Superhighness

Bjørn Kjos-Hanssen and André Nies

Abstract

We prove that superhigh sets can be jump traceable, answering a question of Cole and Simpson. On the other hand, we show that such sets cannot be weakly 2 -random. We also study the class superhigh \diamond and show that it contains some, but not all, of the noncomputable K-trivial sets.

1 Introduction

An important noncomputable set of integers in computability theory is \varnothing^{\prime}, the halting problem for Turing machines. Over the last half century many interesting results have been obtained about ways in which a problem can be almost as hard as \varnothing^{\prime}. The superhigh sets are the sets A such that

$$
A^{\prime} \geq_{\mathrm{tt}} \varnothing^{\prime \prime}
$$

that is, the halting problem relative to A computes $\varnothing^{\prime \prime}$ using a truth-table reduction. The name comes from comparison with the high sets, where instead arbitrary Turing reductions are allowed ($A^{\prime} \geq_{\mathrm{T}} \varnothing^{\prime \prime}$). Superhighness for computably enumerable (c.e.) sets was introduced by Mohrherr [10]. She proved that the superhigh c.e. degrees sit properly between the high and Turing complete ($A \geq_{\mathrm{T}} \varnothing^{\prime}$) ones.

Most questions one can ask on superhighness are currently open. For instance, Martin [9] (1966) famously proved that a degree is high if and only if it can compute a function dominating all computable functions, but it is not known whether superhighness can be characterized in terms of domination. Cooper [5] showed that there is a high minimal Turing degree, but we do not know whether a superhigh set can be of minimal Turing degree. We hope the present paper lays the groundwork for a future understanding of these problems.

We prove that a superhigh set can be jump traceable. Let superhigh ${ }^{\diamond}$ be the class of c.e. sets Turing below all Martin-Löf random (ML-random) superhigh sets (see
[12, Section 8.5$]$). We show that this class contains a promptly simple set and is a proper subclass of the c.e. K-trivial sets. This class was recently shown to coincide with the strongly jump traceable c.e. sets, improving our result [11].

Definition 1.1 Let $\left\{\Phi_{n}^{X}\right\}_{n \in \mathbb{N}}$ denote a standard list of all functions partial computable in X, and let W_{n}^{X} denote the domain of Φ_{n}^{X}. We write $J^{X}(n)$ for $\Phi_{n}^{X}(n)$, and $J^{\sigma}(n)$ for $\Phi_{n}^{\sigma}(n)$ where σ is a string. Thus $X^{\prime}=\left\{e: J^{B}(e) \downarrow\right\}$ represents the halting problem relative to X.
X is jump-traceable by Y (written $X \leq_{\mathrm{JT}} Y$) if there exist computable functions $f(n)$ and $g(n)$ such that for all n, if $J^{X}(n)$ is defined $\left(J^{X}(n) \downarrow\right)$ then $J^{X}(n) \in W_{f(n)}^{Y}$ and for all $n, W_{f(n)}^{Y}$ is finite of cardinality $\leq g(n)$.

The relation $\leq_{\text {JT }}$ is transitive and indeed a weak reducibility [12, 8.4.14]. Further information on weak reducibilities, and jump traceability, may be found in the recent book by Nies [12], especially in Sections 5.6 and 8.6, and 8.4, respectively.

Definition 1.2 A is JT-hard if \varnothing^{\prime} is jump traceable by A. Let Shigh $=$ $\left\{Y: Y^{\prime} \geq_{\mathrm{tt}} \varnothing^{\prime \prime}\right\}$ be the class of superhigh sets.

Theorem 1.3 Consider the following five properties of a set A.

1. A is Turing complete;
2. A is almost everywhere dominating;
3. A is JT-hard;
4. A is superhigh;
5. A is high.

We have $(1) \Rightarrow(2) \Rightarrow(3) \Rightarrow(4) \Rightarrow(5)$, all implications being strict.
Proof Implications: (1) \Rightarrow (2): Dobrinen and Simpson [6]. (2) \Rightarrow (3): Simpson [14], Lemma 8.4. (3) $\Rightarrow(4)$: Simpson [14], Lemma 8.6. (4) $\Rightarrow(5)$: Trivial, since each truth-table reduction is a Turing reduction.

