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Dual Gaggle Semantics for Entailment

Katalin Bimbó

Abstract A sequent calculus for the positive fragment of entailment together
with the Church constants is introduced here. The single cut rule is admissible
in this consecution calculus. A topological dual gaggle semantics is developed
for the logic. The category of the topological structures for the logic with frame
morphisms is proven to be the dual category of the variety, that is defined by the
equations of the algebra of the logic, with homomorphisms. The duality results
are extended to the logic of entailment that includes a De Morgan negation.

1 Introduction

There is a deeply ingrained association between conjunction and intersection.
Indeed, this way of thinking about conjunction goes back to Boole’s interpretation
of his own algebra in terms of classes. The connection between conjunction and
intersection has been reinforced by the possible worlds semantics for various modal
logics. (Of course, we mean by “conjunction” a connective that possesses the same
properties as conjunction in classical logic does.) Models in which conjunction is
interpreted as intersection may be called meet-representations (of the Lindenbaum
algebra of the logic) following Birkhoff and Frink [11].

However, sometimes intersection stands for some other operation in a model, per-
haps, for technical reasons. Of course, a Boolean algebra is self-dual, and so switch-
ing the interpretation of conjunction and disjunction in classical logic is easy. Many
important logics are not extensions of classical logic; hence, changing the interpre-
tation of conjunction sometimes leads to unexpected results. An interesting example
is furnished by the so-called Kleene logic, that may be thought to formalize the logic
of regular expressions (or regular languages). Concatenation is a regular operation
on languages (defined from concatenation of strings), which is associative and has
an identity element { ε }. Another regular operation is + (i.e., the union of regular
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languages), and the third one is the Kleene star. In the absence of a conjunction-
like operation, a straightforward move is to replace filters (theories) with ideals (co-
theories) in structures for the logic, that is, to “dualize” the usual semantics. Further,
+ is interpreted as intersection in a model, and the finite binary consequence relation
of the logic becomes ⊇ (i.e., the converse of set inclusion). Although it is possible to
complete the dualization for the Kleene logic—moreover, in the process exciting new
technical results emerge—the resulting semantics is not as smooth and agreeable as,
perhaps, expected.1

The aim of this paper is to investigate the possibility of building a dual gaggle
semantics for two logics (Et

+ and Et) in the entailment family.2 The construction of
a sound and complete dual gaggle semantics for the positive fragment of the logic of
ticket entailment proved to be successful. Therefore, our expectation is that the dual
gaggle semantics for Et

+ and Et will be pleasing too—independently of the “modal
character” of entailment that is absent in the logic of ticket entailment. (I hope that
the reader will agree after reading this paper that the semantics defined here for Et

+

and Et are indeed well-behaved from a logical point of view.)
First, we define a dual gaggle semantics for Et

+, the positive fragment of the logic
of entailment (including the constants t, F, and T ), and we also give a topological
characterization of the structures. Then in Section 3, we give a new formalization
of Et

+ in the form of a consecution calculus. Finally, we consider Et, the logic
of entailment (with the constants t, T, F, and f included), and we define a dual
gaggle semantics together with a topology in Section 4. We prove that the variety
of Et (of Et

+) algebras with homomorphisms and the class of topological structures
for Et (for Et

+) are dual categories, and the canonical constructions between them
are functors. In each section, we add components one by one to provide ample
justifications for the components of the semantics. Additionally, we anticipate that
the piecemeal presentation yields deep insights (that have been “distilled” from the
“technicalities”) into the logics themselves. In order to minimize distraction from
the development of the ideas, we gather the lemmas and theorems together with
brief outlines of their proofs into separate subsections toward the end of the sections.
We briefly overview the main results of the paper in Section 5.

2 Positive Entailment

Not all logics contain a conjunction, but some do—together with a disjunction and,
perhaps, other connectives. Given the familiar Boolean (classical) experience of
dualizing the interpretation of ∧ and ∨, our first thought may be to interpret a lonely
disjunction through intersection. We pursue this idea, but we add an interpretation
for conjunction as union. As it shall become clear by the end of this section, the
semantics of Et

+ defined on this basis is as nice as the usual one.
To explicate the dualization more formally, we start with the assumption that there

is a conjunction (∧) and a disjunction (∨) in the language of a logic and they possess
all the properties that they do in classical logic (and which are expressible without
negation). The customary interpretation of conjunction and disjunction over some
set of situations U is as follows.3

(1) u � ϕ ∧ ψ ⇔ u � ϕ and u � ψ ,
(2) u � ϕ ∨ ψ ⇔ u � ϕ or u � ψ .
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The definitions of ∩ and ∪ make clear that ∧ 7→ ∩ and ∨ 7→ ∪—as long as for-
mulas are interpreted into sets of situations. Swapping ∩ and ∪ may change which
formulas are true in some situation in a concrete model; however, the more abstract
properties of intersection and union (such as commutativity, associativity etc.) are
the same, which yields a certain invariance between the two models. This means that
the following interpretations are equally good.

(3) u � ϕ ∧ ψ ⇔ u � ϕ or u � ψ ,
(4) u � ϕ ∨ ψ ⇔ u � ϕ and u � ψ .

Perhaps a first impression is that (3) and (4) can hardly make sense informally. Of-
tentimes, situations are thought to be deductively closed, and in particular, there may
be situations that comprise exactly what a formula implies (or a little more). If so,
a situation has to verify both conjuncts to verify their conjunction—as stated by (1).
On the other hand, if situations are thought to include all the formulas that imply a
formula (or slightly more), then for a disjunction to be true in a situation both dis-
juncts should be true—as (4) states—because either disjunct implies the disjunction.
(2) and (3) can be phrased in a similar fashion. To emphasize the difference between
the two informal ways of thinking about what a situation is, we will call situations
co-situations when we think of the situations as objects that are compatible with (3)
and (4).

If there are further logical connectives, then the “picture” gets more complicated,
because intensional operations—such as relevant implication and entailment—are
modeled using additional information about the co-situations. More precisely, a rela-
tion on the set of co-situations is exploited. One of the goals of the present enterprise
is to pinpoint the effects the dualization of the interpretation of ∧ and ∨ has on the
modeling of the intensional connectives in the semantics of the logic of entailment.
To elucidate the role of each ingredient, we build the semantics step by step, to start
with, for Et

+.

