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Subclasses of the Weakly Random Reals

Johanna N. Y. Franklin

Abstract The weakly random reals contain not only the Schnorr random reals
as a subclass but also the weakly 1-generic reals and therefore the n-generic
reals for every n. While the class of Schnorr random reals does not overlap
with any of these classes of generic reals, their degrees may. In this paper, we
describe the extent to which this is possible for the Turing, weak truth-table,
and truth-table degrees and then extend our analysis to the Schnorr random and
hyperimmune reals.

1 Introduction

Randomness and genericity are somehow similar concepts. A real that is random
is, in some sense, large with respect to measure, and a real that is generic may be
considered to be large with respect to category. The degree to which random reals
and generic reals may be related is, therefore, of interest. Given a very weak notion
of randomness, a real may be both random and generic, but for any reasonably strong
definition of randomness, this is not the case.

Weak randomness, developed by Kurtz in his thesis [11] and therefore also called
Kurtz randomness, is the weakest of all the commonly discussed randomness no-
tions. Not only are all the reals that are Schnorr random weakly random, but so are
all the reals that are weakly 1-generic. This implies that for every n, all the reals that
are n-random or n-generic are weakly random. However, the n-random reals and the
m-generic reals do not overlap for any n and m.

In this paper, we study the relationships between the degrees of these subclasses
of the weakly random reals. The first part of the paper consists of an analysis of the
relationship between the degrees of random reals and the degrees of generic reals.
In the second part of this paper, we generalize the genericity condition to that of
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hyperimmunity and consider the relationship between the degrees of random reals
and hyperimmune reals.

1.1 Background Our notation generally follows that of Odifreddi [15; 14] and
Soare [17]. We work within the Cantor space, denoted by 2ω, and we call its ele-
ments reals. We will use µ to denote the Lebesgue measure on 2ω throughout. For
a finite binary string σ and a finite or infinite binary string C , we write σ ⊆ C to
indicate that σ is an initial segment of C . Although it may be more typical to denote
this relationship by �, we will use this notation in Section 2 to indicate the ordering
we place on a set of forcing conditions instead, as is standard in set theory. Further-
more, for a finite binary string σ , we let [σ ] denote the class of reals extending σ :
{A | σ ⊆ A}.

The original definition of weak randomness is unlike the standard definition of
most other randomness notions. Generally, a real is considered to be random if it
avoids all null sets defined in some particular effective way. Kurtz proposed in his
thesis [11] that a real could be considered to be random if, instead of avoiding every
null set, it is contained in every effectively defined set of measure 1.

Definition 1.1 ([11]) A real A is weakly random if A ∈ U for every60
1 set U ⊆ 2ω

of measure 1.

Wang proved that this class of reals can also be defined in the same way that Schnorr
and Martin-Löf randomness typically are, for example, in terms of tests.

Definition 1.2 ([19]) A Kurtz null test is a sequence 〈Vn〉n∈ω of open subsets of the
Cantor space such that for every n, µ(Vn) ≤

1
2n and Vn =

⋃
σ∈ f (n)[σ ] for a given

recursive function f : ω → (2<ω)<ω.

Theorem 1.3 ([19]) A real A is weakly random if and only if for every Kurtz null
test 〈Vn〉n∈ω, A 6∈

⋂
n∈ω Vn .

We now describe two stronger notions of randomness: Martin-Löf randomness and
Schnorr randomness. For Martin-Löf randomness, we increase the class of tests
whose null sets every random real must avoid by allowing each Vn to be determined
by an infinite r.e. set instead of a finite set. When we consider Schnorr randomness,
we use Martin-Löf tests that are restricted with respect to measure.

Definition 1.4 ([12]) A Martin-Löf test is a sequence 〈Vn〉n∈ω of open subsets of
the Cantor space such that for every n, µ(Vn) ≤

1
2n for every n and Vn = [W f (n)] for

a given recursive function f . A real A is said to be Martin-Löf random if for every
Martin-Löf test 〈Vn〉n∈ω, A 6∈

⋂
n∈ω Vn .

Definition 1.5 ([16]) A Martin-Löf test 〈Vn〉n∈ω is said to be a Schnorr test if for
every n, µ(Vn) =

1
2n . A real A is said to be Schnorr random if for every Schnorr test

〈Vn〉n∈ω, A 6∈
⋂

n∈ω Vn .

