Notre Dame Journal of Formal Logic
Volume 49, Number 3, 2008

Classifying the Branching Degrees in the
Medvedev Lattice of I1Y Classes

Christopher P. Alfeld

Abstract A H(l) class can be defined as the set of infinite paths through a com-
putable tree. For classes P and Q, say that P is Medvedev reducible to Q,
P <y Q, if there is a computably continuous functional mapping Q into P. Let
oL) be the lattice of degrees formed by H(l) subclasses of 2% under the Medvedev
reducibility. In “Non-branching degrees in the Medvedev lattice of H(l) classes,”
I provided a characterization of nonbranching/branching and a classification of
the nonbranching degrees. In this paper, I present a similar classification of the
branching degrees. In particular, P is separable if there is a clopen set C such
that PNC # @ # PNCand PNC Ly PN CE. By the results in the
first paper, separability is an invariant of a Medvedev degree and a degree is
branching if and only if it contains a separable member. Further define P to be
hyperseparable if, for all such C, PNC Ljy; PN C€ and totally separable if, for
all X,Y € P, X L7 Y. Iwill show that totally separable implies hypersepara-
ble implies separable and that the reverse implications do not hold, that is, that
these are three distinct types of branching degrees. Along the way I will show
some related results and present a combinatorial framework for constructing H(I)
classes with priority arguments.

1 Introduction

A H(l) class of 2¢ is a subset of 2“ which satisfies a certain notion of computability,
namely, that there is a tree in 2<% which is computable and whose paths form the H(l)
class. Cenzer and Jockusch [4] provide a good overview of H(l) classes. Applications
of H? classes in mathematics can be found in [5].

A common view of H(l) classes is as mass problems. That is, view a class P as
representing the set of solutions to a problem in computable mathematics. In such a
context, a natural question is whether solving one problem allows us to solve another.

Received May 31, 2007; accepted March 21, 2008; printed June 6, 2008
2000 Mathematics Subject Classification: Primary, 03D30

Keywords: H(]) classes, Medvedev lattice, branching degree
© 2008 by University of Notre Dame ~ 10.1215/00294527-2008-009

227

http://www.nd.edu/~ndjfl
http://www.nd.edu

228 Christopher P. Alfeld

That is, if P and Q represent problem, then saying that P solves Q is saying that
we can computably turn members of P into members of Q. When this reduction
is uniform, this is exactly the Medvedev reduction. Specifically, P > Q, if there
exists a computable functional @ such that, for every X € P, ®(X) € Q. A useful
property of such functionals is that they are continuous in the normal topology of 2¢.

This reduction induces, in general, a lattice of subsets of 2“ and, in particular,
a lattice of H? subsets of 2“. This lattice has recently been studied by Cenzer and
Hinman [3], Binns [2], and Simpson [8], [9], and [10]. We will denote the lattice by
L. It is distributive with minimum and maximum element.

As convention, say that a degree has a certain property if there exists a member
of the degree with that property.

This paper is the second half of the research track begun in “Non-Branching De-
grees in the Medvedev Lattice of H(l) classes” [1]. There I studied the nonbranching
degrees of Ly, that is, degrees which were not the meet (greatest lower bound) of
two other degrees. The results are listed in Section 3. To summarize, I defined two
properties of classes, inseparable and hyperseparable, and showed the following in-
teraction, also considering an existing property homogeneous [3]:

Non-Branching < Inseparable <= Hyperinseparable <= Homogeneous. (1)

Further, I showed that no unstated implications exist, that is, that these are three
distinct classes of nonbranching degrees. The reader may find it useful to look over
Section 3 at this point, but it is not necessary.

This paper follows a similar program with regard to branching degrees. I define
separable as the converse of inseparable, define hyperseparable in a similar way to
hyperinseparable, and also consider the unnamed but previously known condition
which I call totally separable. 1 arrive at

Branching < Separable <= Hyperseparable <= Totally Separable. 2)

And no unstated implications exist.
A much needed definition will be the following.