Definition 2.1 (Priestley space) The ordered topological space T = 〈U,≤,O〉 is
a Priestley space if and only if it is compact and totally order disconnected.4

A Priestley space gives rise to a distributive lattice with the elements being clopen
cones (see Priestley [23]). In other words, if formulas containing ∧ and ∨ are in-
terpreted by clopen cones, then all the formulas expressing the usual properties of ∧

and ∨ become true.5 Either (1) and (2), or (3) and (4), would be appropriate inter-
pretations for ∧ and ∨, but from now on we assume the latter pair of clauses.

There are pairs of theorems in Et
+ (indeed, ℵ0 many pairs) such that neither of

the two elements implies the other. Thus a subset O of U (the set of co-situations)
has to be selected to reflect theoremhood, that (canonically) may be thought to be
the principal cone generated by {ϕ : ` ϕ → t} (where ` means that the formula that
follows is provable in, i.e., a theorem of Et

+). Formally, we postulate that O ⊆ U
and also O 6= ∅; therefore, U is not empty either.

The provable formulas are (or provably equivalent to) implications; hence we add
a ternary relation R (with tonicity R↓↑↑) that allows the distinguished co-situations
to be connected to the order relation via (5). (V ↑ denotes the upset or cone generated
by V , given V ⊆ U . We follow the usual conventions to omit parentheses and to
occasionally insert dots.)

(5) ∃o /∈ O↑. Rxyo ⇔ x ≤ y.
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In order to be able to utilize this condition, we introduce the notion of satisfaction
for implicational formulas. The last three clauses already foretold that the present
semantics is considerably different from the usual relational semantics for relevance
logics, and (6) reinforces this point.

(6) z � ϕ → ψ ⇔ ∃x, y. Rxyz ∧ y 2 ϕ ∧ x � ψ .

If we assume that an assignment maps every propositional variable p into an upset of
co-situations, then it is straightforward to show that the set of co-situations at which
ϕ → ψ holds is an upset too. (7) ensures that t’s interpretation is upward closed too.

(7) u � t ⇔ ∃o ∈ O. o ≤ u.

For the sake of comparison, it may be useful to emphasize that the dual character of
the whole semantics leaves unchanged the upward closed character of propositions—
which is often cast as a “heredity lemma.” (Quite obviously, the extensional connec-
tives yield upsets too, as the interested reader might wish to verify.)

To illustrate the role of (5), we outline the proof that ϕ → ϕ is valid, that is,
that every co-situation that makes ϕ → ϕ true is in the upward closure of the distin-
guished subset O . Let us assume that o � ϕ → ϕ but o /∈ O↑. By (6), there are x
and y such that Rxyo and x � ϕ without y � ϕ being true. However, o /∈ O↑ and
Rxyo together with (5) imply that x ≤ y. Then y � ϕ, which is a contradiction, and
so o has to be an element of O↑.

Before we proceed to postulating two other groups of conditions, we show that
the pieces of the construction that we outlined so far can be built from Et

+. First of
all, we define prime co-theories as follows.

(8) x is a prime co-theory (i.e., x ∈ Pco) iff (i) – (iii) hold, where
(i) x 6= ∅ and ∃ϕ. ϕ /∈ x ,
(ii) ϕ ∈ x and `ψ → ϕ imply ψ ∈ x ,
(iii) ϕ ∧ ψ ∈ x implies that either ϕ ∈ x or ψ ∈ x .

The “smallest” theorem t, which implies all the theorems of Et
+, may be proved to

have the following property: ` ϕ ∧ ψ . → t only if either ` ϕ → t or ` ψ → t.
The definition of prime co-theories together with this property of Et

+ means that the
set of all formulas that provably imply t is a prime co-theory. This justifies our claim
above that the set of co-situations O can be thought of to be generated (canonically)
by a minimal prime co-theory. We define R on Pco by (9).

(9) Rxyz ⇔ ∀ϕ,ψ. ϕ /∈ y ∧ ψ ∈ x . ⇒ ϕ → ψ ∈ z.

Having this definition of R, we can prove that (5) holds. Let us assume x ≤ y
(i.e., x ⊆ y). As an approximation to a co-theory that we seek to be an instan-
tiation of ∃o, let o′ be the set { ξ : ∃ϕ1, ϕ2 /∈ y ∃ψ1, ψ2 ∈ x . ` ξ → ( ϕ1 →

ψ1 . ∨ . ϕ2 → ψ2 ) }. A tacit assumption in (9) is that x, y, and z are prime co-
theories. However, if we disregard for a moment this assumption with respect to
z, then we can write Rxyo′ by (9). If t were an element of o′, then the formula
in the definition—with t in place of ξ—would be a theorem. ϕ1 ∧ ϕ2 . → ϕ1 and
ϕ1 ∧ϕ2. → ϕ2 are provable, and ϕ1 ∧ϕ2 /∈ y, because ϕ1 /∈ y and ϕ2 /∈ y according
to the definition of o′. Similarly, ψ1 ∨ψ2 ∈ x by the definition of o′, and of course a
disjunction is implied by either disjunct. If we denote ϕ1 ∧ ϕ2 by ϕ, and ψ1 ∨ψ2 by
ψ , then ` t → ϕ → ψ has to be provable too. By the definition of prime co-theories,
ϕ ∈ x , and therefore, by the starting assumption, ϕ ∈ y. In sum, t is not an element
of o′. It is easy to verify that (9) gives the required tonicity to R; in particular, R is
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monotone in its last argument place. Maximizing o′ while preserving the exclusion
of t, we obtain a prime co-theory o, which is obviously in the relation R to x and y;
that is, Rxyo holds (due to Rxyo′ and o′

⊆ o).
To complete the construction of a model of the logic Et

+ we have to define an
assignment function. We denote this function by η and define it as follows.

(10) x �η p ⇔ p ∈ x ,

where p is a propositional variable, x ∈ Pco, and x �η p is a notation for x ∈ η(p).
We use x �η p to stress that η is the restriction to propositional variables of

the valuation function for all formulas, or equivalently, of the satisfaction relation.
If η is extended according to (3), (4), (6), and (7), then (11) holds (where x ∈ Pco

is assumed as before). Then—as intended—the form of (11) closely resembles that
of (10).