It is clear that every Martin-Löf random real is Schnorr random. It can also be shown
that every Schnorr random real is weakly random. The proof of this result involves
the characterizations of these randomness notions based on unpredictability. We use
martingales to formalize these characterizations. Recall that a martingale d is simply
a function from 2<ω to R≥0 such that for every string σ , d(σ ) =

d(σ0)+d(σ1)
2 , and

that a martingale d is r.e. (recursive) if the values d(σ ) are uniformly r.e. (recursive)
reals.
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Theorem 1.6 ([16; 19]) Suppose A is a real.
1. A is Schnorr random if there is no recursive martingale d such that

d(A � n) ≥ h(n) for infinitely many n for some unbounded, nondecreas-
ing recursive function h.

2. A is weakly random if there is no recursive martingale d and no unbounded,
nondecreasing recursive function h such that for some n, d(A�n) ≤ h(n).

It is clear from this theorem that every Schnorr random real (and thus every Martin-
Löf random real) is weakly random.

Finally, we mention a form of randomness strictly intermediate between Martin-
Löf randomness and Schnorr randomness: recursive randomness. It is most naturally
characterized in terms of martingales.

Definition 1.7 ([16]) A real A is recursively random if there is no recursive mar-
tingale d that succeeds on A, that is, such that lim supn d(A�n) = ∞.

We now note that although weak randomness is primarily considered a randomness
notion, it would not be inappropriate to consider it as a genericity notion since every
weakly random real meets every sufficiently large 60

1 set. When we discuss generic-
ity, we will use the formulations in [11].

Definition 1.8 A real G forces a statement ϕ if there is some initial segment σ of
G such that ϕ is true of all extensions of σ .

A set S ⊆ 2<ω is said to be dense if for every σ ∈ 2<ω, there is some τ ∈ S such
that σ ⊆ τ .

Definition 1.9 A real G is n-generic if for every 60
n sentence ϕ, either G forces ϕ

or G forces ¬ϕ, and a real G is weakly n-generic if for every dense 60
n set S, there

is some σ ∈ S such that σ ⊂ G.

It can be seen from this definition that every real that is weakly 1-generic is also
weakly random. Furthermore, every n-generic real is weakly n-generic, and every
weakly (n + 1)-generic real is n-generic [11].

We will also consider hyperimmunity, a more general notion than genericity.

Definition 1.10 A real A is hyperimmune if A is infinite and no recursive function
dominates pA, the function that lists those n such that A(n) = 1 in increasing order.

1.2 Previous work We first note that no real can be both Schnorr random and
weakly 1-generic [3]. To see this, we construct a dense r.e. set of strings S = ∪i Si
such that 〈[Si ]〉i∈ω is a nested Schnorr test and any weakly 1-generic real must be
contained in [Si ] for infinitely many i . Any weakly 1-generic real will be an element
of the intersection of the [Si ]s, so it cannot be Schnorr random.

Quite a lot of work has been done on the relationship between randomness and
genericity. Demuth and Kučera proved in [1] that no 1-generic real Turing computes
a Martin-Löf random real. This implies that no 2-generic real computes a 2-random
real. In [13], Nies, Stephan, and Terwijn proved that, in fact, any 2-generic real
and any 2-random real form a minimal pair and noted that this result cannot be im-
proved. Since every real is weak truth-table computed by a Martin-Löf random real
[9; 5], no 2-generic real can form a minimal pair with every Martin-Löf random real.
Furthermore, every 2-random real Turing computes a 1-generic real [7].
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Every weakly 1-generic real is hyperimmune [11], but not every weakly random
real is, since there are weakly random reals that are hyperimmune-free [13]. There-
fore, we may also consider the relationship between the Schnorr random reals and
the weakly random hyperimmune reals.

2 Genericity and Schnorr Randomness

It is clearly possible for a Schnorr random real and a 1-generic real to share a Turing
degree: each high Turing degree contains a Schnorr random real [13], and there is a
high 1-generic real. However, we can see that this highness condition is necessary
and that, in fact, a nonhigh 1-generic real cannot even compute a Schnorr random
real.

Theorem 2.1 If a 1-generic real is not high, it cannot Turing compute a Schnorr
random real.

