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Models Omitting Given Complete Types

Akito Tsuboi

Abstract We consider a problem of constructing a model that omits given com-
plete types. We present two results. The first one is related to the Lopez-Escobar
theorem and the second one is a version of Morley’s omitting types theorem.

1 Introduction

The well-known omitting types theorem for a countable theory T states that if a type
p(x) is nonprincipal then there is a model that omits p(x). This result can be easily
generalized to the case of countably many types:
(*) Let S = {pi (x)}i∈ω be a set of types such that each pi (x) is nonprincipal.

Then there is a model that omits all pi (x)s.
Shelah showed that if T is complete, κ < 2ω, and {pi (x)}i<κ is a set of complete
nonprincipal types, then there is a model that omits all pi (x)s. In general, some set
theoretical axioms are necessary if we want to generalize (*) to the case when S is
not countable and pi s are not necessarily complete. (See [3] and [2]).

There is another kind of omitting types theorem due to Morley. Morley’s omitting
types theorem states that if for each i < ω1 there is a model Mi of cardinality
ii omitting given type p(x) then there is an arbitrarily large model omitting p(x).
Again this theorem can be generalized to the case of countably many types without
major changes in the proof.

From the Lopez-Escobar theorem [1] for Lω1,ω we can deduce the following:
Let T be a theory formulated in a countable language with the binary relation <
expressing a linear order. Let p(x) be a type. Suppose that T has a model omitting
p(x) such that the order type of < is ω1. Then there is a model omitting p(x) such
that < is non-well-ordered. Morley’s omitting types theorem has a strong relation
with the Lopez-Escobar theorem. In fact, Morley’s theorem can be proven via the
Lopez-Escobar theorem. This can be explained well using Hanf numbers µ(λ, κ)
and δ(λ, κ) introduced by Shelah (see Preliminaries, Section 2).
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In this paper, we are interested in omitting complete types and prove two theo-
rems. The first one is related to the Lopez-Escobar theorem and the second one is a
version of Morley’s omitting types theorem.

Theorem 1.1 Let L be a countable language having a binary relation <. Let T
be a complete L-theory and R a set of complete types with |R| < 2ω. Suppose that
there is a model M |H T omitting R and with the order type ω1. Then there is a
model N |H T omitting R such that N has an infinite descending sequence with
respect to <N .

Theorem 1.2 Let T be a countable complete theory and R a set of complete types
with |R| < 2ω. Suppose that for each i < ω1, there is a model Mi |H T with the
following properties:

1. |Mi | ≥ ii ,
2. Mi omits each member of R.

Then for each κ there is a model M omitting R and with |M | ≥ κ .

2 Preliminaries

We recall some basic definitions and facts necessary for understanding our results.
Throughout L is a countable language and T is an L-theory. A model means a
model of T . A formula means an L-formula. Formulas are denoted by ϕ, ψ and so
on. Variables are denoted by x , y and so on. A finite tuple of variables are denoted
by x̄, ȳ and so on. A set p(x) of formulas (with the free variable x) is called a type
if p(x) is consistent with T . A complete type is a type p(x) with the property that
if ϕ(x) is a formula then either ϕ(x) or ¬ϕ(x) belongs to p(x). Let M be a model
and ā ∈ M . The type tp(ā) of ā is the set {ϕ(x̄) : M |H ϕ(ā)}. M is said to realize
p(x̄) if there is ā ∈ M with p(x̄) ⊂ tp(ā). Otherwise, M is said to omit p(x). In
this paper, we say that M omits a set R of types if M omits every member of R.

Let ϕ(x, ȳ) be a formula and F(ȳ) a function symbol. F is called a Skolem
function (for ϕ) if T proves ∀ȳ(∃xϕ(x, ȳ) → ϕ(F(ȳ), ȳ)). If every formula has a
Skolem function, then we say that T has built-in Skolem functions. A simple argu-
ment shows that every T can be extended to a theory T ∗ (formulated in an extended
language) having built-in Skolem functions. Suppose that T has built-in Skolem
functions. If M is a model and A is a subset of M , then the Skolem closure (closure
of A by Skolem functions) of A is an elementary submodel of M .

Now we recall Shelah’s µ and λ (Hanf numbers of omitting types). Since we
are only interested in countable languages, we write those definitions by omitting
unnecessary parameters.