(11) x � ϕ ⇔ ϕ ∈ x .

The demonstration of (11) is by induction, and the steps are obvious or easy
except for formulas that have → as their main connective; hence we sketch
this case. From left to right, we start with supposing z � ϕ → ψ ; that is,
∃x, y. Rxyz ∧ x � ψ ∧ y 2 ϕ, by (6). The inductive hypothesis and (9) yield
ϕ → ψ ∈ z.

For the right-to-left direction, let the initial assumption be ϕ → ψ ∈ z. ϕ gen-
erates a theory and ψ generates a co-theory, let us say, v′ and x ′, respectively. Ob-
viously, we have ∀ϕ ∈ v′

∀ψ ∈ x ′. ϕ → ψ ∈ z. By maximizing the pair 〈v′, x ′
〉,

while keeping its relation to z (expressed by the previous formula), we obtain 〈v, x〉

which may be shown in the usual way to be a prime theory and a prime co-theory,
respectively. Taking the complement of v for y, ϕ /∈ y; that is, by the hypothesis of
the induction, y 2 ϕ. Also, from ψ ∈ x we get x � ψ , and it follows by (6), that
z � ϕ → ψ , as we intended to prove.

The topological characterization of the structures builds upon Priestley spaces.
The definitions of ∧ and ∨ given in (3) and (4) suffice for those operations, because
the set of clopen upsets is closed under ∩ and ∪. To guarantee a similar closure
property for →, we postulate (12).

(12) { x : ∃y /∈ V1 ∃z ∈ V2. Rzyx } is a clopen cone, when so are V1 and V2.

The consequent could be slightly weakened by omitting the requirement of upward
closure, because R was stipulated to have a certain tonicity, in particular, R_ _ ↑.

The function η and its extension through �—which we also denote by η for a
moment—is important because ηϕ1 is distinct from ηϕ2 whenever 0 ϕ1 → ϕ2 or
0 ϕ2 → ϕ1. Given a Priestley space with O and R added as above, a function µ
may be defined that plays a similar—but dual—role to η.6 Let µ(x) be the set of
clopen cones V such that x ∈ V . For µ to be “well-behaved,” µ has to be a home-
omorphism and a relational isomorphism between the starting topological structure
and the canonical structure of the algebra of the clopen cones. (13) ensures that µ
fully preserves R.

(13) ¬Rxyz ⇒ ∃V1, V2. x ∈ V1 ∧ y /∈ V2 ∧ z /∈ V2 → V1,

where V1 and V2 are clopen cones.
To illustrate the need for (13), we show that Rµxµyµz ⇒ Rxyz. Let us assume

¬Rxyz. To establish that Rµxµyµz does not obtain, there should exist some clopen
upsets V1 and V2 such that V1 ∈ µx but V2 /∈ µy and V2 → V1 /∈ µz. Suitable
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sets are guaranteed to exist by (13). (It may be noted here that given an arbitrary
set of co-situations U with ≤, O, R and a set of opens, and having the properties of
compactness and total order disconnectedness, there is no reason for (13) to hold,
unless stipulated.) The other direction, that is, Rxyz ⇒ Rµxµyµz, holds due to
(6), (9), and (12) together with the definition of µ, as the reader can easily verify.

The conditions we have postulated for O so far do not give a sufficiently tight
characterization of the distinguished co-situations. To ensure that among the clopen
cones there is a set that can function as t, we need (14), and the interaction of O and
µ requires (15) to be postulated.

(14) O↑ is a clopen subset.
(15) O = O↑.

The constructions described above provide soundness, completeness, as well as a
topological characterization of the structures—except that we have not yet taken
care of certain features of the entailment operation. Implicational theorems of Et

+

include suffixing, contraction, and specialized assertion. (Indeed, these implicational
formulas together with detachment suffice as an axiomatization of the implicational
fragment of the logic of entailment.) These theorems do not require the addition of
new components to the already defined structure. Rather they can be accommodated
by stipulating that the accessibility relation satisfies some further conditions. That
is, we make R more specific by postulating (16) – (18).

(16) Rzvy ∧ Rwuz . ⇒ ∃x . Rwxv ∧ Rxuy.
(17) Rzvy ⇒ ∃x . Rxvy ∧ Rzvx .
(18) ∃o /∈ O. Ryoy.

These conditions again look quite unlike the clauses usually stipulated in a semantics
that relies on situations. Nonetheless, it is straightforward to verify that (16) – (18)
suffice to validate the characteristic implicational axioms of Et

+ and that these con-
ditions are true on the canonical structure when the accessibility relation is defined
as in (9). It may be interesting to note that instances of squeeze-type lemmas in-
volve theories or co-theories not merely according to the dual character of the whole
semantics, but additionally determined by the distribution type of the operations.

Given a syntactic presentation of a logic—such as that for Et
+ in the next

section—it is natural to use η in the proof of the completeness theorem with respect
to a class of structures. However, typically—and concretely, for Et

+—η is not
injective; that is, it assigns the same value to distinct formulas in some cases. Often,
it is easier to deal with a function that is invertible. Taking the converse relation of
η and grouping together all the objects that are in the relation η−1 to the same cone
of prime co-theories yields the same set of objects (due to completeness) as does
forming equivalence classes based on mutual provability between formulas. Just as
the connectives may be easily redefined for the new objects, so may η be adjusted in
an obvious way too. (We denote the resulting function by η′.)

Typical steps of proving a logic sound and complete with respect to a class of
structures include building a model from a structure and building a structure from
(the algebra of) the logic. The topological characterization of structures, on one
hand, sharpens the description of the model constructed from the canonical structure
of the logic by “pruning” the codomain of η′ so that η′ becomes onto. On the other
hand, when µ is a homeomorphism and a relational isomorphism between a structure
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and the canonical structure of its algebra, then the class of structures is delineated
more precisely than commonly.7

Valuations are homomorphisms, and functions that preserve operations (and con-
stants, if there are any) are of interest for investigating properties of the objects they
link. Similarly, maps between structures contribute to the study of their features.
The map m that we are to introduce has a certain similarity to rp-morphisms that
were introduced by Mares in [21]. (Incidentally, his paper gives an excellent illus-
tration of how the investigation of maps between structures contributes both to the
understanding of the structures themselves and to the understanding of the logics for
which the structures are defined.) However, our motivation to define a certain kind of
maps is independent of considerations of Halldén completeness and rp-morphisms,
and it stems from our aim to obtain a functorial duality result. Thus, we proceed to
investigate and stipulate properties for functions between structures which guarantee
that the duality of objects can be extended to them as well.