Proof Let G be a 1-generic real that is not high, and suppose that it computes a
Schnorr random real A. Since A is not high, it must be Martin-Löf random [13].
Every Martin-Löf random real is fixed-point free (FPF) [10], and the Turing degrees
with FPF reals are closed upward. Therefore, the Turing degree of G must be FPF
as well, and since fixed-point freeness is degree invariant, G must be FPF as well.
However, no 1-generic degree can be FPF [1], so we have a contradiction. �

Since every 2-generic real is 1-generic and no 2-generic real is high, no 2-generic
real Turing computes a Schnorr random real. We present a direct argument here
that is similar to those in [4]. The interested reader may wish to compare the proof
that Cohen forcing does not add a random real, which can be seen as an immediate
corollary to Solovay’s characterization of random reals in [18].

In this proof, we will make use of the machine characterization of Schnorr
randomness, originally given by Downey and Griffiths [2]. We may consider a
Turing machine M to be a partial recursive function from 2<ω to 2<ω. A Turing
machine is said to be prefix-free if there are no σ and τ in its domain such that
σ extends τ . Finally, a Turing machine is said to be computable if the Lebesgue
measure of its domain is a recursive real, that is, effectively approximable from
above as well as from below. The Kolmogorov complexity of a finite binary
string σ with respect to a particular prefix-free Turing machine M is defined to be
KM (σ ) = min{|τ | | KM (τ ) = σ }.

Theorem 2.2 ([2]) A real A is Schnorr random if for every prefix-free computable
Turing machine M, (∃c ∈ ω)(∀n ∈ ω)[KM (A�n) ≥ n − c].

We will also need to make use of the Kraft-Chaitin Theorem.

Theorem 2.3 (Kraft-Chaitin Theorem) Let 〈di , σi 〉i∈ω be a recursive sequence with
di ∈ ω and σi ∈ 2<ω for all i such that

∑
i

1
2di

≤ 1. (Such a sequence is
called a Kraft-Chaitin set, and each element of the sequence is called a Kraft-
Chaitin axiom.) Then there are strings τi and a prefix-free machine M such that
dom(M) = {τi | i ∈ ω} and for all i and j in ω,

1. if i 6= j , then τi 6= τ j ,
2. |τi | = di ,
3. and M(τi ) = σi .
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This theorem allows us to construct a prefix-free machine by specifying only the
lengths of the strings in the domain rather than the actual strings. This allows us to
identify 〈τ, σ 〉 with 〈d, σ 〉, where d = |τ |, throughout.

Theorem 2.4 Suppose G is 2-generic and A ≤T G. Then A cannot be Schnorr
random.

Proof Let G be 2-generic, and let 9 be a Turing function witnessing A ≤T G.
Given an oracle X , the statement that 9X is total can be written as follows.

ϕX
= (∀n ∈ ω)(∃s ∈ ω)[9X

s (n) ↓] .

Since ϕX is a 50,X
2 statement, G must either force ϕG to be true or force it to be

false. Since A ≤T G, G cannot force it to be false, so G must force its truth.
Call the initial segment that does so p. Our forcing conditions will be the set
P = {q ∈ 2<ω | q ⊇ p}, which we can recursively enumerate as 〈qi 〉i∈ω. We
follow the standard convention of ordering P by writing qi � q j when qi ⊇ q j .

We may now consider the set T = {ri | ri = 9qi }. Note that there may be some i
and j for which ri = r j . Since p forces the totality of 9, for every element ri of T ,
there will be some r j in T extending ri . Therefore, we can think of the elements of
T as an infinite r.e. binary tree, and A will be one of the paths through T . To prove
that A is not Schnorr random, we will show that we cannot force A to be Schnorr
random.

To do this, we will build a computable Turing machine M such that for each
constant c and each ri , there is an extension pi of ri such that KM (pi ) < n − c. This
will guarantee that for each pair c and i , we cannot force KM (pi ) ≥ n − c; that is,
we will never be able to force Schnorr randomness above any ri in our tree. To this
end, we let 〈· , ·〉 be a recursive bijection from ω × ω to ω − {0}.

Our construction proceeds in stages. At stage 0, we set M = ∅. At stage 〈c, i〉,
we choose n ∈ ω such that n is larger than all such n used at previous stages and
such that 〈c, i〉 < n − c. We enumerate the elements of T until we find some r j ⊇ ri
such that |r j | ≥ n and then enumerate the Kraft-Chaitin axiom 〈〈c, i〉, r j�n〉 into M .