Definition 2.1 Let κ be a cardinal.
1. µ(κ) is the first cardinal µ with the following property: if L is countable, T

is an L-theory, R is a set of types with |R| ≤ κ , and for every χ < µ there
is a model of cardinality ≥ χ omitting R, then there is an arbitrarily large
model omitting R.

2. δ(κ) is the first cardinal δ with the following property: if L is a countable
language with the binary relation < , T is an L-theory, R is a set of types
with |R| ≤ κ , and there is a model omitting R whose order type (with respect
to<) is ≥ δ, then there is a model omitting R such that< is not well-ordered.
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There is a relation between µ and δ (see Theorem 5.4 in [3]).

Fact 2.2 µ(κ) = iδ(κ).

Recall that ii is the beth function defined by i0 = ω, iα+1 = 2iα , and
iδ = supi<δ ii for limit δ. The Lopez-Escobar theorem yields δ(1) = ω1. So
from the above fact, we have µ(1) = iω1 . This equation proves Morley’s omitting
types theorem. For proving Fact 2.2, we need to work on incomplete types. So
Theorem 1.1 and Fact 2.2 do not directly yield Theorem 1.2. Since our two theorems
can be proven using similar arguments, the author believes that there is a version
of Fact 2.2 by which Theorem 1.2 can be easily deduced from Theorem 1.1. How-
ever, the author has not succeeded in proving Theorem 1.2 as a direct corollary to
Theorem 1.1. So we give separate proofs to each theorem.

3 Proof of Theorem 1.1

We assume T has built-in Skolem functions. We prepare a countable set X =

{xi : i ∈ ω} of variables. Let {ti : i ∈ ω} be an enumeration of all the L-terms
whose variables belong to X . We may assume that the variables of tn are contained
in x̄n = x0, . . . , xn−1. So we may assume tn = tn(x̄n) by adding dummy vari-
ables. For ā = (a0, . . . , am) with m ≥ n − 1, tn(ā) means tn(a0, . . . , an−1). By
otp(<M ) = ω1, we assume the universe of M is ω1 and M |{<} = (ω1, <).

Definition 3.1 Let m ∈ ω. An m-sequence is a sequence of length m. Let S be
an uncountable set of descending m-sequences of elements in M . We introduce the
following terminologies.

1. S is uniformly uncountable if for every i < ω1 S>i = {(a0, . . . , am−1)
∈ S : am−1 > i} is uncountable.

2. Let n ≤ m. We will say that S is tn-uniform if
(1) S is uniformly uncountable, and
(2) whenever ā, b̄ ∈ S then tp(tn(ā)) = tp(tn(b̄)).

We also say that S is essentially tn-uniform if S has a tn-uniform subset S0.

Lemma 3.2 Let S be uniformly uncountable. For each i < ω, let Ti be a subset
of S such that Ti is not uniformly uncountable. Then S r

⋃
i∈ω Ti is uniformly

uncountable.

Proof For each i < ω, choose ji < ω1 such that (Ti )> ji is countable. Let
j∗ = supi<ω ji . Then every (Ti )> j∗ is countable. Let k > j∗. Then

(S r
⋃
i∈ω

Ti )>k ⊃ (S>k r
⋃
i∈ω

(Ti )> j∗).

So (S r
⋃

i∈ω Ti )>k is an uncountable set. So S r
⋃

i∈ω Ti is uniformly uncountable.
�

Definition 3.3 Let m0 < m1 ∈ ω. For i = 0, 1, let Si be a set of descend-
ing mi -sequences. We write S0 > S1 if whenever (a0, . . . , am1−1) ∈ S1 then
(a0, . . . , am0−1) ∈ S0.

Lemma 3.4 Let m0 < m1 ∈ ω. Let S0 be a uniformly uncountable set of de-
scending m0-sequences. Then there is a uniformly uncountable set S1 of descending
m1-sequences with S0 > S1.
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Proof We may assume m1 = m0 + 1. For each i ∈ ω1, we can choose
āi = (a0, . . . , am0−1) ∈ S0 such that am0−1 > i . Let S1 be the set of all (āi , i)s.
Then S1 clearly satisfies our requirements. �

Lemma 3.5 Let n ≤ m. Let S be a uniformly uncountable set of descending m
sequences of elements in M. Then one of the following holds:

1. S is essentially tn-uniform, or
2. for any uniformly uncountable subset S0 of S, there is a formula ϕ(x)

such that both Sϕ,tn0 and S¬ϕ,tn
0 are uniformly uncountable, where Sϕ,tn0 =

{ā ∈ S0 : M |H ϕ(tn(ā))} and S¬ϕ,tn
0 = {ā ∈ S0 : M |H ¬ϕ(tn(ā))}.