Nonimplications: $(2) \nRightarrow(1)$ was proved by Cholak, Greenberg, and Miller [3]. $(3) \nRightarrow(2)$: By Cole and Simpson [4], (3) coincides with (4) on the Δ_{2}^{0} sets. But there is a superhigh degree that does not satisfy (2): one can use Jockusch-Shore Jump Inversion for a super-low but not K-trivial set, which exists by the closure of the K-trivials under join and the existence of a pair of super-low degrees joining to \varnothing^{\prime}. $(4) \nRightarrow(3)$: We prove in Theorem 2.1 below that there is a jump traceable superhigh degree. By transitivity of \leq_{JT} and the observation that $\varnothing^{\prime} \not \mathbb{J J T}_{\mathrm{JT}} \varnothing$, no jump traceable degree is JT-hard. (5) \nRightarrow (4): Binns, Kjos-Hanssen, Lerman, and Solomon [2] proved this using a syntactic analysis combined with a result of Schwartz [13].

Historically, the easiest separation (1)(5) is a corollary of Friedberg's Jump Inversion Theorem [7] from 1957. The separation (1)(4) follows similarly from Mohrherr's Jump Inversion Theorem for the tt-degrees [10] (1984), and the separation (4)(5) is essentially due to Schwartz [13] (1982). The classes (2) and (3) were introduced more recently, by Dobrinen and Simpson [6] (2004) and Simpson [14] (2007).

Notion (3), JT-hardness, may not appear to be very natural. However, Cole and Simpson [4] gave an embedding of the hyperarithmetic hierarchy $\left\{0^{(\alpha)}\right\}_{\alpha<\omega_{1}^{C K}}$ into the lattice of Π_{1}^{0} classes under Muchnik reducibility making use of the notion of bounded limit recursive (BLR) functions. We will see that JT-hardness coincides with BLR-hardness.

Notation We write

$$
\forall n f(n)=\lim _{s}^{\operatorname{comp}} \widetilde{f}(n, s)
$$

if for all $n, f(n)=\lim _{s} \tilde{f}(n, s)$, and, moreover, there is a computable function $g: \omega \rightarrow \omega$ such that for all $n,\{s \mid \tilde{f}(n, s) \neq \tilde{f}(n, s+1)\}$ has cardinality less than $g(n)$.

2 Superhighness and Jump Traceability

In this section we show that superhighness is compatible with the lowness property of being jump traceable and deduce an answer to a question of Cole and Simpson.

Theorem 2.1 There is a superhigh jump-traceable set.
Proof Mohrherr [10] proves a jump inversion theorem in the tt-degrees: For each set A, if $\varnothing^{\prime} \leq \leq_{\mathrm{tt}} A$, then there exists a set B such that $B^{\prime} \equiv_{\mathrm{tt}} A$. To produce B, Mohrherr uses the same construction as in the proof of Friedberg's Jump Inversion Theorem for the Turing degrees. Namely, B is constructed by finite extensions $B[s] \preceq B[s+1] \preceq \cdots$. Here $B[s]$ is a finite binary string and $\sigma \preceq \tau$ denotes that σ is an initial substring of τ. At stages of the form $s=2 e$ (even stages), one searches for an extension $B[s+1]$ of $B[s]$ such that $J^{B[s+1]}(e) \downarrow$. If none is found one lets $B[s+1]=B[s]$. At stages of the form $s=2 e+1$ (odd stages) one appends the bit $A(e)$; that is, one lets $B[s+1]=B[s] \frown\langle A(e)\rangle$. Thus two types of oracle questions are asked alternately for varying numbers e :
(1) Does a string $\sigma \succeq B[s]$ exist so that $J^{\sigma}(e) \downarrow$, that is, $B \succeq \sigma$ implies $e \in B^{\prime}$? (If so, let $B[s+1]$ be the first such string that is found.)
(2) Is $A(e)=1$?