At each stage s > 0, we added 1
2s to the measure of dom(M), so µ(dom(M)) =∑

s>0
1
2s = 1. Therefore, we can apply the Kraft-Chaitin Theorem, and we can

clearly think of M as not just a prefix-free Turing machine but a computable one.
All that remains to be shown is that A cannot be Schnorr random. To show that

M witnesses that A is not Schnorr random, we consider the following statement in a
real X and a constant c.

ψ X (c) = (∃n ∈ ω)(∃s ∈ ω)[KMs (9
X�n) < n − c] .

Since this is a 60,X
1 statement in c and G is 2-generic, G must either force ψG(c)

or its negation for every constant c. We have constructed our machine M so that for
every ri and c, some extension of ri has a complexity less than its length minus c.
Since every initial segment of G is extended by some ri , G must force the truth of
this statement for every c, and 9G

= A must therefore not be Schnorr random. �

We observe that we only use the full strength of the genericity of G when we force
the totality of 9. When we force nonrandomness, we use only a 61 statement and
not a 52 statement. If we consider only truth-table functionals, we do not have to
force the statement that 9 is total. This allows us to weaken our assumptions about
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the generic and let it be simply 1-generic instead of 2-generic, giving us the following
theorem.

Theorem 2.5 Suppose G is 1-generic and A ≤t t G. Then A cannot be Schnorr
random.

We may also ask if we can weaken the reducibility in Theorem 2.5 to weak truth-
table reducibility. This turns out not to be possible. In particular, we show that this
is impossible if we add an additional assumption concerning the degree of the 1-
generic real, namely, the assumption that the real is high. However, if we make this
assumption, it enables us to consider a weaker property than 1-genericity, resulting
in an entirely different sort of proof. In particular, we assume that the real is GL1
instead of 1-generic. Recall that a real B is GL1 if and only if B ′

≡T B ⊕ 0′.

Theorem 2.6 Suppose G is high and GL1. Then there is a recursively random (and
thus Schnorr random) real A such that A ≡wt t G.

Since every real that is 1-generic is GL1 [6], this will give us the following corollary
immediately.

Corollary 2.7 Suppose G is 1-generic and high. Then there is a recursively random
(and thus Schnorr random) real A such that A ≡wt t G.

Proof of Theorem 2.6 Since G is high, we know that G ′
≡T 0′′, and, since G is

GL1, we know that G ′
≡T G ⊕ 0′. This means that 0′′

≡T G ⊕ 0′, so G ⊕ 0′

can determine whether a given r.e. martingale d is total. We will begin by creating
a list recursively in G that will allow us to build a list of total martingales to use
in our proof. While some martingales may be repeated, every total martingale will
appear in the list at some point. To do this, we fix an enumeration 〈de〉e∈ω of all r.e.
martingales and let8 be a Turing functional such that8G⊕0′

(e) equals 1 if de is total
and 0 if it is not, and we fix an enumeration 〈0′

s〉s∈ω of 0′. Without loss of generality,
we assume that d0 is the martingale such that d0(σ ) = 1 for every σ ∈ 2<ω, that
is, the martingale that does not bet on anything, and we further assume that 8 does
not consult the oracle at all when it determines whether d0 is total. We use this to
construct a list of elements of ω × ω × ω that we will use to identify a collection of
total r.e. martingales that contains every total r.e. martingale. The first element of the
triple will be the index e of an r.e., possibly total, martingale; the second will be the
stage s at which the calculation of 9G⊕0′

s
s (e) indicates that we should add e to the

list; and the third will be the use u of the approximation 0′
s in this calculation.

At stage 0, we add the triple (0, 0, 0) to the list. If s > 0, we consider all e ≤ s. If
9

G⊕0′
s

s (e) = 1 and the use of the 0′
s component is u, we add the triple (e, s, u) to the

list. Whenever necessary, we will add the triple (0, 0, 0) to the list to ensure that the
kth entry in the list (ek, sk, uk) can be determined using only G�k and that ek < k
for every k > 0. This will ensure that our list is not only Turing computable from
G but also wt t-computable from G. We may assume without loss of generality that
each martingale dek assumes only nonnegative rational values.

