M1 from parameters and
thought by M1 to be elementary, there is M0 in M and similarly definable
j0 : M0 → M1 in M0 such that j1 is the iterate of j0, meaning j1 = j0( j0).

In other words, the Reverse Embedding axiom asserts that every internal elementary
embedding j1 : M1 → M2 arises as an iterate of an earlier embedding. The idea is
that if we are living in M1 and see the embedding j1, then for all we know, it has
already been iterated an enormous number of times. To be precise, by j1 = j0( j0),
we mean that if j0 is definable by ϕ(x, y, a) over M0, then j1 is definable by
ϕ(x, y, j0(a)) over M1.

There is, of course, a certain degree of redundancy in the axioms; for example,
the Class Forcing Extension axiom implies the Forcing Extension axiom, the Re-
verse Embedding axiom implies the Reverse Ultrapower axioms, and the Reverse
Ultrapower and Countability axioms imply the Wellfoundedness Mirage. There are
also a few subtler points. In several of the axioms, when it is stated that one model
M is an element of another model N, what is meant is that there is an object in N that
N thinks is a pair 〈m, E〉 for which E is a binary relation on m, and externally, the
set { a ∈ N | N |H a ∈ m } with the relation { (a, b) | N |H aEb } is isomorphic to
M with its relation. Another subtle issue is that in the Countability axiom, although
M must be a countable set in N , there is no insistence that N regard M as a model of
ZFC; indeed, since N itself may be nonstandard, it may have a nonstandard version
of ZFC, with nonstandard size axioms that M does not satisfy in N , even if M sat-
isfies ZFC externally. Similarly, the Wellfoundedness Mirage axiom requires that M
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is seen to be ill-founded by N , but again N may not look upon M as a model of ZFC,
since N may itself have nonstandard size axioms, and there is no reason to expect
that N believes M to satisfy them. The Realizability axiom, on the other hand, only
applies to the definable models of the universe that satisfy its own version of ZFC.
For example, if M is a model of ZFC with nonstandard ω, then for every natural
number n in M , there will be V M

α that M believes to model the 6n theory of its ZFC,
and when n is nonstandard, this includes all of the standard ZFC; so although these
V M

α are models of full ZFC, the Realizability axiom does not apply to them.
Hamkins [5] provided a model of the first five multiverse axioms constructed via

iterated ultrapowers, and he inquired at that time whether the collection of all count-
able nonstandard models of set theory might already be a model of the multiverse
axioms. Observation 2.1 and Theorem 3.2 below show that this is too much, since
the axioms impose a requirement of computable saturation on the models. Neverthe-
less, in this article we prove that this is the only such obstacle, for our Main Theorem
shows that if ZFC is consistent, then the collection of all countable computably sat-
urated models of ZFC satisfies all of the multiverse axioms.

Main Theorem 1.2 If ZFC is consistent, then the collection of all countable com-
putably saturated models of ZFC satisfies all the multiverse axioms.

We note that the Main Theorem will imply that it is not true that every multiverse
satisfying the axioms must consist of countable models. For example, if N is a
nonstandard model of ZFC + Con(ZFC), then we may let M be the models that N
thinks are countable computably saturated models of ZFC. By the Main Theorem,
N thinks that this collection satisfies all the multiverse axioms, and it follows that
this will really be the case also outside of N . But the models in M will be at least as
large as ωN , which could be as large in cardinality as we like.

2 Computably Saturated Models of Set Theory

In this section, we shall explain precisely why we must restrict to the computably
saturated models and review the key properties of these models that are needed for
the proof of the Main Theorem. Computable saturation was introduced in [1] and
is also commonly known as recursive saturation. A model M of a computable lan-
guage L is said to be computably saturated, if for every finite tuple ā in M , every
finitely realizable computable type p(ā, x̄) is already realized in M . A type p(ȳ, x̄)
in a computable language L is computable when the set of the Gödel codes of its
formulas is a computable set in the usual sense of Turing computability. In the fu-
ture, we shall freely associate types with subsets of N consisting of the Gödel codes
of their formulas. A model of ZFC set theory is ω-nonstandard if it has a nonstan-
dard ω. Because tuples can be viewed as a single set in models of ZFC, for these
it suffices to consider only computable types of the form p(a, x). Note that a com-
putably saturated model of ZFC must necessarily be ω-nonstandard since the type
p(x) = {n < x | n ∈ ω} ∪ {x < ω}, where n is the term 1 + · · · + 1 with n many
1s, is a finitely realizable computable type over any model of ZFC. For any model
M of ZFC, we may consider the trace on the natural numbers of the sets that exist
in M . Specifically, we say that a set A ⊆ N is coded by a in M , if a is a set in M
whose intersection with the standard natural numbers is exactly A. When a is a set
of natural numbers in M , then A is also known as the standard part of a, and the
collection of all sets A arising this way is accordingly called the Standard System
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of M , denoted SSy(M). Note that the standard system of any model must include
all computable sets, since the model will agree on the behavior of any computation
that halts in the standard N. Standard systems have been extensively studied in the
context of models of Peano Arithmetic where they play a crucial conceptual role, but
the notion was originally introduced for models of various set theories [3].