Definition 1.1 For a H(l) class P and clopen set C, C is good for P if
PNC#2#PNC. 3)

A class P is separable if there exists a C good for P such that PNC Ly, PNCC, that
is, if we can split P into two incomparable clopen subclasses. From the results in [1],
we immediately have that a degree is separable if and only if it is nonbranching. A
class P is hyperseparable if every clopen set C good for P splits P into incomparable
clopen subclasses. In [6], Jockusch and Soare showed that there exists a class P
such that all members of P are pairwise Turing incomparable. Call such a P totally
separable. It is straightforward to show that totally separable implies hyperseparable.

The primary results of this paper are to show the existence of degrees which are
separable and not hyperseparable, and degrees which are hyperseparable and not
totally separable. Along the way, we will prove some related results.

An additional contribution of this paper is the notion of tree lifes. Tree lifes
are a formalization of a combinatorial method for building H(l) classes with priority
arguments. The basic method is found in, among others, [1] and [3]. There are
no difficult proofs in the discussion of tree lifes but the notions and basic results
encapsulate some of the common behavior of such constructions. Tree lifes will be

H(l) Medvedev Branching Degrees 229

used in Section 9 to show the existence of a hyperseparable and not totally separable
degree.

Section 2 will present the necessary definitions and results from the theory of
H(l) classes. Section 3 will review the major definitions and results of [1]. Section
4 will present tree lifes. Sections 5, 6, and 7 will present and discuss separable,
hyperseparable, and totally separable degrees, respectively. Section 8 will separate
separable and hyperseparable and present some structural results about separable
and not hyperseparable degrees. Finally, Section 9 will separate hyperseparable and
totally separable.

2 Basic Definitions and Theory

See Soare [11] or Rogers [7] for an overview of the concepts and theory of com-
putability theory.

For astring 0 € 2<%, denote its length by |o|. Denote the initial substring relation
by < and concatenation of ¢ and t by ¢ ™ 7. Denote the empty string by &, the string
of a single 0 by 0 and of a single 1 by 1. Denote truncation by ¢ [n. For X € 2%,
say o < X if X [|o| = o; thatis, ¢ is an initial segment of X.

A tree is a subset of 2<“ which is closed downward under <. Members of a tree
will frequently be referred to as nodes. If ¢ < 7, then say that 7 is a descendant
of o. For a tree T, denote the set of infinite paths through T by [T] and the set of
extendible nodes, the nodes with descendants of arbitrary length, by Ext(T). A dead
end is a node that is not extendible. For a string o, definec " T ={c "7 : 7 € T}.

There are several equivalent definitions of a H(l) class. For our purposes, a H(l)
class P is a nonempty subset of 2“ such that there exists a computable tree P
with P = [P]. Denote the tree of initial substrings of members of P by Tp.
Note that [Tp] = P and Ext(P) = 7p for any P which generates P. Define
o P=[c"Tpl

The set 2% can be viewed as the Cantor set in R. We will use the resulting
subspace topology on 2®. Namely, define I(c) = {X € 2° : ¢ < X}. A clopen
subset will be a finite union of such intervals. To simplify, say that ¢ € C if there
exists X € C with ¢ < X. Similarly, foratree T, define TNC ={oc € T : 0 € C}.

We need a concept of a computable map between classes. There are several (often
equivalent) approaches to this. We use the following.

Definition 2.1 A partial computable function ¢ : 2<% — 2<% is a tree map if it
satisfies the following properties:

dom(gp) is a tree, 4
VYo,1 € dom(gp)(a <7 =>0¢(0) =< go(r)), ®)
VX € [dom(go)]VnEIm(lgo(X fm)| > n) (6)

A computably continuous functional is a function ®: 2 — 2 such that there exists
a tree map ¢ with ®(X) = (J,, 9(X [n).

To say ®: Q — P means that there is a total tree map ¢ with ¢p(Tp) S Tp.

Define P <y Q, said P is Medvedev below Q, if there exists ®: Q — P.
Note that <j; induces an equivalence relation, =j;. Denote the resulting lattice of
equivalent classes by L. Denote the bottom degree by 0 and the top degree by 1.
For a class P, denote the degree of P by deg(P).