Proof Suppose that (2) is not the case for S0. Then, for each formula ϕ, define Tϕ
by

Tϕ =

{
Sϕ,tn0 if Sϕ,tn0 is countable,
S¬ϕ,tn

0 otherwise.

Since Tϕ is not uniformly uncountable, S1 = S0r
⋃
ϕ∈L Tϕ is uniformly uncountable

by Lemma 3.2. Moreover, if ā, b̄ ∈ S1, then we have M |H ϕ(tn(ā)) ↔ ϕ(tn(b̄)) for
every ϕ. This shows that S1 is tn-uniform. �

Using Lemma 3.5 we can also show the following.

Lemma 3.6 Let n ≤ m and S a uniformly uncountable set of m-sequences. Suppose
that S is not essentially tn-uniform. Then, for any uniformly uncountable S0, S1 < S,
there are uniformly uncountable subsets S′

0 ⊂ S0 and S′

1 ⊂ S1, and a formula ϕ(x),
such that (S′

0)
ϕ,tn = S′

0 and (S′

1)
¬ϕ,tn = S′

1.

Proof By Lemma 3.5, there are formulas θi (x) (i = 0, 1) such that θi (x) divides Si
into two uniformly uncountable sets. If θ0(x) divides S1 into two uniformly uncount-
able sets, then we are done. So we can assume Sθ0,tn

1 = S1. For the same reason,
we can assume Sθ1,tn

0 = S0. Now let S′

0 = Sθ0,tn
0 and S′

1 = S¬θ1,tn
1 . Let ϕ(x) be the

formula θ0(x) ↔ θ1(x). Then ϕ(x) has the required property. �

We put S〈〉 = ω1. Now using Lemma 3.6 we can inductively choose sets Sη
(η ∈ 2<ω) and formulas ϕη,n(x) (η ∈ 2<ω, n ≤ lh(η)) with the following proper-
ties:

1. Sη is a set of descending lh(η)-sequences;
2. Sη is uniformly uncountable;
3. Sη > Sη′ , if η′ extends η;
4. if Sη is essentially tn-uniform and n = lh(η) then Sη is tn-uniform;
5. for each η and for each n ≤ lh(η) such that Sη|n is not tn-uniform, we have
(Sη̂0)

ϕη,tn = Sη̂0 and (Sη̂1)
¬ϕη,tn = Sη̂1.

Let Ku be the set of all ηs such that Sη is tlh(η)-uniform. Let Knu = 2<ω r Ku.
For η ∈ Ku, let pη(x̄n) be the type tp(tn(ā)), where ā ∈ Sη and n = lh(η). pη
does not depend on the choice of ā by the tn-uniformity. pη is a type realized in M ,
whence pη /∈ R. For an infinite path µ ∈ 2ω, let 0µ((xi )i∈ω) be the following set of
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formulas:
{xi > xi+1 : i ∈ ω} ∪ {ϕµ|n,m(tm(x̄m)) : m ≤ n, µ|m ∈ Knu, µ(n) = 0}

∪ {¬ϕµ|n,m(tm(x̄m)) : m ≤ n, µ|m ∈ Knu, µ(n) = 1}

∪
⋃
µ|n∈Ku

pµ|n(x̄n).

The following claim is easily proven, using the Sµ|ns.

Claim 3.7 0µ is consistent.

For each µ ∈ 2ω, (in a big model) choose a realization Iµ of 0µ. For η ∈ Knu, let

Xη = {µ ∈ 2ω : η < µ, tp(tn(Iµ)) ∈ R},

where n = lh(η).

Claim 3.8 If η ∈ Knu, then |Xη| ≤ |R|.