Observation 2.1 Any multiverse satisfying the Wellfoundedness Mirage axiom
must consist entirely of computably saturated models of ZFC.

Proof If M satisfies the Wellfoundedness Mirage axiom, it follows that every mem-
ber of M has a nonstandard ω. Thus, again by the Wellfoundedness Mirage axiom,
every member of M is a set in a model of ZFC having a nonstandard ω. Thus, every
member of M is computably saturated by Lemma 2.2. �

Lemma 2.2 Every model of ZFC that is an element of an ω-nonstandard model of
ZFC is computably saturated.

Proof Suppose that M is a model of ZFC that is an element of an ω-nonstandard
model N of ZFC. In order to see that M is computably saturated, suppose that p(b, x)
is a computable finitely realizable type over M . Let a ∈ N code p(y, x). Since
p(b, x) is finitely realizable and N has a truth predicate for M , for every n ∈ N,
the model N knows that there is c ∈ M such that M |H ϕ(b, c) for every formula
ϕ(y, x) with Gödel code less than n in a. Because the standard N is not definable
in N , there must be a nonstandard natural number d ∈ N and an element e ∈ M with
N satisfying that M |H ϕ(b, e) for every (possibly nonstandard) formula ϕ(y, x)
with Gödel code less than d in a. Since d is nonstandard, this includes every formula
in p(y, x). By the absoluteness of satisfaction for standard formulas, it follows that
M |H ϕ(b, e) for every ϕ(b, x) in p(b, x) and thus e realizes p(b, x). �

Lemma 2.3 If ZFC is consistent, then there are 2ℵ0 many pairwise nonisomorphic
countable computably saturated models of ZFC. Every real is in the standard system
of such a model.

Proof If ZFC is consistent, then every completion of ZFC as a theory has a count-
able computably saturated model, because any countable model of ZFC can be ex-
tended elementarily to a computably saturated model by successively realizing types
in a countable elementary chain. For any real x , one can ensure that the type express-
ing that x is coded is realized. �

A model M of ZFC is said to be SSy(M)-saturated if it realizes every finitely real-
izable type coded in M . It turns out that a model M is computably saturated if and
only if it is SSy(M)-saturated. To see this, fix a type p(y, x) coded by a ∈ M and fix
b ∈ M such that p(b, x) is finitely realizable. Define a new type q(b, a, x) to consist
of all formulas of the form (pϕ(y, x)q ∈ a) → ϕ(b, x), and observe that q(y, z, x)
is computable and finitely realizable, using the objects realizing the corresponding
fragment of p(b, x). Thus, there is some e in M realizing q(b, a, e), and it follows
that e realizes p(b, e), as desired. We note also that the type of any element in a com-
putably saturated model is in the standard system of that model: for a ∈ M , define
p(a, x) to be the type consisting of all formulas of the form pϕ(y)q ∈ x ↔ ϕ(a)
and observe that it is computable and finitely realizable; thus, the type of a is coded
in M . In particular, the theory of any computably saturated model is an element of its
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standard system. According to [9], SSy(M)-saturation was introduced by Wilmers
in his unpublished 1975 thesis where he established the above equivalence.

The next lemma generalizes another fundamental result from models of PA that
appears in [15] but has as well been attributed to Jensen and Ehrenfeucht [8], and
Wilmers, among others.

Key Lemma 2.4 Any two countable computably saturated models of ZFC with the
same theory and the same standard system are isomorphic.