Our main interest is in the logics and their semantics (not in classes of structures),
which means that we will not want to vary the homomorphisms. Accordingly, we
postulate (19) and (20) to limit the set of permitted frame morphisms.8 We take
m to be a map from 〈X1,≤1, R1, O1,O1〉 into 〈X2,≤2, R2, O2,O2〉 where both
topological spaces are of the sort described so far. A frame morphism m is stipulated
to be continuous and order-preserving as well as to satisfy (19) – (20).

(19) R1xyz ⇒ R2mxmymz.
(20) R2xymz ⇒ ∃u, v. R1uvz ∧ x ≤2 mu ∧ mv ≤2 y.

Conditions (19) and (20) may be thought to encode the entailment operation into
frame morphisms, so to speak. Indeed, it is easy to verify that these are exactly the
conditions that can ensure that the inverse image of a frame morphism (restricted to
clopen cones, of course) preserves entailment. It is interesting to note that the order
relation is a crucial element in (20).

Lastly, before we state some theorems and lemmas, we should dissipate a poten-
tial ambiguity. The zeroary constants F and T—which are quite like their classical
analogues—are not always included in relevance logics. Classically, every theorem
is a notational variant of T, but this is not true in relevance logics. Although T (if
included) is a theorem of Et

+, it does not imply all the theorems; hence it has a re-
duced significance. However, in order to make our topological representation results
to straightforwardly expand previous ones—especially, Priestley’s duality theorems
for distributive lattices—we assume that F and T are in Et

+. The properties of these
constants are easy to characterize: F entails every formula, whereas T is entailed
by all formulas. The interaction with entailment is summarized by the two formulas
T → F → ϕ and T → ϕ → T. In a model, U and ∅ interpret F and T, respectively.

2.1 Pertinent theorems and lemmas

Theorem 2.2 (Soundness) If ϕ is a theorem of Et
+, then given any structure and

valuation, u � ϕ implies u � t.

Proof The structure of the proof is usual modulo dualization.9 �

This theorem does not make use of the topological component of a structure. How-
ever, the selection of a certain set of subsets of co-situations characterizes the struc-
tures more precisely, which is the content of the next lemma.
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Theorem 2.3 (From structures to structures) Every structure is homeomorphic and
relationally isomorphic to a structure consisting of sets.

Proof The structure of sets is defined as the set of proper nonempty prime ideals
(the analogues of prime co-theories) of clopen cones. By the soundness theorem,
we know that there is an Et

+ algebra that emerges from a structure, and the clauses
that refer to the topological component guarantee that the elements in the algebra are
clopen cones. From the proof of the next theorem follows that the proper nonempty
prime ideals of the Lindenbaum algebra of Et

+ (or equivalently, the prime co-theories
of Et

+) may be shown to satisfy all the conditions that are essential to the proof of
soundness. A function that may be shown to be a homeomorphism is µ, which is
defined as follows.

µx = { V : x ∈ V and V is a clopen cone }.

(µ may be easily proven to be continuous and 1–1, which suffices to show that
µ is a homeomorphism because a Priestley space is Hausdorff.) Furthermore,
µ and its inverse preserve all three relations of a structure. (Cf. the remarks follow-
ing (13).) �

Theorem 2.4 (Completeness) If ϕ is not a theorem of Et
+, then there is a structure,

a valuation, and a co-situation u such that u � ϕ and u 2 t.

Proof The set of proper nonempty prime co-theories Pco forms a structure (without
a topology), with inclusion, with O being the set of those x ∈ Pco which contain
t, and with R defined as { 〈x, y, z〉 : ∀ϕ /∈ y ∀ψ ∈ x . ϕ → ψ ∈ z }. The topology
may be added by specifying its base as { ηϕ ∩ −ηψ : ϕ,ψ are formulas }, where η is
the canonical valuation (defined above). The “type-lifted” version of this valuation
(which we denoted by η′) is an isomorphism between the algebra of Et

+ and the alge-
bra of clopen cones of the structure on Pco. (In other words, the topology delineates
the codomain of the canonical valuation function exactly.) �

At this point, we know that it is possible to go back and forth between certain struc-
tures and algebras; that is, they are each other’s counterpart (or more formally, they
are duals). Moreover, in a precise sense (of an isomorphism and of a homeomor-
phism) the second duals are (essentially) the same as the original algebra or the orig-
inal structure. This object level duality can be extended to functions that connect the
objects. Indeed, by postulating (19) and (20) we already anticipated that we intend
to consider such an extension, the first step toward which is the next lemma.

Lemma 2.5 If m is a frame morphism, then m−1 is a homomorphism between the
algebras of clopen cones on the structures. Distinct ms yield distinct m−1s.

Proof The bulk of the proof consists of a straightforward verification that the in-
verse image of a frame morphism preserves the operations and constants. �

Lemma 2.6 If h is a homomorphism between algebras, then h−1 is a frame mor-
phism between the structures emerging from the algebras. Distinct hs yield distinct
h−1s.

The proof this lemma is quite similar (dually) to the previous proof.

Lemma 2.7 (Harmony of second duals) η′ (µ) are in harmony with the second du-
als of homomorphisms (of frame morphisms) between algebras (between structures).
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Proof The gist of the proof (for η′) is to show that η′ commutes with h and h−1 −1.
The proof crucially depends on the definition of η′ as well as on the appropri-
ate characterization of the codomain of h−1. Assuming that [ϕ] is ϕ’s equiva-
lence class, η′(h([ϕ])) = h−1 −1(η′([ϕ])). Similarly, for µ one can prove that
µ(m(x)) = m−1 −1(µ(x)). �

Theorem 2.8 (Functorial duality) The category of Et
+ algebras with homomor-

phisms (i.e., maps preserving ∧,∨,→, t,T, and F) is the dual of the category of
structures for Et

+ with frame morphisms.