230 Christopher P. Alfeld
The following lemma states that, in the <,; case, we can assume @, and thus ¢,
to be total. For a proof, see [3].

Lemma 2.2 Let P and Q be H(l) classes such that P <p; Q. Then there exists a
total computable functional @ : 2° — 2% such that ®(Q) C P.

An immediate but much used lemma is the following.
Lemma 2.3 Let Q and P be H(l) classes with Q C P. Then Q >y P.

Proof The identity function serves as a witness. (]

Finally, we need to be able to enumerate the H(l) classes.

Lemma 2.4 If P is a co-c.e. tree, then there exists a computable tree Q such that
[P] = [Q]. Furthermore, we can effectively find Q from P.

Proof Sketch Let {A;};c, be an enumeration of 2<“ \ P and @ = {o: Vr =<
o(t & Aig)}. O

Definition 2.5 Define P, to be [T,.] where T, is the eth co-c.e. tree.

3 Nonbranching Review
For discussion, proofs, and related results, see [1].

Definition 3.1 A H(l) class P is inseparable if, for all clopen sets C good for P,
PNC <y PNCCorPNC >y PNCE.

Theorem 3.2 ([1]) If P is inseparable and Q =p P, then Q is inseparable.
Theorem 3.3 ([1]) A degree a is nonbranching if and only if it is inseparable.

Definition 3.4 A H(l) class P is hyperinseparable if, for all clopen sets C good for
P,PNC =y PNC.

Equivalently, P is hyperinseparable if, for all clopen sets C good for P, PNC =y, P.

Not every member of a hyperinseparable degree is hyperinseparable. However,
every member has a hyperinseparable core. We will see a very similar result later in
the study of totally separable branching degrees, namely, Theorem 7.3.

Theorem 3.5 ([1]) If a is hyperinseparable and P € a, then there exists Q C P
with Q =y P and Q hyperinseparable.

The next theorem shows that the concepts of inseparable and hyperinseparable are
distinct.

Theorem 3.6 ([1]) For degrees a and b with 0 <y b, there exists a degree ¢ such
that 0 <p; ¢ < b and c is inseparable and not hyperinseparable.

In [3], Cenzer and Hinman introduce homogeneous degrees and show that they are
nonbranching. It is straightforward to show that homogeneous implies hyperinsepa-
rable. See [1] for details.

Definition 3.7 ([3], Definition 8) A tree P is homogeneous if
Vo,r €ePVie2llol=|tl=(c"i & 70)

A class P is homogeneous if Tp is.

H(l) Medvedev Branching Degrees 231

As with hyperinseparable and inseparable, I separated homogeneous and hyperin-
separable.

Theorem 3.8 ([1]) There exists a degree which is hyperinseparable and not homo-
geneous.

4 Tree Lifes

There are many ways to construct H(l) classes via a priority argument. This section
formalizes a method in which a tree is enumerated along with a total computable
function which tightly bounds the length of nodes added at each stage. The combi-
nation of enumeration and length function ensures that the tree is computable and
thus produces a H(l) class. This technique was seen in [1] and in the literature, for ex-
ample, in [3]. The formalization described below will be used to prove Theorem 9.2.

Definition 4.1 A finite tree L C 2<% is a strict tree if all dead ends are of the same
length (necessarily maximal). The length of L, denoted /(L), is the length of the
dead ends. The set of dead ends is denoted D(L).

Definition 4.2 For strict trees L and M, M is a growth of L if /(M) > [(L) and
Yo € M\ L3t € D(L)[o > t]. 7

Call a leaf of maximal length a living leaf. Then a growth can be characterized by
two conditions: (1) the length cannot decrease, that is, at least one living leaf must
survive, and (2) any additional nodes must extend living leaves. Thus, a valid growth

may consist of extending living leaves, pruning part of the tree, or a combination of
both.