Otherwise, there are two different infinite paths µ and µ′ both extending η such that
tp(tn(Iµ)) = tp(tn(Iµ′)), where n = lh(η). But this is impossible, since these two
types are distinguished by a formula of the form ϕη′,n , where η′ is the maximum
common initial segment of µ and µ′.

By Claim 3.8, we can choose µ ∈ 2ω r
⋃
η∈Knu

Xη. Let N ⊃ Iµ be the Skolem
closure of Iµ. Since {tn}n∈ω is an enumeration of all the Skolem terms, we have
N = {tn(b̄n) : n ∈ ω}, where b̄n are the first n elements of Iµ.

If µ|n ∈ Ku, then we have tp(tn(b̄n)) = pµ|n /∈ R. While in the opposite case
(µ|n ∈ Knu), by our choice of µ, we also have tp(tn(b̄n)) /∈ R.

4 Proof of Theorem 1.2

We assume that T has built-in Skolem functions. We work in a big model of
T . As in Section 3, {tn(x̄n) : n ∈ ω} is an enumeration of all the terms. Let
{Ii : i ∈ X} be a set of infinite n-indiscernible sequences, where X is an un-
countable set. (Recall that I = {ai : i < α} is called an n-indiscernible
sequence if whenever i0 < · · · <n−1< α, j0 < · · · < jn−1 < α, then
tp(ai0 , . . . , ain−1) = tp(a j0 , . . . , a jn−1).) In this section, we will say that the set
{Ii : i ∈ X} is tn-uniform if the following condition holds:

(*) If i0, i1 ∈ X and ā j is an n-tuple (ordered increasingly) from Ii j ( j = 0, 1),
then tp(tn(ā0)) = tp(tn(ā1)).

If there is an uncountable subset Y of X such that {Ii : i ∈ Y } is tn-uniform, then we
will say that {Ii : i ∈ X} is essentially tn-uniform. The following two claims can be
proven by the same argument as those in Lemmas 3.5 and 3.6.

Claim 4.1 Let {Ii : i ∈ X} be a set of n-indiscernible sequences with |X | = ω1.
Then one of the following cases holds:

1. {Ii : i ∈ X} is essentially tn-uniform;
2. there is a formula ϕ(x) such that both

Xϕ,tn = {i ∈ X : ϕ(x) ∈ tp(tn(ai,0, . . . , ai,n−1))}

and

X¬ϕ,tn = {i ∈ X : ¬ϕ(x) ∈ tp(tn(ai,0, . . . , ai,n−1))}

are uncountable, where ai,0, . . . , ai,n−1 is the beginning part of Ii .
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Claim 4.2 Let {Ii : i ∈ X} be a set of n-indiscernible sequences with |X | = ω1.
Suppose that {Ii : i ∈ X} is not essentially tk-uniform, where k ≤ n. Then for any
uncountable subsets X i ⊂ X (i = 0, 1), we can find uncountable sets X ′

i ⊂ X i

(i = 0, 1) and ϕ(x) such that X ′

0 ⊂ Xϕ,tk and X ′

1 ⊂ X¬ϕ,tk .

We put X∅ = ω1, and for each i ∈ X∅ we fix a sequence I∅(i) enumerating the
universe Mi . Using the Erdös-Rado theorem and Claim 4.2, for η ∈ 2<ω, we can
inductively choose Xη ⊂ ω1, {Iη(i) : i ∈ Xη} and formulas ϕη,k with the following
properties.

1. If η < ν, then
(a) Xν is an uncountable subset of Xη;
(b) Iν(i) is a subsequence of Iη(i) for each i ∈ Xν .

2. |Iη(i)| < |Iη( j)| for all i, j ∈ Xη with i < j ,
and sup{|Iη(i)| : i ∈ Xη} = iω1 .

3. If η ∈ 2n then
(a) each Iη(i) is an infinite n-indiscernible sequence;
(b) {Iη(i) : i ∈ Xη} is essentially tn-uniform ⇒ it is tn-uniform.

4. If η ∈ 2n and k ≤ n then

{Ii : i ∈ Xη} is not tk − uniform ⇒ Xη̂0 ⊂ (Xη)(ϕη,k ),tk and

Xη̂1 ⊂ (Xη)(¬ϕη,k ),tk .