This theorem is a culmination of the results concerning Et
+ and its dual gaggle se-

mantics in this section, and a proof of the theorem may be obtained by combining
the proofs of the above lemmas and theorems together with verifying that the “back-
and-forth moves” between the categories can be proven to be functors in the sense
of category theory. The inverse image constructions explain why one category turns
out to be the dual of the other.

3 Formalizations

We formalize Et
+ by extending the sequent calculus L E t

→.10 To add the extensional
connectives ∧ and ∨, we adapt the solution that was introduced by Dunn [14] (see
also Dunn [15], §3.10). That is, the consecution calculus for Et

+, that we are to
define here, contains two structural connectives. The combinatory rules for B′ and
W in the LC calculi introduced in Dunn and Meyer [18] guide us in shaping the
structural rules for the intensional structures. The straightforward parallel between
combinatory rules (for proper combinators) and implicational formulas (that are their
principal type schemes) may seem to have become obscured in L E t

→ with the t̂r `

rule. However, specialized assertion is the principal type scheme of a combinator,
let us say 4, with the axiom 4x B x I (where I is the unary identity combinator).11

The corresponding rule (i.e., the only structural rule beyond ťl ` that is necessary
to prove that specialized assertion is a theorem in L E t

→) should be reminiscent of a
dual combinatory rule applied in the reverse direction, as it really is.

Bounding a distributive lattice is often considered a trivial move (as in Stone [25]),
and adding F and T to the language of a logic is similarly easy. For technical rea-
sons, which we mentioned in the preceding section, we want to formalize positive
entailment so that it contains these so-called Church constants. Although adding
T is easy, incorporating “absurdity” is a bit more complicated.12 To hint at one of
the problems, we note that F and → are expected to interact in a way which can
be described by saying that → is a 0–1 operation (with →: 0, 1 −→ 1) in the
algebra of entailment. Since intensional and extensional structures may be embed-
ded into each other repeatedly—moreover, intensional structures cannot be viewed
equivalently as “flat” structures—the usual [ ] notation for a single occurrence of a
structure in a structure or the use of the structural connective ; is not sufficient here.
In other words, a complication results from (ϕ → ψ → ξ) → ψ → ϕ → ξ not
being a theorem of entailment, which means that ; cannot be taken to be a polyadic
connective.

We define L E t
+ to be a single right-handed consecution calculus. The logic of

entailment does not permit unrestricted permutations and thinnings; thus, to ensure
that ∧ and ∨ have their “usual” properties, two punctuation marks may be used to
build up the antecedent of a consecution. (See [15], §3.10.)
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Definition 3.1 (Structures)

(i) If ϕ is a formula, then ϕ is a structure.
(ii) If α1, . . . , αn are structures, so is α1, . . . , αn .

(iii) If α1 and α2 are structures, so is (α1;α2).

Informally, (ii) defines structures that are extensional—they are formed by , . Due
to the lack of parentheses in (ii), repeated applications of (ii) yield one extensional
structure from several.13 Although an extensional structure containing several , s
conceals the history of its construction (when viewed outside of the context of a
derivation), this would not prevent us from defining the notion of an occurrence
of a structure in a structure unambiguously. However, we do not need to go into
the details of the definition of occurrences here; we remark only that a particular
occurrence of a structure α in a structure β is indicated by β[α], as usual. Now we
recall the axiom and the rules of L E t

→ from [7], §1.

ϕ ` ϕ id
α[β] ` ϕ

α[t;β] ` ϕ
ťl`

α ` ϕ β[ψ] ` ξ

β[ϕ → ψ;α] ` ξ
→`

α;ϕ ` ψ

α ` ϕ → ψ
`→

α[γ ; (β; δ)] ` ϕ

α[β; γ ; δ] ` ϕ
B′

`

α[β; γ ; γ ] ` ϕ

α[β; γ ] ` ϕ
W `

α[β; t] ` ϕ

α[β] ` ϕ
t̂r `

Conjunction and disjunction are added by the structure-free rules (which share their
“contexts”).14

α[ϕ] ` ξ

α[ϕ ∧ ψ] ` ξ
∧1`

α[ϕ] ` ξ

α[ψ ∧ ϕ] ` ξ
∧2`

α ` ϕ α ` ψ

α ` ϕ ∧ ψ
`∧

α[ϕ] ` ξ α[ψ] ` ξ

α[ϕ ∨ ψ] ` ξ
∨`

α ` ϕ

α ` ψ ∨ ϕ
`∨1

α ` ϕ

α ` ϕ ∨ ψ
`∨2

The above rules do not involve the structural connective , , but the following struc-
tural rules do, and they are inevitable for the provability of distributivity of ∧ and
∨.

α[β, γ ] ` ϕ

α[γ, β] ` ϕ
T `

α[β, β] ` ϕ

α[β] ` ϕ
M `

α[β] ` ϕ

α[β, γ ] ` ϕ
K `

In combinatory logic (or in the structurally free logics), it is convenient to be
able to talk about a term (or a structure) without exhibiting all the details of its
shape.15 An intensional structure that is formed, for example, from (α;β) and γ
is characterized—to a certain extent—by α, β, and γ . However, (γ ; (α;β)) and
((α;β); γ ) are, obviously, different structures, and in L E t

+ there is no rule of per-
mutation that would allow us to disregard the order of the substructures. To indicate
that a structure is composed by repeated applications of (i) and (iii) from all of
α1, . . . , αn , we use the notation 〈|α1, . . . , αn |〉. For our purposes it is unimportant to
describe a structure as composed of as few substructures as possible; therefore, we
assume that α1, . . . , αn is a complete listing of occurrences of some substructures.
In other words, each α occurs exactly once in 〈|α1, . . . , αn |〉 (and we allow the
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possibility that some αs have the same shape). In limited contexts, we use a 〈| |〉

expression for one fixed structure that may be characterized in this fashion.
The replacement of one of the αs by a 〈| |〉 expression preserves the defin-

ing feature of the 〈| |〉 expressions. That is, if two structures may be described
as 〈|α1, . . . , αl , . . . , αn |〉 and 〈|β1, . . . , βm |〉, then [〈|β1, . . . , βm |〉/αl ]〈|α1, . . . , αl ,
. . . , αn |〉 is 〈|α1, . . . , β1, . . . , βm, . . . , αn |〉 (in which αl no longer occurs). Infor-
mally, the replacement corresponds to supplanting a leaf in an ordered binary tree
by an(other) ordered binary tree. The so obtained tree is binary and ordered, and
its leaves comprise the leaves of the first tree save the one replaced, and those of
the second tree. By this description we aim to emphasize that combining structures
that are completely intensional up to a certain depth yields a like structure, which is
useful in the formulation of one of the axioms and in the proof of the cut theorem.