Proof This is a standard model-theoretic back-and-forth construction. The obser-
vations above ensure that the models are standard system-saturated, and all types of
their elements are coded in the standard system. Thus, we may construct the desired
isomorphism in a countable recursive procedure that maps elements of one model to
elements in the other realizing the same types over what has been defined so far. �

The following lemma will be critical for our verification of the Wellfoundedness
Mirage axiom in the Main Theorem. This fact may have been known some time ago.
For example, Schlipf [12, III.2.6] proved that every computably saturated model of
ZF is an element of an ω-nonstandard model of ZF, and Ressayre [11, 3.3] proved
that every model of ZF is elementarily equivalent to a model of ZF containing as an
element an isomorphic copy of itself. (See [4] for an interesting discussion.)

Lemma 2.5 Every countable computably saturated model of ZFC contains an iso-
morphic copy of itself as an element, which it thinks is ω-nonstandard. That is, if M
is a countable computably saturated model of ZFC, then M has an element N which
it thinks is a countable ω-nonstandard model of a fragment of set theory such that
M ∼= N.

Proof Suppose that M is a countable computably saturated model of ZFC. As we
noted above, Th(M) is coded by some a ∈ M . By the Reflection Theorem, every fi-
nite subset of this theory is true in some rank initial segment of M , and M recognizes
this for any particular such finite subset. Since the standard cut N is not definable
in M , there must be a nonstandard natural number b in M such that M thinks the
theory consisting of all formulas whose Gödel codes are in a and less than b is con-
sistent. Since b is nonstandard, this includes the entire Th(M). By the Completeness
Theorem in M , therefore, we may build a model N in M satisfying this consistent
fragment of a, which includes all of Th(M) such that, additionally, M thinks N is
ω-nonstandard. Since ωM is an initial segment of ωN and M is ω-nonstandard, it fol-
lows that M and N have the same standard system. Also, since M is ω-nonstandard,
it follows by Lemma 2.2 that N is computably saturated. We conclude by Lemma 2.4
that actually M ∼= N . �

By considering the situation from the perspective of the smaller copy of the model,
we deduce the following.

Corollary 2.6 Every countable computably saturated model of ZFC is an element
of another countable computably saturated model of ZFC that thinks it is a countable
ω-nonstandard model of a (nonstandard) fragment of set theory.

Note in Lemma 2.5 that although we know on the outside that N |H ZFC, since it
satisfies Th(M), it could happen that M 6|H “N |H ZFC”, since perhaps M thinks
that some of the nonstandard ZFC axioms of M fail in N . Despite this, Corollary 2.6
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suffices to verify the Countability and Wellfoundedness Mirage axioms for the col-
lection of countable computably saturated models of ZFC, since as we mentioned
there was no insistence in the axioms that the larger model look upon the smaller
as a model of what it thinks is full ZFC. Nevertheless, under a stronger assumption
it is possible to obtain the stronger conclusion. Surely a stronger assumption is re-
quired, since if N |H ZFC + “M |H ZFC”, then N |H ZFC + Con(ZFC), and so
Con(ZFC + Con(ZFC)). And if this N is an element of a further such model, then
we get Con(Con(Con(ZFC))), and so on transfinitely. The stronger assumption we
shall make is that for every countable computably saturated model M of ZFC, the
theory TM = ZFC + {Con(ZFC + 0) | 0 ⊆Fin Th(M)} is consistent.

Theorem 2.7 If M is a computably saturated countable model of ZFC, then there
is a countable computably saturated model N of ZFC containing M as an element
and satisfying that M is a nonstandard model of ZFC if and only if the theory TM is
consistent.

Proof The forward implication is immediate, since any such model N will satisfy
the theory TM . For the converse implication, suppose that TM is consistent. By
Lemma 2.4, it suffices to show that there exists N containing a countable computably
saturated model K with the same theory and standard system as M that it recognizes
as a model of ZFC. It will immediately follow that SSy(N ) = SSy(K ) and so
we shall need to ensure that SSy(N ) = SSy(M). Scott observed in [14] that every
standard system is a Scott set, that is, a Boolean algebra of subsets of natural numbers
that is closed under relative computability and contains at least one branch through
every element that is a binary tree. In that paper, he famously showed that, given
a countable Scott set X and a theory T ∈ X extending PA, there is a model of
T whose standard system is exactly X. Wilmers, in his thesis, showed that this
easily generalizes to obtaining a computably saturated model. Let X = SSy(M) and
observe that TM ∈ X, since TM is computable in Th(M), which is an element of
X. Summarizing, we can build a countable computably saturated model N of ZFC
satisfying TM and having the same standard system as M . Since N satisfies TM , it
satisfies Con(ZFC + 0) where 0 is a nonstandard segment containing Th(M). So N
can build a countable model K that it thinks satisfies ZFC + 0. �

We have observed that the assumption that TM is consistent transcends Con(ZFC).
But the assumption is not so strong, for if M is an element of an ω-model N of ZFC,
then N satisfies TM . In particular, if there is a transitive model N of ZFC, then it
satisfies TM , and hence also Con(TM ), for every countable model M in N .