Definition 4.3 A tree life is a sequence of strict trees {Ls : s € w} such that for all
s >0, Lgisagrowth of Ly_; and limg /(L) = co. A tree life is computable if there
exists a total computable function f such that f(s) = L.

To simplify notation we will hereafter omit *“: s € ”; that is, we will simply write
{Ls}.
Define limg Ly = {0 € 2<% : AtVn > t[o € L,]}.

Lemma 4.4 For any tree life {Ls}, any s, and any 6 € Lgsy1 \ Ls, (L) <
lo] < I(Ls+1)-

Proof Fix o € Lsi1 \ Ls. Then, as Ly is a growth of Lg, there must be some
7 € D(Ly) with 7 < ¢. Thus || > |t| = [(Ly). That |o| < [(Lg4+1) is immediate.
O

Corollary 4.5 For any tree life {Ls}, any s, and any 6 € Ly, if 0 & Ly, then for
allt > s, 0 & L;.

Observe that this corollary implies that limg Ly is well defined; it is a d.c.e. set.

Lemma 4.6 For a tree life {Ly}, [limg Ly] = [U LS].

Proof The inclusion D is immediate. For C, fix X € [U s Ls]. Fix n and let
o = X [n and s be such that ¢ € L. As ¢ has descendants of arbitrary length, o
must be in every L; for ¢ > s. As n was arbitrary, X € [limg Lg]. O

232 Christopher P. Alfeld

Lemma 4.7 For a computable tree life {L}, US L is computable and limg Ly is
co-c.e.

Proof Observe that /(L) is a computable function. Fix ¢ € |J; Ly and ¢ such that
I(L;) = |o|. Theno € |J, Ly if and only if o € L;. Thus | J, L, is computable. As
limg Ly is the difference of a computable set (U L S) and a c.e. set (the nodes that
leave), it is co-c.e. O

Corollary 4.8 For a computable tree life {L}, [limg L] is a H(l) class.

Proof By Lemma 4.7, US L, is a computable tree. By Lemma 4.6, [limg Lg] =
[Us LS] and thus is a H? class. O

Having defined the basic construction and shown that it results in computable trees
we now define some growth operations which are effective.

Definition 4.9 For a nonempty strict tree L, the single extension of L, denoted
extend(L), is defined by

extend(L)=LU{o "i:0 € D(L),i € 2}. ®)
Define extend(2) = {&, 0, 1}.
Note that [(extend(L)) = [(L) + 1.
Definition 4.10 For a strict tree L and ¢ € L, the trim of L by o, denoted
trim(L, o) is defined by

trim(L,c) ={t e L:Jv >z[v Lo]} ®

Note that trim(L, o) is L with ¢ and all descendants removed. We also remove an-

cestors of o which do not lead to other non-o descendants to ensure that trim(L, o)
is a strict tree. Note that [(trim(L, o)) < I(L).

Lemma 4.11 For a strict tree L, extend(L) is a strict tree and a growth of L.

Proof Fix 7 € D(extend(L)). By definition, 7 = ¢ i foro € D(L) and i € 2.
Then |o| = I(L), |t| = I(L) + 1. As T was arbitrary, extend(L) is a strict tree.

Fix t € extend(L)\ L. Thent = ¢ "i foro € D(L) and i € 2, and ¢ witnesses
that extend(L) is a growth. O

Lemma 4.12 For a strict tree L and o € L, trim(L, o) is a strict tree and either
empty or a growth of L.

Proof Let M = trim(L,) and assume M has a dead end a with |a| < [(L). As
la] < I(L) there is an immediate successorof a, f € L. As f ¢ M, [is comparable
with ¢ but a is not, a contradiction. Thus M is a strict tree.

As trim only removes paths, if M is not empty, then it contains a path of length
[(L). Thus M is a growth of L. O

5 Separable Degrees

We define separability as the inverse of inseparability. Separable degrees are those
whose members can be split into incomparable clopen subclasses.

Definition 5.1 A H(l) class P is separable if there exists a clopen set C good for P
suchthat PN C Ly P NCE.

H(l) Medvedev Branching Degrees 233

The primary results move over directly.