This allows for a jump trace V_{e} of size at most 4^{e}. First, V_{0} consists of at most one value, namely, the first value $J^{\sigma}(e)$ found for any σ extending the empty string. Next, V_{1} consists of the first value for $\Phi_{1}^{\tau}(1)$ found for any τ extending $\langle 0\rangle,\langle 1\rangle$, $\sigma^{\frown}\langle 0\rangle, \sigma^{\frown}\langle 1\rangle$, respectively, in the cases: $0 \notin A$, and $0 \notin B^{\prime} ; 0 \in A$ and $0 \notin B^{\prime}$; $0 \notin A$ and $0 \in B^{\prime}$; and $0 \in A$ and $0 \in B^{\prime}$. Generally, for each e there are four possibilities: either e is in A or not, and either the extension σ of $B[s]$ is found or not. V_{e} consists of all the possible values of $J^{B}(e)$ depending on the answers to these questions.

Hence, B is jump traceable, no matter what oracle A is used. Thus, letting $A=\varnothing^{\prime \prime}$ results in a superhigh jump-traceable set B.

Question 2.2 Is there a superhigh set of minimal Turing degree?
This question is sharp in terms of the notions (1)-(5) of Theorem 1.3: minimal Turing degrees can be high (Cooper [5]) but not JT-hard (Barmpalias [1]).

Cole and Simpson [4] introduced the following notion. Let A be a Turing oracle. A function $f: \omega \rightarrow \omega$ is boundedly limit computable by A if there exist an A computable function $\tilde{f}: \omega \times \omega \rightarrow \omega$ such that $\lim _{s}^{\text {comp }} \tilde{f}(n, s)=f(n)$.

We write

$$
\operatorname{BLR}(A)=\left\{f \in \omega^{\omega} \mid f \text { is boundedly limit computable by } A\right\} .
$$

We say that $X \leq \operatorname{BLR} Y$ if $\operatorname{BLR}(X) \subseteq \operatorname{BLR}(Y)$. In particular, A is BLR-hard if $\operatorname{BLR}\left(\varnothing^{\prime}\right) \subseteq \operatorname{BLR}(A)$.

It is easy to see that $\leq_{\text {BLR }}$ implies $\leq_{\text {JT }}$ (Lemma 6.8 of Cole and Simpson [4]). The following partial converse is implicit in some recent papers as pointed out to the authors by Simpson.

Theorem 2.3 Suppose that $A \leq_{\text {Jт }} B$ where A is a c.e. set and B is any set. Then $\operatorname{BLR}(A) \subseteq \operatorname{BLR}(B)$.

Proof $\operatorname{Since} A \leq_{\mathrm{JT}} B$, by Remark 8.7 of Simpson [14], the function h given by

$$
h(e)=J^{A}(e)+1 \text { if } J^{A}(e) \downarrow, h(e)=0 \text { otherwise, }
$$

is B^{\prime}-computable, with computably bounded use of B^{\prime} and unbounded use of B. This implies that h is $\operatorname{BLR}(B)$. Let ψ^{A} be any function partial computable in A. Let g be defined by

$$
g(n)=\psi^{A}(n)+1 \text { if } \psi^{A}(n) \downarrow, g(n)=0 \text { otherwise. }
$$

Letting f be a computable function with $\psi^{A}(n) \simeq J(f(n))$ for all n, we can use the B-computable approximation to h with a computably bounded number of changes to get such an approximation to g. So g is $\operatorname{BLR}(B)$. By Lemma 2.5 of Cole and Simpson [4], it follows that $\operatorname{BLR}(A) \subseteq \operatorname{BLR}(B)$.

Corollary 2.4 For c.e. sets A, B we have $A \leq_{\mathrm{JT}} B \leftrightarrow A \leq_{\mathrm{BLR}} B$.
Corollary 2.5 JT-hardness coincides with BLR-hardness: for all B, $\varnothing^{\prime} \leq_{\text {JT }} B \leftrightarrow \varnothing^{\prime} \leq_{\text {BLR }} B$.