It should be observed at this point that even if (e, s, u) is on our list, the martingale
de may not actually be total. It is possible that after the stage s at which we added
(e, s, u), the approximation to 0′ changed. If, for some t > s, 0′

t �u 6= 0′
s �u, the

computation 9G⊕0′
t (e) may not terminate in t steps or, if it does, it may even yield

an answer of 0. Therefore, we will consider the approximation 0′
s at stage s in our
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computations below. If we are using de in our calculations because (e, s, u) is on our
list and we find that 0′

t�u 6= 0′
s�u for some t > s, we will stop calculating additional

values for de at this point. Instead, we will use the values we have calculated up
to this point and treat de as a nonbetting martingale when we need any more of its
values for a computation to ensure that we are using a total martingale. Of course,
if de is a total martingale, (e, s, u) will be on our list for some s and u for which
0′

s �u = 0′�u and 0′
t �u = 0′

s �u for all t ≥ s. After stage s, we will never find any
evidence that de may not be total, so this entry in our list will result in de being used
in our computation in its entirety. Therefore, our list of triples 〈(ek, sk, uk)〉k∈ω that
is wt t-computable from G will allow us to develop a list of recursive martingales
based on the sequence of r.e. martingales 〈dek 〉k∈ω that we will use throughout the
proof, and this list will still be wt t-computable from G. We will still refer to the
kth element of this sequence as dek for the sake of simplicity, although the recursive
martingale in question may only be based on the actual dek and become nonbetting
at some point.

We will also alter the martingales dek slightly in another way. We choose a G-
recursive partition 〈Ik〉k∈ω of ω such that for every k, max(Ik) > k and there are
2(k + 2) strings on Ik such that the first k martingales in our list grow by a factor of
no more than 1+

1
2k on each of them. Note that, in fact, the sequence 〈Ik〉k∈ω is weak

truth-table computable from G. For each k, this allows us to define a new martingale
mek based on dek such that the following conditions hold.

1. For all σ of length < max(Ik), mek (σ ) = 1.

2. For all σ of length max(Ik) and all τ , mek (στ) =
1+dek (στ)

1+dek (σ )
.

It is clear that if dek succeeds on a real, so will mek . Now we define a new martingale
that is a weighted sum of the mek s: for each σ in Ik , m(σ ) =

1
2k

∑
i<k

1
2i+1 mei (σ ).

Observe that m is a rational-valued martingale, since only finitely many of the mek s
are used to determine the value of m(σ ) for any given σ . It is also clear that
m ≤wt t G since all of the mek s and Iks are weak truth-table computable from G.
Furthermore, if any mek succeeds on a real, so will m.

Now we use m to construct our real A by finite extensions. For each k, we define A
on Ik as follows. We chose Ik so that there are at least 2(k +2) strings in this interval
on which no martingale mei such that i < k grows by a factor larger than 1 +

1
2k . We

have chosen these intervals to be sufficiently long that we can use A�max(Ik−1) to
find the values m assumes on Ik , so we can identify these strings from A�max(Ik−1).
Then we choose the leftmost 2(k +2) such strings, order them lexicographically, and
define A on Ik to be the string that is (G(k)(k + 2) + ek+1)st in this set. This will
not only allow us to compute G(k) from A, it will let us determine the values of m
on the next interval, Ik+1.

We first show that G ≡wt t A. We have computed A from G by partitioning ω into
intervals Ik and using G(k), the values of mei for i < k, and an index ek+1 < k to
determine the values of A on Ik . Each of these computations is weak truth-table in G,
so we can see that A ≤wt t G. Furthermore, we can compute G(k) from A�max(Ik),
and since G�k allows us to determine Ik+1, we know that G ≤wt t A.

Finally, since the value of m increases by no more than a factor of 1 +
1
2k on the

interval Ik , the values of m on A will be bounded by
∏

k(1+
1
2k ), which is convergent.

Therefore, none of the martingales mek succeeds on A, and A must be recursively
random and therefore Schnorr random. �



424 Johanna N. Y. Franklin

In this proof, we have used the highness of A and the fact that G is GL1 to build a
martingale that, while not a recursive martingale itself, covers all recursive martin-
gales. This has allowed us to prove a stronger statement than desired: not only can
we find a Schnorr random real that is weak truth-table equivalent to our G, we can
find a recursively random real with this property.

We may also ask if we can strengthen the genericity condition in the previous
corollary to weak 2-genericity. This turns out to be possible if the weakly 2-generic
real is high. However, since no 2-generic real is high, we must first prove that such a
real exists.