Theorem 5.2 Separability is an invariant of a Medvedev degree, that is, if P =y Q
and P is separable, then Q is separable.

Proof This theorem is the contrapositive of Theorem 3.2. (|

Corollary 5.3 A degree a is separable if and only if a is branching; that is, there
existsb > a,¢c > awitha=>b Nc.

Proof This is the contrapositive of Theorem 3.3. t

6 Hyperseparable Degrees

Definition 6.1 A H(l) class P is hyperseparable if for all clopen sets C good for P,
PNC Ly PNCE.

Observe that hyperseparable implies separable. As in the case of hyperinseparability,
it is too much to hope that this would be invariant.

Theorem 6.2 For any H(l) class P, there exists a class Q, with Q =y P and Q not
hyperseparable.

Proof Take Q = P A P and observe that C = 7(0) contradicts hyperseparability.
O

Additional results about hyperseparable degrees, in the context of nonseparability,
can be found in Section 8.

7 Totally Separable Degrees

As with homogeneous in the nonbranching case, there is a condition in the literature
which is stronger than hyperseparable. I was unable to find a name for it, so I refer
to it as totally separable.

Definition 7.1 A H(l) class P is totally separable if forall X, Y e P, X L1 Y.

Note that totally separable implies hyperseparable.
Jockusch and Soare proved the existence of a totally separable class.

Theorem 7.2 ([6]) There exists a totally separable class.

Totally separable is a very strong condition which enforces a great deal of structure
on the other members of the degree. The following is similar to Theorem 3.5; that is,
it shows that members of a totally separable degree contain a totally separable core.

Theorem 7.3 Let P be a totally separable H? class and Q a H? class with
Q =y P. Then there exists a H? class R € Q such that R =y Q and R is totally
separable. Furthermore, if ® : P — Q and ¥ : Q — P witness Q =y P, then
®:P — Rand¥ : R — P are bijections.

Proof Let R = ®(P). By Lemma 2.3, R >3, Q. The function X — ¥(X) —
O (¥ (X)) witnesses Q >37 R. Thus R =y Q.

234 Christopher P. Alfeld

Xo XL YY) Y =9(X)=dX)

[/

\

Figure 1 Theorem 7.3: ® : P — R injective.

X))

W (@ X _eX
///
V/ \

Figure 2 Theorem 7.3: ¥ : R — P surjective

By definition @ : P — R is surjective. Assume @ is not injective and fix Xg, X
in P with ®(Xp) = ®(X1) = Y. Assume ¥ (Y) # Xg (it must differ from one of
Xo and X1). But ¥(Y) <7 Xp as Xg — Y — Y(Y), a contradiction of P being
totally separable. Thus ® : P — R is injective and thus bijective. See Figure 1.

Assume ¥ : R — P isnotsurjective. Fix X € P\W(R). Then ¥ (® (X)) € Y(R)
and thus not equal to X, but is Turing reducible from X, a contradiction. Thus
Y : R — P is surjective. See Figure 2.

H(l) Medvedev Branching Degrees 235

XO X1 Z Y() Yl

N\
/ \\\\

1/

Figure 3 Theorem 7.3: ¥ : R — P injective

Yo) X Yo <o V)

V.Y

Figure 4 Theorem 7.3: R totally separable.

Assume ¥ : R — P is not injective. Fix Yy and Y7 in R such that ¥(Yy) =
Y(Y)) = Z. As @ is bijective there exist Xg, X| in P with Xo # X, Yo = © (X)),
and Y| = ®(X;). Assume Z # X (the other case is symmetric). Then Z <1 Xj
as Xo — Yo — Z, a contradiction. Thus ¥ is injective and thus bijective. See
Figure 3.

Assume R is not totally separable and fix Yy and Y7 in R with Yy # Y; and
Yo <7 V1. Let Xg = ¥(Yp) and X; = ®~!(¥}). As ®! is a bijection, Xo # X|.

o) x o aen
w\C) I / \C C
/[\\

p Q S R

Figure 5 Theorem 8.1: ®(X) € C¢

And Xy <7 Yo via¥; Yy < Y| by assumption; and Yy < X via ®. Thus Xy <7 X1,
a contradiction. See Figure 4. Thus R is totally separable. (]

Corollary 7.4 If P and Q are totally separable with P =y Q, then P is com-
putably isomorphic to Q.