The following two axioms add absurdity and triviality, and they complete the
description of the set of axioms and rules for L E t

+. (n is a natural number; that is,
F ` ϕ is an instance of F `.)

〈| F, α1, . . . , αn |〉 ` ϕ F ` α ` T `T.

To make use of the consecution calculus, the following cut rule has to be added and
proven eliminable (or it has to be proven admissible).

α ` ϕ β[ϕ] ` ψ

β[α] ` ψ
cut .

The above cut rule is sometimes called single cut (to distinguish it from other rules
such as versions of multiple cut and the mix rule). This is “the cut rule” that was in-
troduced by Gentzen, except that (i) our consecutions are right singular (completely
unlike sequents in L K though somewhat like those in L J ), and (ii) our use of more
refined structures necessitates the exploitation of the square brackets.

Provability of a consecution is defined as usual; that is, a consecution is provable
when there is a derivation of the consecution solely from the axioms. Furthermore,
a provable consecution always has a cut-free proof. The proof of this theorem is
by triple induction (on the degree of the cut formula (δ), and on the rank (%) and
the contraction measure (µ) of the cut) for the fragment that does not include the
constants. The inclusion of the constants requires an extra lemma to ensure that
certain proofs that contain a cut on t can be transformed into cut-free proofs.16

It may be interesting to note that t in L E t
→ causes fewer complications in the

proof of the admissibility of the single cut than it does in L E t
+ despite t’s essential

presence in both consecution calculi. t plays a role in the definition of theoremhood:
ϕ is a theorem of L E t

+ if and only if the consecution t ` ϕ is provable. Interestingly,
the rule t̂r `, which is distinctive for entailment, does not interfere at all with the
inductive proof of the cut theorem, and it does not destroy the subformula property
for theorems.

A Hilbert-style formalization for Et
+ may be obtained by taking E→2 (see Ander-

son and Belnap [1], §8.3.3) and adding to it axioms and a rule for ∧ and ∨ (see [1],
§27.1). t may be added by the rules ` ϕ if and only if ` t → ϕ (where ` indicates
theoremhood in the Hilbert-style system), together with the axiom t → t . → t.17 To
add the relevantly less interesting constants, the following axioms—already hinted
at above—might be considered.

F → ϕ ϕ → T T → F → ϕ T → ϕ → T
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In relevance logics, the genuine connective to combine premises is fusion (sometimes
called co-tenability), and it may be added to the axiom system described so far by
the usual rules: ` ϕ → ψ → ξ if and only if ` ϕ ◦ ψ . → ξ .

The corresponding consecution rules for L E t
+ are ◦ `, ` ◦, and bt `.

α[ϕ;ψ] ` ξ

α[ϕ ◦ ψ] ` ξ
◦`

α ` ϕ β ` ψ

α;β ` ϕ ◦ ψ
`◦

α[t;β; γ ] ` ϕ

α[t; (β; γ )] ` ϕ
bt`

The logic of entailment is centered around →, and so ◦ is not always added. The
inclusion of ◦ is advantageous sometimes. For instance, the proof of the equivalence
of an axiomatic and a sequent calculus becomes more transparent. The expansion
of L E t

+ with the rules ◦ ` and ` ◦, however, forces the addition of bt ` as well,
which in turn further complicates the proof of the admissibility of the single cut rule.
(Two new subinductions on χ and ε seem to be needed, where χ is the height of
the derivation of the left premise when %r ≥ 2 and the cut is on t, whereas ε is its
extensional depth.)

Assuming the presence of ◦, the following three conditions must be added to the
definition of a structure for the logic.

(21) u � ϕ ◦ ψ ⇔ ∀y, z. Ruyz ∧ y 2 ψ. ⇒ z � ϕ.

(21) is the definition of ◦ for sets of co-situations on a structure (and should be
compared to (6) for →). The Hilbert-style rules for fusion make very clear that → is
the right residual of ◦ (and of course this is provable in the consecution calculus too).
Residuation implies that we may assume that the R in (6) and the R in (21) are one
and the same relation, which considerably simplifies the whole semantics. However,
for a complete topological characterization of the structures, two further stipulations
are needed, when fusion is included.

(22) { x : ∀y /∈ V2 ∀z /∈ V1.¬Rxyz } is a clopen cone, if so are V1 and V2.
(23) R2mxyz ⇒ ∃u, v. R1xuv ∧ mu ≤2 y ∧ mv ≤2 z.

(22) is analogous to (12), whereas (23) parallels (20). If ◦ and the corresponding
conditions (21) – (23) are added, then all the lemmas and theorems from Section 2.1
are true—with certain applicable modifications. (Cf. Section 4.1.)

3.1 Pertinent theorems and lemmas

Theorem 3.2 (Cut-free proofs) A provable consecution of L E t
+ has a cut-free

proof.

Proof The proof is by a triple induction on δ (the degree of the cut formula), %
(the rank of the cut), and µ (the contraction measure of the cut) together with an
induction on κ (the height of the proof of the right premise when % = 2 and the cut
formula is t). The presence of t in other relevant consecution calculi (for example, in
LT ◦t

→ and L B◦t
+ ) leads to an extra induction; however, here the difficulty arises from

the interaction between t, F, and the distributivity of ∧ and ∨.18 �

Theorem 3.3 (Equivalence) If ϕ is a theorem of the axiomatic system Et
+, then

t ` ϕ is a provable consecution in L E t
+, and vice versa. Therefore, all theorems of

Et
+ have cut-free proofs in L E t

+.
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The proof of the equivalence can proceed along the usual lines. It may be interesting
to note though that prefixing (that is, a theorem of entailment) has a much shorter
proof in the sequent calculus than (the proof I know of) in the axiom system. A
reason behind the discrepancy is that if there are no combinators in the consecu-
tion calculus (unlike in structurally free logics), then the correspondence between
structural rules and proof terms, therefore, the formulas-as-types correspondence,
becomes less precise.