Let us close this section by mentioning the concept of resplendency, a powerful
generalization of computable saturation that has unified many applications of it. Re-
splendency is a second-order analogue of computable saturation in that it concerns
realizing second-order types; that is, it is about interpreting a new predicate sym-
bol on the universe. Specifically, a first-order structure M is resplendent if every
finitely-realized computable type p(X, Ea) in the language of M expanded by a pred-
icate symbol X with Ea a finite list of parameters from M is realized in 〈M, X〉 for
some interpretation of X . (The type is finitely realized if all finite subsets of p are
realized in such a model 〈M, X〉.) The concept of resplendency was introduced by
Barwise and Schlipfe [1], and independently by Ressayre [10], who proved that every
countable computably saturated model is resplendent (see also [15]). Schlipfe [13]
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proved that a countable model of set theory is computably saturated if and only if it
is ω-nonstandard and there is a club of ordinals α with Vα ≺ V . Moschovakis and
Chang (see [2]) proved that every saturated model is resplendent. Although we have
presented our arguments in an elementary manner appealing only to computable sat-
uration, it appears that many of our lemmas can be fruitfully generalized, by proving
them via resplendency.

3 Proof of Main Theorem

Let us now complete the proof of the Main Theorem, which we restate here for
convenience.

Main Theorem If ZFC is consistent, then the collection of all countable com-
putably saturated models of ZFC satisfies all the multiverse axioms.

Proof We shall argue in turn that the collection M of all countable computably
saturated models of ZFC satisfies each of the multiverse axioms. First, since we
have assumed that ZFC is consistent, Lemma 2.3 shows that in fact there are many
countable computably saturated models of ZFC. So M is nonempty.

Consider now the Realizability axiom. Suppose that M ∈ M and N is a definable
class in M and a model of ZFC. Since M is an element of some other nonstandard
model M ′ by Corollary 2.6, it follows that N is also an element of M ′, and so by
Lemma 2.2, it follows that N is computably saturated. Since N is clearly also count-
able, as M was countable, it follows that N ∈ M. Thus, M satisfies the Realizability
axiom.

For the Forcing axioms, suppose that M ∈ M and P is a forcing notion in M .
Certainly we can easily produce by diagonalization an M-generic filter G ⊆ P and
form the forcing extension M[G]. Furthermore, by Corollary 2.6, we can do so
inside any model M ′ which looks upon M ′ as countable. Thus, there is a forcing
extension M[G] inside such an M ′. It now follows by Lemma 2.2 that M[G] is
computably saturated, as desired. So M satisfies the Forcing and Class Forcing
Extension axioms.

The difficult cases of the Wellfoundedness Mirage and Countability axioms
are exactly provided for by Corollary 2.6. The Reverse Ultrapower axioms fol-
low from the Reverse Embedding axiom, so it suffices to consider that axiom.
Suppose that M1 is countable and computably saturated and j1 : M1 → M2 is
an elementary embedding in M1, defined in M1 from some parameter z, so that
j1(x) = y ⇐⇒ M1 |H ϕ(x, y, z). By interpreting this definition in M2 us-
ing j1(z) we obtain the iterate embedding j2 = j1( j1) : M2 → M3, defined by
j2(x) = y ⇐⇒ M2 |H ϕ(x, y, j1(z)). Since the critical point of j1 must be at least
ωM1 , which is nonstandard, it follows that M1 and M2 share a nonstandard initial
segment of their natural numbers and therefore have the same standard system. Since
they also have the same theory, it follows by Lemma 2.4 that there is an isomorphism
π : M1 ∼= M2. Since the type of z in M1 is the same as the type of j1(z) in M2,
we may assume in the back-and-forth argument that π(z) = j1(z). Thus, since j1
is defined in M1 by ϕ(x, y, z), the map π carries j1 to the class defined in M2 by
ϕ(x, y, π(z)), which is j2. In other words, π carries the entire map j1 : M1 → M2
isomorphically to the map j2 : M2 → M3. And since j2 = j1( j1) is by definition
an iterate of j1, the Reverse Embedding axiom holds in the case of j2 : M2 → M3.
Since this is isomorphic via π to j1 : M1 → M2, it follows by replacing the objects
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with their image under π that there is j0 : M0 → M1 such that j1 = j0( j0), as
desired. �

Recall that a model M is said to be κ-saturated for a cardinal κ if every finitely
realizable type in the language extended to include some <κ-many constants for
elements of the model is already realized. A model of cardinality κ is said to be
simply saturated if it is κ-saturated. It is a basic fact that any two saturated models
of the same theory and same cardinality are isomorphic. If M is a saturated model of
ZFC and N is a model of ZFC that is an element of M , then N must be saturated and
have the same cardinality as M . The cardinality is the same since ωM , by saturation,
is already of the same cardinality as M . For details on saturated models, see [2].
Thus, it easily follows that every saturated model of ZFC of cardinality κ has an
isomorphic copy of itself that it thinks is a countable ω-nonstandard model of a finite
fragment of ZFC. Other facts necessary for the proof of the Main Theorem follow
for saturated models of ZFC of cardinality κ as well; in most cases they are easier to
see than for computable saturation because any two elementarily equivalent saturated
models of the same cardinality are isomorphic. Thus, we get the following corollary
of the Main Theorem.

Corollary 3.1 If there are saturated models of ZFC of cardinality κ , then the col-
lection of these satisfies all the multiverse axioms.

It is natural to wonder whether the collection of all models of ZFC forms a model
of the multiverse axioms, or whether the collection of all countable models of ZFC
does so. Unfortunately, neither does.

Theorem 3.2 If ZFC is consistent, then the collection of all models of ZFC is not
a model of the multiverse axioms. Neither is the collection of all countable models
of ZFC, nor the collection of all countable nonstandard models of ZFC, nor the
collection of countable ω-nonstandard models of ZFC, nor the collection of such
models restricted to a given consistent completion of ZFC.

Proof By Observation 2.1, all we need to do for the first part is to show that there
is a model of ZFC that is not computably saturated. In fact, every consistent comple-
tion of ZFC has a countable ω-nonstandard model that is not computably saturated
(and this proves the subsequent claims). To see this, take any countable nonstandard
model M of ZFC. The definable cut of M consists of all x ∈ M such that x ∈ (Vα)M ,
where α is a definable ordinal in M (without parameters). If M0 is the definable cut
of M , then it is relatively easy to verify the Tarski-Vaught criterion, and so M0 ≺ M .
It follows that M0 has exactly the same definable ordinals as M , and these are un-
bounded in the ordinals of M0. Thus, M0 omits the type p(x) asserting that whenever
there is a unique ordinal satisfying ϕ(y), then y < x . This is a computable finitely
realizable type not realized in M0, and so M0 is not computably saturated. Thus, by
Observation 2.1, it cannot be in any model of the multiverse axioms. �

Let us conclude this paper by considering the degree to which we might expect a
multiverse to be upward directed. Specifically, a multiverse M is upward directed if
for any two elements M, N ∈ M there is an element W ∈ M containing (isomorphic
copies of) M and N as elements. The multiverse M is countably upward directed if,
for any countable subcollection M0 ⊆ M, there is an element W ∈ M containing
(an isomorphic copy of) every element of M0. It is easy to see that the multiverse
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of all countable computably saturated models of ZFC is not upward directed. This
is because any two elements of an upward directed multiverse M containing only
ω-nonstandard models must have the same standard system. Suppose that M and
N are elements of an upward directed multiverse M containing only ω-nonstandard
models. By directedness, there is W ∈ M with M and N both in W . Since the
ωW is an initial segment of ωM and ωN , and is itself nonstandard, it follows that
all three models M , N , and W have the same standard system. Thus, all models in
M have the same standard system. Since any real can be placed into the standard
system of a countable computably saturated model of ZFC, it follows that not all
countable computably saturated models of ZFC have the same standard system. So
this multiverse is not upward directed. Nevertheless, this is the only obstacle.

Theorem 3.3 If ZFC is consistent, the multiverse of countable computably satu-
rated models having a fixed standard system is countably upward directed and con-
tinues to satisfy all the multiverse axioms.