Theorem 2.8 There is a high weakly 2-generic real.

Proof Here, we treat partial recursive functions as functions from 2<ω to 2<ω rather
than ω to ω. Let an extension function be a partial recursive function ϕ such that for
every σ , ϕ(σ) extends σ , and define E to be the set of all indices of total extension
functions that are recursive in 0′.

We define our real G by finite extensions. At stage 0, we define σ0 to be 0e01.
Given σk , we define σk+1 to be ϕ0′

ek
(σk)0ek+11. Let G = limk σk .

Since G meets every extension function that is recursive in 0′, G is weakly 2-
generic. Furthermore, since the indices 〈ek〉k∈ω can be found recursively in G and
0′, we can see that the function mapping k to σk is recursive in G ⊕ 0′. Therefore,
E ≤T G ⊕0′. We can use the s-m-n Theorem to produce a recursive function f such
that ϕ0′

f (e) is a total extension function if and only if We is infinite. Therefore, We is
infinite if and only if f (e) ∈ E , so 0′′

≤T E . We can now see that 0′′
≤T G ⊕ 0′, so

G must be high. �

This result makes the following corollary of Theorem 2.6 nonvacuous.

Corollary 2.9 Let G be a high weakly 2-generic real. Then there is a recursively
random (and thus Schnorr random) real A such that A ≤wt t G.

3 Hyperimmunity and Schnorr Randomness

In this section and the next, we will make use of the following fact.

Fact 3.1 Let 〈Dn〉n∈ω be a list of the canonical finite sets, and suppose that f is
a recursive function from ω to ω and B is hyperimmune. Then there are infinitely
many n ∈ ω such that B ∩ {0, . . . , f (n)} = Dn ∩ {0, . . . , f (n)}.

Theorem 3.2 Let A and B be reals. If A is not high, B is hyperimmune, and
A ≤wt t B, then A cannot be Schnorr random.

Proof Kjos-Hanssen, Merkle, and Stephan [8] showed that a real is complex if and
only if it is not wt t-reducible to a hyperimmune-free real. Since every Martin-Löf
random real is complex [8], A cannot be Martin-Löf random. Furthermore, since the
Martin-Löf random reals and Schnorr random reals coincide in the nonhigh degrees,
A cannot be Schnorr random either. �

The following corollary is immediate.

Corollary 3.3 Let A and B be reals. If B is hyperimmune and not high and
A ≤wt t B, then A cannot be Schnorr random.
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We may compare this corollary to Theorems 2.1 and 2.4. In these theorems, we
required that our real be not only nonhigh and hyperimmune but at least 1-generic.
However, we were able to loosen the requirements on the reducibility and consider
Turing reducibility instead of simply weak truth-table reducibility.

We can also use Fact 3.1 to prove the following theorem. Since every 1-generic
real is hyperimmune, this is a stronger theorem than Theorem 2.5.

Theorem 3.4 If B is hyperimmune and A ≤t t B, then A cannot be recursively
random (and thus it cannot be Schnorr random).

Proof Suppose that 9 is a t t-functional that computes A from B, and partition the
integers into consecutive intervals 〈In〉n∈ω such that the length of In is 2n + 1. We
will produce a recursive martingale d that witnesses the non-Schnorr randomness
of A.

To build this martingale, we first define f : ω → ω to be the function that maps
each integer n to the use of the computation of the elements of In via 9. Since 9 is
a t t-reduction, we may assume that f is recursive.

This martingale d will have an initial capital of 2 and allot 1
2n+1 to the interval In

for each n. To determine the behavior of d on the interval In , we consider 9Dn� f (n).
On each bit m of In , we bet everything we have remaining from our initial capital of

1
2n+1 for the interval and anything we have earned on In by this point on the value
9Dn� f (n)(m). Since f (n) is an upper bound on the use for 9, this value will always
exist and can be found recursively.