4 Treatments of Negation

Negation often causes problems. We consider an extension of the axiomatic formu-
lation with the following three axioms.

ϕ → ∼ψ . → ψ → ∼ϕ ∼∼ϕ → ϕ ϕ → ∼ϕ . → ∼ϕ

The three axioms, respectively, express that ∼ is self-residuated; ∼ is identified with
two operations from a different family; and ∼ obeys reductio. In algebraic terms
(i.e., in the Lindenbaum algebra of Et) ∼ is an involution (without being an identity).
To word the same observation differently, ∧,∨, and ∼ span a De Morgan lattice, the
order of which coincides with the order induced by provable entailments.

De Morgan lattices are elegant because their negation forces the lattice to be self-
dual. At the same time, the distributivity of the lattice (that is, the provability of the
formula ϕ ∧ (ψ ∨ ξ) . → . (ϕ ∧ψ)∨ ξ ) allows a relatively uncomplicated treatment
of negation.

To obtain a structure on which negation is definable for certain propositions, we
add a new binary relation R′ onto the set of co-situations. (Formally, R′

⊆ U×U and
R′ is monotone in its second argument place.) (24) defines negation on propositions,
which are sets of co-situations.19

(24) u � ∼ϕ ⇔ ∃x . R′xu ∧ x 2 ϕ.
Due to the postulated tonicity of R′, if u � ∼ϕ and u ≤ x , then also x � ∼ϕ. The
addition of clauses (25) – (27) ensures that negation defined on propositions satisfies
the three new axioms.

(25) R′xy ⇒ ∃z. R′zx ∧ z ≤ y.
(26) ∃y. R′yx ∧ ∀z. R′zy ⇒ x ≤ z.
(27) R′xz ∧ x ≤ y . ⇒ ∃w, v. Rwvy ∧ v ≤ z ∧ x ≤ w.

To guarantee that the set of clopen cones is closed under the negation operation, we
stipulate (28). Further, (29) suffices for the extension of µ (to structures that include
the relation R′) to remain well-behaved.

(28) ∼V1 is clopen whenever V1 is a clopen cone.
(29) ¬R′xy ⇒ ∃V1. x /∈ V1 ∧ y /∈ ∼V1, where V1 is a clopen cone.

The structure defined from Et (similarly, as before) may be proven to satisfy the
newly added conditions once we specify R′ as { 〈x, y〉 : ∀ϕ /∈ x .∼ϕ ∈ y }.

If a valuation η is defined as in (10), then with the above definitions it may be
shown to be a homomorphism for negation. Although the elements of a proposition
are prime co-theories, a natural proof proceeds via maximizing a theory. (This step
is an analogue of the “primeness lemma” for a unary antitone operation.)

To ensure that the duality between the objects of the categories can be ex-
tended to full duality, the frame morphisms’ interplay with the relation R′ has to be
circumscribed—as by (30) and (31).
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(30) R′

1xy ⇒ R′

2mxmy.
(31) R′

2xmy ⇒ ∃z. R′

1zy ∧ mz ≤2 x .

Given these additions, functorial duality can be proven.
For the sake of comparison, it should be noted that the modeling of negation above

is not the “usual” one. In semantics of relevance logics, negation is typically mod-
eled from a function on structures which is often denoted by ∗ (see [15], §4.4 and
[2], §48.5). ∗ reflects that ∼ is perceived as a dual isomorphism. R′xy has a straight-
forward translation in terms of ∗ and ≤; furthermore, all the resulting conditions are
true in structures with ∗. However, the converse of the translation seems incapable
of expressing all the usual conditions that ∗ is postulated to satisfy, and in this sense,
R′ comes with weaker assumptions than ∗ does.20

A yet another way to model negation that promptly comes to mind is derived from
the other distribution type of ∼, namely, ∼: ∧ −→ ∨. Using dualized gaggle theory,
the fact that ∼ distributes into ∨ leads to its modeling via a universally quantified
clause on propositions. This would necessitate replacing not only (24), but also (25) –
(27) and (29). Lastly, the two conditions (30) and (31) should have been replaced
then by ¬R′′

1 xy ⇒ ¬R′′

2 mxmy and ¬R′′

2 xmy ⇒ ∃z.¬R′′

1 zy ∧ x ≤2 mz, where
R′′ is a new binary relation (in place of R′).

Another possibility is to “strengthen” either of the primed relations into a func-
tion. A deep insight that we wish to reiterate is that {ϕ : ∼ϕ /∈ x } is not only a prime
co-theory of Et (when so is x), but in general, distinct from x—unlike it would be
in a classical context. It is easy to see that if R′ and R′′ are “functionalized” into r ,
then both definitions of negation turn out to be the same: u � ∼ϕ ⇔ ru 2 ϕ.

4.1 Pertinent theorems and lemmas
We state the analogues of theorems from Section 2.1 and briefly remark on the aug-
mentations of the previous proofs.21

Theorem 4.1 (Soundness) If ϕ is a theorem of Et, then given any structure and
valuation, u � ϕ implies u � t.

The proof requires adding to the previous proof the cases for the ◦ rules and the ∼

axioms.

Theorem 4.2 (From structures to structures) Every structure is homeomorphic and
relationally isomorphic to a structure consisting of sets.

The only necessary addition to the proof of Theorem 2.3 is that R′ is preserved in
both directions.

Theorem 4.3 (Completeness) If ϕ is not a theorem of Et, then there is a structure,
a valuation, and a co-situation such that u � ϕ and u 2 t.

The case of fusion is unproblematic, and we already commented on some of the
details in proving that η is a homomorphism for ∼.

Lemma 4.4 If m is a frame morphism, then m−1 is a homomorphism between the
algebras of clopen cones on the structures. Distinct ms yield distinct m−1s.

The new operations are preserved by inverse images due to the stipulations (19),
(23), and (21), as well as (30), (31), and (24).
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Lemma 4.5 If h is a homomorphism between algebras, then h−1 is a frame mor-
phism between the structures emerging from the algebras. Distinct hs yield distinct
h−1s.