For η ∈ 2n such that {Ii : i ∈ Xη} is tn-uniform, let

pη(x) = tp(tn(ai0 , . . . , ain−1)),

where ai1 , . . . , ain−1 is the beginning part of Ii . By the tn-uniformity, this definition
is well defined. pη is a type realized in Mi , so pη does not belong to R.

Although it is not used in our proof, we remark the following.

Remark Suppose that there is an infinite path ν ∈ 2ω such that for each n ∈ ω
{Iν|n(i) : i ∈ Xν|n} is tn-uniform. Then we can easily find an infinite indiscernible
sequence I whose Skolem closure only realizes types in {pν|n : n ∈ ω}. This can be
shown as below. Let 0({xi }i∈ω) be the following set of formulas.

{{xi }i∈ω is indiscernible} ∪

⋃
n∈ω

pν|n(tn(x̄n)).

Clearly, it is consistent. Choose a realization I of 0. Let M be the Skolem closure
of I . Then each element of M has the form tn(ā), where ā is an n-tuple from I .
So, by the indiscernibility, tn(ā) realizes pη|n , which is not a member of R. By a
compactness argument, the cardinality of I can be chosen arbitrarily large.

For ν ∈ 2ω, we define the following:
1. Kν is the set of all n ∈ ω such that {Iν|n(i) : i ∈ Xν|n} is not tn-uniform;
2. for n ∈ Kν , let 0n

ν (x) be the set⋃
n≤m∈ω

{ϕν|m,n(x) : ν(m) = 0} ∪

⋃
n≤m∈ω

{¬ϕν|m,n(x) : ν(n) = 1};

(Recall that ϕη,n(x) was a formula dividing Xη into two uncountable sets.)
3. finally let 1ν({xi }i<κ) be the set

{{xi }i<κ is indiscernible} ∪

⋃
n∈Kν

0n
ν (tn(x̄n)) ∪

⋃
n /∈Kν

pν|n(tn(x̄n)).
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Claim 4.3 1ν({xi }i<κ) is finitely satisfiable.

Let n∗
∈ ω. Choose i ∈ Xν|n∗ arbitrarily, and let I = Iν|n∗(i). Clearly, I is an

n∗-indiscernible sequence. Let n < n∗. First assume n /∈ Kν . The first n-elements
of I clearly realize the type pν|n(tn(x̄)). Then assume n ∈ Kν and let n ≤ m < n∗.
Suppose ν(m) = 0. Then Xν|n∗ ⊂ Xν|m̂0 ⊂ (Xν|m)ϕν|m ,tm . So if ā is the first
n-element of I , then it satisfies ϕν|m,n(tn(x̄n)). For the same reason, if ν(m) = 1,
ā satisfies ¬ϕν|m,n(tn(x̄n)). The above argument shows that 1ν({xi }i<κ) is finitely
satisfiable.

Claim 4.4 Let η 6= η′ be two infinite paths. If η|n = η′
|n and n ∈ Kη ∩ Kη′ , then

0n
η(x) and 0n

η′(x) are contradictory.

Choose the largest m ≥ n with η|m = η′
|m. We can assume η(m) = 0 and

η′(m) = 1. Then 0n
η(x) contains ψη|m,n(x), while 0n

η′(x) contains ¬ψη|m,n(x).

Claim 4.5 There is a model N such that
1. N omits each member of R;
2. the domain of N is the Skolem hull of an infinite indiscernible sequence.

For each ν ∈ 2ω, choose Jν=(aν,i )i<κ realizing1η. Let K ={ν|n : ν∈2ω, n ∈ Kν}.
For η ∈ K , let Sη be the set

{ν ∈ 2ω : η < ν, tp(tn(aν,0, . . . , aν,n−1)) ∈ R},

where n = len(η). By Claim 4.4 and our assumption that |R| < 2ω, we have
|Sη| ≤ |R| < 2ω. So we can choose ν ∈ 2ω \

⋃
η∈K Sη.

Jν is an infinite indiscernible sequence. By our choice of ν, if ν|n ∈ K , then
tn(aν|n,0, . . . , aν|n,n−1) does not realize R. If ν|n /∈ K , then tn(aν|n,0, . . . , aν|n,n−1)
realizes pν|n , which is not a member of R. Let N be the Skolem hull of Jν . By the
indiscernibility (and the fact that tks enumerate all the Skolem terms), N does not
realize a member of R.
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