By Fact 3.1, there will be infinitely many n such that B � f (n) = Dn � f (n).
Therefore, there will be infinitely many n such that d will bet correctly on every bit
of A in the interval In . If In is such an interval, d will earn 1

2n+1 · 22n+1
= 2n on

In . If In is not such an interval, d will lose 1
2n+1 on In . Since the total possible loss

is bounded above by 1 and 2n will be gained for infinitely many n, the recursive
martingale d will succeed on A, so A cannot be recursively random. �
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[10] Kučera, A., “Randomness and generalizations of fixed point free functions,” pp. 245–54
in Recursion Theory Week (Oberwolfach, 1989), vol. 1432 of Lecture Notes in Mathe-
matics, Springer, Berlin, 1990. Zbl 0705.03021. MR 1071521. 420

[11] Kurtz, S. A., Randomness and Genericity in the Degrees of Unsolvability, Ph.D. thesis,
University of Illinois, Urbana-Champaign, 1981. 417, 418, 419, 420

[12] Martin-Löf, P., “The definition of random sequences,” Information and Computation,
vol. 9 (1966), pp. 602–19. Zbl 0244.62008. MR 0223179. 418

[13] Nies, A., F. Stephan, and S. A. Terwijn, “Randomness, relativization and Turing de-
grees,” The Journal of Symbolic Logic, vol. 70 (2005), pp. 515–35. Zbl 1090.03013.
MR 2140044. 419, 420

[14] Odifreddi, P. G., Classical Recursion Theory. Vol. II, vol. 143 of Studies in Logic and
the Foundations of Mathematics, North-Holland Publishing Co., Amsterdam, 1999.
Zbl 0931.03057. MR 1718169. 418

[15] Odifreddi, P., Classical Recursion Theory. The Theory of Functions and Sets of Natural
Numbers, vol. 125 of Studies in Logic and the Foundations of Mathematics, North-
Holland Publishing Co., Amsterdam, 1989. Zbl 0661.03029. MR 982269. 418

[16] Schnorr, C.-P., Zufälligkeit und Wahrscheinlichkeit. Eine algorithmische Begründung
der Wahrscheinlichkeitstheorie, vol. 218 of Lecture Notes in Mathematics, Springer-
Verlag, Berlin, 1971. Zbl 0232.60001. MR 0414225. 418, 419

[17] Soare, R. I., Recursively Enumerable Sets and Degrees. A Study of Computable Func-
tions and Computably Generated Sets, Perspectives in Mathematical Logic. Springer-
Verlag, Berlin, 1987. Zbl 0667.03030. MR 882921. 418

[18] Solovay, R. M., “A model of set-theory in which every set of reals is Lebesgue measur-
able,” Annals of Mathematics. Second Series, vol. 92 (1970), pp. 1–56. Zbl 0207.00905.
MR 0265151. 420

[19] Wang, Y., Randomness and Complexity, Ph.D. thesis, University of Heidelberg, Heidel-
berg, 1996. 418, 419

Acknowledgments

The author thanks Frank Stephan for suggesting the proof of Theorem 2.6 and for his
other useful comments.

Department of Mathematics
Dartmouth College
6188 Kemeny Hall
Hanover NH 03755-3551
USA
johannaf@gauss.dartmouth.edu

http://www.emis.de/cgi-bin/MATH-item?1137.03026
http://www.ams.org/mathscinet-getitem?mr=2249365
http://www.emis.de/cgi-bin/MATH-item?0622.03031
http://www.ams.org/mathscinet-getitem?mr=820784
http://www.emis.de/cgi-bin/MATH-item?0705.03021
http://www.ams.org/mathscinet-getitem?mr=1071521
http://www.emis.de/cgi-bin/MATH-item?0244.62008
http://www.ams.org/mathscinet-getitem?mr=0223179
http://www.emis.de/cgi-bin/MATH-item?1090.03013
http://www.ams.org/mathscinet-getitem?mr=2140044
http://www.emis.de/cgi-bin/MATH-item?0931.03057
http://www.ams.org/mathscinet-getitem?mr=1718169
http://www.emis.de/cgi-bin/MATH-item?0661.03029
http://www.ams.org/mathscinet-getitem?mr=982269
http://www.emis.de/cgi-bin/MATH-item?0232.60001
http://www.ams.org/mathscinet-getitem?mr=0414225
http://www.emis.de/cgi-bin/MATH-item?0667.03030
http://www.ams.org/mathscinet-getitem?mr=882921
http://www.emis.de/cgi-bin/MATH-item?0207.00905
http://www.ams.org/mathscinet-getitem?mr=0265151
mailto:johannaf@gauss.dartmouth.edu

	1. Introduction
	1.1. Background
	1.2. Previous work

	2. Genericity and Schnorr Randomness
	3. Hyperimmunity and Schnorr Randomness
	References
	Acknowledgments