The conditions involving m that were just mentioned have to be proven to hold on
the top of the previous proof. However, the homomorphism h preserves the new
operations, and so no problems arise.

Lemma 4.6 (Harmony of second duals) η′ (µ) are in harmony with the second du-
als of homomorphisms (of frame morphisms) between algebras (between structures).

The proof of this lemma is exactly as that of Lemma 2.7. The uniformity of the
proofs reflects a certain universality of the lemma itself, which underscores that η′

and µ are significant objects. On the other hand, it should be pointed out that now η′

(µ) is an isomorphism (a homeomorphism) between algebras (between structures)
with more stuff in it, so to speak.

Theorem 4.7 (Functorial duality) The category of Et algebras with homomor-
phisms (i.e., maps preserving ∧,∨,→, ◦,∼, t,T,F, and f ) is the dual of the cat-
egory of structures for entailment with frame morphisms.

The proof of this theorem is similar to the proof of Theorem 2.8.

5 Conclusions

This paper investigated the possibility of defining a semantics for the logic of en-
tailment and its positive fragment based on co-situations. The functorial duality
theorems we proved show that these semantics are as good from a logical point of
view as the relational semantics in which situations are taken to be the points. The
use of a topological characterization of structures forces the inclusion of the Church
constants that are normally less important for relevance logics. We defined new con-
secution calculi for the positive fragment and for the positive fragment with fusion,
in both of which these constants are included. The cut theorem is true for these
consecution calculi.

Notes

1. A semantics based on ideals as well as two other semantics for the Kleene logic (and the
closely related action logic) may be found in Bimbó and Dunn [9].

2. Gaggle theory was invented by Dunn [16]. A dual gaggle semantics for T◦t
+

is defined
in Bimbó [8], §3.6.

3. ϕ,ψ, ξ, . . . range over formulas whereas u, v, w, x, y, z, . . . denote situations or co-
situations. u � ϕ indicates that ϕ is true in the (co-)situation u.

4. Basic topological notions are defined in various places, for example, in Dunn and Hard-
egree [17], Ch. 13; Davey and Priestley [13], Appendix A; Clark and Davey [12], Ap-
pendix B; and Bimbó and Dunn [10], Ch. 9.

5. This claim is true, but strictly speaking, it cannot be proven until an interpretation for
entailment is added. → is essential to (i.e., the main connective in) the formulas that
turn into (in)equations in the Lindenbaum algebras of the logics Et

+
and Et.
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6. We assume that it is understood that the definition of the base of a topology from a
distributive lattice remains the same in the presence of intensional operations.

7. Categorically speaking, η′ and µ can be understood as the functions that are suitable
to prove object duality for a certain class of topological spaces and a certain class of
algebras. (See Theorem 2.8 below.) An exposition of category theory is, for example,
Goldblatt [19].

8. The careful reader might notice that (19) and (20) look quite similar to (2) and (3) in Def-
inition 4 in [21]—despite the dual character of our semantics. An important difference
is though that (20) cannot be strengthened by replacing ≤2 with =, unless we restrict the
class of homomorphisms too—the desirability of which we have already excluded for
our purposes.

9. Here as well as below we omit most of the details of the proofs and provide only a sketch
of the steps or some key definitions. (Notice that parts of some proofs were detailed
earlier in this section.) Proofs of topological duality theorems—for various algebraic
structures—may be found, for example, in [13] (for distributive lattices), in Urquhart
[26] (for lattices), in Bimbó [6] (for ortholattices and De Morgan lattices), and in [10],
Ch. 9 (for a variety of logics, or more accurately, for various classes of algebras that
are connected to nonclassical logics via their Lindenbaum algebras). In the rest of this
section (unless we specify otherwise), by “structures” we mean the structures that have
been defined so far, and we call “algebras” or “Et

+
algebras” the algebras that satisfy

those equations that characterize the algebra of Et
+

.

10. This consecution calculus was introduced in Bimbó [7], §1. A consecution calculus for
E→ was enunciated in Kripke [20], and negation was added in Belnap and Wallace [4].
Merge-style consecution calculi for various relevance logics are described in [1], §7.3.

11. Some well-known implicational theorems of Et
+

are principal type schemes of other
improper combinators. For example, restricted permutation is so connected to 2 that has
axiom 2xyz B xz(B′Iy)—see [8], §4.

12. As far as I know, no sequent calculus has been introduced previously for the positive
fragment of any of the standard relevance logics with the constants F and T included.

13. This is quite like Gentzen’s treatment of antecedents and succedents of sequents as
strings (or sequences) of formulas. We use the notational convention of omitting paren-
theses from left-associated intensional structures.

14. Cf. Belnap [3] and Negri and von Plato [22].

15. A notation that is useful in specifying structural rules (in a uniform way) that corre-
spond to proper (dual) combinators in structurally free logics was introduced immedi-
ately following Definition 2.3 in Bimbó [5]. However, we cannot utilize that notation
now, because the presence of F in axiom F ` is a must.

16. This lemma has some resemblance to Lemma 4.7 in [5], but here the induction is on κ
which is the height of the derivation of the right premise when % = 2. Lemma 4.7 takes
care of the elimination of the cut rule when the cut formula is a fixed-point combinator.
Truth can be dealt with more or less in a like fashion because of the limited ways a
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fixed-point combinator or t can be introduced. t has been included (with the cut theorem
remaining true) into consecution formulations of some of the stronger relevance logics
in [8], §3.2.

17. See also the overview of axiomatic systems in Anderson, Belnap, and Dunn [2], §R2.

18. For proofs of cut theorems for consecution calculi that require a somewhat similar in-
duction on χ , see [5], [8], [7], and [10], Ch. 2.

19. An altogether different modeling of De Morgan negation (∼) using a binary relation is
given in [6], §4.

20. The usual semantics for relevance logics contains a function that is the central element of
the definition of negation on sets of situations, that incorporates a well-known represen-
tation of De Morgan lattices. See [15], §4, Routley and Meyer [24], and for a topological
characterization Urquhart [27].

21. The terms “structure” and “algebra” now refer to a structure and an algebra obtained by
the additions in the last two sections.
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