By Corollary 2.5 and Theorem $1.3((3) \Rightarrow(4))$, BLR-hardness implies superhighness. Cole and Simpson asked [4, Remark 6.21] whether conversely superhighness implies BLR-hardness. Our negative answer is immediate from Corollary 2.5 and Theorem $1.3((4) \nRightarrow(3))$.

3 Superhighness, Randomness, and \boldsymbol{K}-Triviality

We study the class Shigh \diamond of c.e. sets that are Turing below all ML-random superhigh sets. First we show that this class contains a promptly simple set.

For background on diagonally noncomputable functions and sets of PA degree see [12, Ch 4]. Let λ denote the usual fair-coin Lebesgue measure on $2^{\mathbb{N}}$; a null class is a set $\delta \subseteq 2^{\mathbb{N}}$ with $\lambda(S)=0$.

Fact 3.1 (Jockusch and Soare [8]) The sets of PA degree form a null class.
Proof Otherwise, by the zero-one law the class is conull. So by the Lebesgue Density Theorem there is a Turing functional Φ such that $\Phi^{X}(w) \in\{0,1\}$ if defined, and
$\left\{Z: \Phi^{Z}\right.$ is total and diagonally noncomputable $\}$
has measure at least $3 / 4$.
Let the partial computable function f be defined by $f(n)$ is the value $i \in\{0,1\}$ such that for the smallest possible stage s, we observe by stage s that $\Phi^{Z}(n)=i$ for a set of $Z \mathrm{~s}$ of measure strictly more than $1 / 4$. For each n, such an i and stage s must exist. Indeed, if for some n and both $i \in\{0,1\}$ there is no such s, then $\Phi^{Z}(n)$ is defined for a set of Z s of measure at most $\frac{1}{4}+\frac{1}{4}=\frac{1}{2} \nexists \frac{3}{4}$, which is a contradiction. Moreover, we cannot have $f(n)=J(n)$ for any n, because this would imply that there is a set of Z s of measure strictly more than $1 / 4$ for which
Φ^{Z} is not a total d.n.c. function. Thus f is a computable d.n.c. function, which is a contradiction.

Theorem 3.2 (Simpson) The class Shigh of superhigh sets is contained in a Σ_{3}^{0} null class.

Proof A function f is called diagonally noncomputable (d.n.c.) relative to \varnothing^{\prime} if $\forall x \neg f(x)=J^{\varnothing^{\prime}}(x)$. Let P be the $\Pi_{1}^{0}\left(\varnothing^{\prime}\right)$ class of $\{0,1\}$-valued functions that are d.n.c. relative to \varnothing^{\prime}. By Fact 3.1 relative to \varnothing^{\prime}, the class $\left\{Z: \exists f \leq_{\mathrm{T}} Z \oplus \varnothing^{\prime}[f \in P]\right\}$ is null. Then, since GL_{1} is conull, the class

$$
\mathcal{K}=\left\{Z: \exists f \leq_{\mathrm{tt}} Z^{\prime}[f \in P]\right\}
$$

is also null. This class clearly contains Shigh.
To show that \mathcal{K} is Σ_{3}^{0}, fix a Π_{2}^{0} relation $R \subseteq \mathbb{N}^{3}$ such that a string σ is extended by a member of P if and only if $\forall u \exists v R(\sigma, u, v)$. Let $\left(\Psi_{e}\right)_{e \in \mathbb{N}}$ be an effective listing of truth-table reduction procedures. It suffices to show that $\left\{Z: \Psi_{e}\left(Z^{\prime}\right) \in P\right\}$ is a Π_{2}^{0} class. To this end, note that

$$
\Psi_{e}\left(Z^{\prime}\right) \in P \leftrightarrow \forall x \forall t \forall u \exists s>t \exists v R\left(\Psi_{e}^{Z^{\prime}} \upharpoonright_{x}[s], u, v\right) .
$$

A direct construction of a Σ_{3}^{0} null class containing Shigh appears in Nies [11].
Question 3.3 Is Shigh itself a Σ_{3}^{0} class?
Corollary 3.4 There is no superhigh weakly 2-random set.
Proof Let R be a weakly 2 -random set. By definition, R belongs to no Π_{2}^{0} null class. Since a Σ_{3}^{0} class is a union of Π_{2}^{0} classes of no greater measure, R belongs to no Σ_{3}^{0} null class. By Theorem 3.2, R is not superhigh.