Proof Fix a given Scott set S and consider the multiverse MS of all countable com-
putably saturated models of ZFC having standard system S. We observe first that
the proof of the Main Theorem goes through for MS , since in each part of that ar-
gument, the desired universe had the same standard system as the original model.
So it remains only to argue that MS is countably upward directed. Suppose that
M0 = { M0, M1, . . . } is a countable subcollection of MS so that every Mn is a
countable computably saturated model of ZFC with standard system S. By the re-
marks before Lemma 2.4, it follows that Th(Mn) is in S for every n. Let M be any
ω-nonstandard model having standard system S. Since Th(Mn) is coded in M , by
arguments of the proof of Lemma 2.5, M can build a model mn satisfying the theory
Th(Mn) and having SSy(mn) = S. Therefore, by Lemma 2.4, it follows that mn and
Mn are isomorphic. In summary, we have proved that every model in MS serves as
a witness to the countable upward directedness of MS . �

References

[1] Barwise, J., and J. Schlipf, “An introduction to recursively saturated and resplendent
models,” The Journal of Symbolic Logic, vol. 41 (1976), pp. 531–6. Zbl 0343.02032.
MR 0403952. 477, 480

[2] Chang, C. C., and H. J. Keisler, Model Theory, 3d edition, vol. 73 of Studies in Logic
and the Foundations of Mathematics, North-Holland Publishing Co., Amsterdam, 1990.
Zbl 0697.03022. MR 1059055. 481, 482

[3] Friedman, H., “Countable models of set theories,” pp. 539–73 in Cambridge Summer
School in Mathematical Logic (Cambridge, 1971), vol. 337 of Lecture Notes in Mathe-
matics, Springer-Verlag, Berlin, 1973. Zbl 0271.02036. MR 0347599. 478

[4] Halimi, B., “Models and universes,” preprint. 479

[5] Hamkins, J. D., “The set-theoretical multiverse,” submitted. 475, 476, 477

[6] Hamkins, J. D., “The set-theoretical multiverse: A natural context for set theory,” sub-
mitted. 475

[7] Hamkins, J. D., “Some second order set theory,” pp. 36–50 in Logic and Its Applica-
tions, edited by R. Ramanujam and S. Sarukkai, vol. 5378 of Lecture Notes in Computer
Science, Springer-Verlag, Berlin, 2009. Zbl pre05506840. MR 2540935. 475

http://www.emis.de/cgi-bin/MATH-item?0343.02032
http://www.ams.org/mathscinet-getitem?mr=0403952
http://www.emis.de/cgi-bin/MATH-item?0697.03022
http://www.ams.org/mathscinet-getitem?mr=1059055
http://www.emis.de/cgi-bin/MATH-item?0271.02036
http://www.ams.org/mathscinet-getitem?mr=0347599
http://www.emis.de/cgi-bin/MATH-item?pre05506840
http://www.ams.org/mathscinet-getitem?mr=2540935


484 V. Gitman and J. D. Hamkins

[8] Jensen, D., and A. Ehrenfeucht, “Some problem in elementary arithmetics,” Funda-
menta Mathematicae, vol. 92 (1976), pp. 223–45. Zbl 0362.02049. MR 0419212. 479

[9] Kaye, R., Models of Peano Arithmetic, vol. 15 of Oxford Logic Guides, The Clarendon
Press, New York, 1991. Zbl 0744.03037. MR 1098499. 479

[10] Ressayre, J. P., “Introduction aux modèles récursivement saturés,” pp. 53–72 in Sémi-
naire Général de Logique 1983–1984 (Paris, 1983–1984), vol. 27 of Publications
Mathématiques de l’Université Paris VII, Université de Paris VII U.E.R. de Mathéma-
tiques, Paris, 1986. MR 938753. 480

[11] Ressayre, J. P., and A. J. Wilkie, Modèles non Standard en Arithmétique et Théorie des
Ensembles, vol. 22 of Publications Mathématiques de l’Université Paris VII, Université
de Paris VII U.E.R. de Mathématiques, Paris, 1987. Zbl 0631.03048. MR 882182. 479

[12] Schlipf, J. S., “A guide to the identification of admissible sets above structures,” Annals
of Pure and Applied Logic, vol. 12 (1977), pp. 151–92. Zbl 0374.02031. MR 0485330.
479

[13] Schlipf, J. S., “Recursively saturated models of set theory,” Proceedings of the American
Mathematical Society, vol. 80 (1980), pp. 135–42. MR 574523. 480

[14] Scott, D., “Algebras of sets binumerable in complete extensions of arithmetic,”
pp. 117–21 in Proceedings of Symposia in Pure Mathematics, Vol. V, American Mathe-
matical Society, Providence, 1962. Zbl 0199.02601. MR 0141595. 480
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