To put Corollary 3.4 into context, recall that the 2 -random set $\Omega^{\varnothing^{\prime}}$ is high, whereas no weakly 3 -random set is high (see [12, 8.5.21]).
Corollary 3.5 There is a promptly simple set Turing below all superhigh MLrandom sets.

Proof By a result of Hirschfeldt and Miller (see [12, Theorem 5.3.15]), for each null Σ_{3}^{0} class $\&$ there is a promptly simple set Turing below all ML-random sets in \&. Apply this to the class \mathcal{K} from the proof of Theorem 3.2.
Next we show that Shigh ${ }^{\diamond}$ is a proper subclass of the c.e. K-trivial sets. Since some superhigh ML-random set is not above \varnothing^{\prime}, each set in Shigh ${ }^{\diamond}$ is a base for MLrandomness, and therefore K-trivial (for details of this argument, see [12, Section 5.1]). It remains to show strictness. In fact, in place of the superhigh sets we can consider the possibly smaller class of sets Z such that $G \leq_{\mathrm{tt}} Z^{\prime}$, for some fixed set $G \geq_{\mathrm{tt}} \varnothing^{\prime \prime}$. Let MLR $=\{R: R$ is ML-random $\}$.
Theorem 3.6 Let S be a Π_{1}^{0} class such that $\varnothing \subset S \subseteq$ MLR. Then there is a K-trivial c.e. set B such that

$$
\forall G \exists Z \in S\left[B \not 女_{\mathrm{T}} Z \wedge G \leq_{\mathrm{tt}} Z^{\prime}\right] .
$$

Corollary 3.7 There is a K-trivial c.e. set B and a superhigh ML-random set Z such that $B \not \mathbb{T}_{\mathrm{T}} Z$. Thus the class of c.e. sets Turing below all ML-random superhigh sets is a proper subclass of the c.e. K-trivials.

Proof of Theorem 3.6 We assume fixed an indexing of all the Π_{1}^{0} classes. Given an index for a Π_{1}^{0} class P we have an effective approximation $P=\bigcap_{t} P_{t}$ where P_{t} is a clopen set ($[12$, Section 1.8]).

To achieve $G \leq_{\mathrm{tt}} Z^{\prime}$ we use a variant of Kučera coding. Given (an index of) a Π_{1}^{0} class P such that $\varnothing \subset P \subseteq$ MLR, we can effectively determine $k \in \mathbb{N}$ such that $2^{-k}<\lambda P$. In fact, $k \leq K(i)+O(1) \leq 2 \log i+O(1)$ where i is the index for P (see [12, 3.3.3]). At stage t let

$$
\begin{equation*}
y_{0, t}, y_{1, t}, \tag{1}
\end{equation*}
$$

respectively, be the leftmost and rightmost strings y of length k such that $[y] \cap P_{t} \neq \varnothing$. Then y_{0} is left of y_{1} where $y_{a}=\lim _{t} y_{a, t}$. Note that the number of changes in these approximations is bounded by 2^{k}.

Recall that $\left(\Phi_{e}\right)_{e \in \mathbb{N}}$ is an effective listing of the Turing functionals. The following will be used in a "dynamic forcing" construction to ensure that $B \neq \Phi_{e}^{Z}$, and to make $B K$-trivial. Let $c_{\mathcal{K}}$ be the standard cost function for building a K-trivial set, as defined in [12, 5.3.2]. Thus $c_{\mathcal{K}}(x, s)=\sum_{x<w \leq s} 2^{-K_{s}(w)}$.
Lemma 3.8 Let Q be a Π_{1}^{0} class such that $\varnothing \subset Q \subset$ MLR. Let e, $m \geq 0$. Then there is a nonempty Π_{1}^{0} class $P \subset Q$ and $x \in \mathbb{N}$ such that either
(a) $\forall Z \in P \neg \Phi_{e}^{Z}(x)=0$, or
(b) $\exists s c_{\mathcal{K}}(x, s) \leq 2^{-m} \wedge \forall Z \in P_{s}^{s} \Phi_{e, s}^{Z}(x)=0$,
where $\left(P^{t}\right)_{t \in \mathbb{N}}$ is an effective sequence of (indices for) Π_{1}^{0} classes such that $P=\lim _{t}^{\text {comp }} P^{t}$ with at most 2^{m+1} changes.

The plan is to put x into B in case (b). The change in the approximations P^{t} is due to changing the candidate x when its cost becomes too large.

To prove the lemma, we give a procedure constructing the required objects.

Procedure $C(Q, e, m)$.

Stage s.

(a) Choose $x \in \mathbb{N}^{[e]}, x \geq s$.
(b) If $c_{\mathcal{K}}(x, s) \geq 2^{-m}$, Gото (a).
(c) If $\left\{Z \in Q_{s}: \neg \Phi_{e, s}^{Z}(x)=0\right\} \neq \varnothing$ let $P^{s}=\left\{Z \in Q: \neg \Phi_{e}^{Z}(x)=0\right\}$ and Gото (b). (In this case we keep x out of B and win.) Otherwise, let $P^{s}=Q$ and goto (d). (We will put x into B and win.)
(d) End.

Clearly we choose a new x at most 2^{m} times, so the number of changes of P^{t} is bounded by 2^{m+1}.

To prove the theorem, we build at each stage t a tree of Π_{1}^{0} classes $P^{\alpha, t}$, where $\alpha \in 2^{<\omega}$. The number of changes of $P^{\alpha, t}$ is bounded computably in α.
Stage t. Let $P^{\varnothing, t}=S$.
(i) If $P=P^{\alpha, t}$ has been defined let, for $b \in\{0,1\}$,

$$
Q^{\alpha b, t}=P^{\alpha, t} \cap\left[y_{b, t}\right],
$$

where the strings $y_{b, t}$ are as in (1).
(ii) If $Q=Q^{\beta, t}$ is newly defined let $e=|\beta|$, let m equal n_{β} (the code number for β) plus the number of times the index for Q^{β} has changed so far. From
now on define $P^{\beta, t}$ by the procedure $C(Q, e, m)$ in Lemma 3.8. If it reaches (d), put x into B.

Claim 1 (i) For each α the index $P^{\alpha, t}$ reaches a limit P^{α}. The number of changes is computably bounded in α.
(ii) For each β the index $Q^{\beta, t}$ reaches a limit Q^{β}. The number of changes is computably bounded in β.
The claim is verified by induction, in the form $P^{\alpha} \rightarrow Q^{\alpha b} \rightarrow P^{\alpha b}$. This yields a computable definition of the bound on the number of changes.

Clearly (i) holds when $\alpha=\varnothing$.
Case $Q^{\alpha b}$: we can compute by inductive hypothesis an upper bound on the index for P^{α}, and hence an upper bound k_{0} on k such that $2^{-k}<\lambda P^{\alpha}$. If N bounds the number of changes for P^{α} then $Q^{\alpha b}$ changes at most $N 2^{k_{0}}$ times.

Case $\boldsymbol{P}^{\boldsymbol{\beta}}, \boldsymbol{\beta} \neq \varnothing$: Let M be the bound on the number of changes for Q^{β}. Then we always have $m \leq M+n_{\beta}$ in (ii), so the number of changes for P^{β} is at most $M 2^{M+n_{\beta}+1}$.

Claim 2 (i) Let $e=|\beta|>0$. Then $B \neq \Phi_{e}(Z)$ for each $Z \in P^{\beta}$.
This is clear, since eventually the procedure in Lemma 3.8 has a stable x to diagonalize with.

Given G, define $Z \leq_{\mathrm{T}} \varnothing^{\prime} \oplus G$ as follows. For $e>0$, let $\beta=G \upharpoonright_{e}$. Use \varnothing^{\prime} to find the final P^{β} and to determine $y_{\beta, b, t}(b \in\{0,1\})$ for $P=P^{\beta}$ as the strings in (1). Let $y_{\beta, b}=\lim y_{\beta, b, t}$. Note that $y_{\gamma} \prec y_{\delta}$ whenever $\gamma \prec \delta$. Define Z so that $y_{G(e)} \prec Z$.

For $G \leq_{\mathrm{tt}} Z^{\prime}$ define a function $f \leq_{\mathrm{T}} Z$ such that $G(e)=\lim _{s}^{\text {comp }} f(e, s)$ (i.e., a computable bounded number of changes). Given e, to define $f \upharpoonright_{e}[s]$ search for $t>s$ such that $y_{\alpha, t} \prec Z$ for some α of length e, and output α.

References

[1] Barmpalias, G., "Tracing and domination in the Turing degrees," forthcoming. 447
[2] Binns, S., B. Kjos-Hanssen, M. Lerman, and R. Solomon, "On a conjecture of Dobrinen and Simpson concerning almost everywhere domination," The Journal of Symbolic Logic, vol. 71 (2006), pp. 119-36. Zbl 1103.03014. MR 2210058. 446
[3] Cholak, P., N. Greenberg, and J. S. Miller, "Uniform almost everywhere domination," The Journal of Symbolic Logic, vol. 71 (2006), pp. 1057-72. Zbl 1109.03034. MR 2251556. 446
[4] Cole, J. A., and S. G. Simpson, "Mass problems and hyperarithmeticity," Journal of Mathematical Logic, vol. 7 (2007), pp. 125-43. Zbl 1150.03013. MR 2423947. 446, 447, 448
[5] Cooper, S. B., "Minimal degrees and the jump operator," The Journal of Symbolic Logic, vol. 38 (1973), pp. 249-71. Zbl 0309.02048. MR 0347572. 445, 447
[6] Dobrinen, N. L., and S. G. Simpson, "Almost everywhere domination," The Journal of Symbolic Logic, vol. 69 (2004), pp. 914-22. Zbl 1075.03021. MR 2078930. 446
[7] Friedberg, R., "A criterion for completeness of degrees of unsolvability", The Journal of Symbolic Logic, vol. 22 (1957), pp. 159-60. Zbl 0078.00602. MR 0098025. 446
[8] Jockusch, C. G., Jr., and R. I. Soare, " Π_{1}^{0} classes and degrees of theories," Transactions of the American Mathematical Society, vol. 173 (1972), pp. 33-56. Zbl 0262.02041. MR 0316227. 448
[9] Martin, D. A., "Classes of recursively enumerable sets and degrees of unsolvability," Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 12 (1966), pp. 295-310. Zbl 0181.30504. MR 0224469. 445
[10] Mohrherr, J., "Density of a final segment of the truth-table degrees," Pacific Journal of Mathematics, vol. 115 (1984), pp. 409-19. Zbl 0534.03018. MR 765197. 445, 446, 447
[11] Nies, A., "Superhighness and strong jump traceability," forthcoming in Proceedings of the ICALP 2009. 446, 449
[12] Nies, A., Computability and Randomness, Oxford University Press, Oxford, 2009. Zbl 1169.03034. 446, 448, 449, 450
[13] Schwarz, S., Index Sets of Computably Enumerable Sets, Quotient Lattices, and Computable Linear Orderings, Ph.D. thesis, University of Chicago, Chicago, 1982. 446
[14] Simpson, S. G., "Almost everywhere domination and superhighness," Mathematical Logic Quarterly, vol. 53 (2007), pp. 462-82. Zbl 1123.03040. MR 2351944. 446, 448

Acknowledgments

Kjos-Hanssen was partially supported under NSF grants DMS-0652669 and DMS0901020. Nies is supported under Marsden fund UOA-08-187.

Department of Mathematics
University of University of Hawai'i at Mānoa
2565 McCarthy Mall
Honolulu HI 96822
USA
bjoern@math.hawaii.edu
Department of Computer Science
University of Auckland
Private Bag 92019
Auckland
NEW ZEALAND
andre@cs.auckland.ac.nz