Proof Repeat the proof of Theorem 7.3 with P in place of R. U

The following lemma shows that in the situation of Theorem 7.3, P retracts onto its
totally separable core.

Lemma 7.5 If Q and R are such that R < Q, R is totally separable, and
® : Q — R is a computably continuous functional, then ®(X) = X forall X € R;
that is, ® is a retraction.

Proof If ®(X)=7Y # X for some X in R, then Y <7 X, a contradiction. O

8 Separable and Not Hyperseparable

Theorem 8.1 If Q and R are hyperinseparable with Q Ly R, then deg(Q A R) is
separable and not hyperseparable.

Proof Let S = QAR and a = deg(S). Then S is separable. Consider any
Co C I(0) good for 0™ Q and Cgr C I(1) good for 1 ~ R. By hyperinseparability
there is a reduction from 0~ QNCp to 0™ Q0N CCQ and similarly for Cr. Thus there
is a reduction to C = Cp U C from C€ witnessing that S is not hyperseparable.
Let P be any class with P =y S. Let ® : P - Sand ¥ : § — P witness
P =y S. Let Cp and Cg be clopen sets satistying Co C 1(0), Cg C I(1),
Cp good for 07 Q, Cg good for 1 ™ R, and ¥(Cr U Cg) good for P. The last
requirement can be achieved by choosing Cr and C small enough: fix 0 € 7% long

H(l) Medvedev Branching Degrees 237
) x oX)
\C) I / \ C C

p Q S R

Figure 6 Theorem 8.1: ®(X) e C

enough such that there exists 7 € Ts with ¢(¢) L 7 and let Cg = I(0); similarly
for CQ.
Let Cs = ¥(C). FixQ:SNC¢— SNC. Define © by
Y(d(X if (X) e C
O(X) = (@(X)) ! (X) eC, (10)
Y QD (X)) ifd(X)ecCe.

See Figures 5 and 6. Then © witnesses P N Cg >y P N Cs. So P is not hypersep-
arable. As P was arbitrary, deg(Q A R) is not hyperseparable. (]

The previous theorem provides a method for constructing separable and not hyper-
separable degrees from hyperinseparable degrees. The following theorem of Binns
can be used to construct homogeneous (and thus hyperinseparable and thus separable
and not hyperseparable) degrees with various structure.

Lemma 8.2 ([2]) Let A be a c.e. setand P a H(l) class with deg(P) >p 0. Then
there exist c.e. sets A°, A' such that

AN Al = g, (11)
AduAl =4, (12)
Vi € {0, 3Vf € P[A" #7 f]. (13)

The idea is to construct a pair of hyperinseparable (actually homogeneous) degrees
whose meet, by Theorem 8.1, is separable and not hyperseparable, but whose join is
as high as we want it. We are also able to avoid a cone.

238 Christopher P. Alfeld

Corollary 8.3 For any b, ¢ > 0 with b homogeneous, there exist bO, bl, and a
such that

a=b"Ab!, (14)
a is separable and not hyperseparable, (15)
b, b',a #c, (16)
b’ vb' > b. (17)

Proof Define 8(A, B) = {C : A C C C B€}. Itis known, see [3], that a class P
is homogeneous if and only if P = §(A, B) for c.e. sets A and B. Fix Q € c. Fix
R =8(A,B) ebwithAand Bce. Let P = Q A R and A? and A be as in Lemma
8.2. Let S® = 8(A°, B) and S! = 8(A!, B). For X @ Y € SV §! define

Z8) = Ho if X(n)=1lorY(n) =1, as)

1 else.

Then Z € S, thus SOV S' >y R. If S' >) SO, then ' =) R >y P, acon-
tradiction of (13). The case of SO >3 S! is symmetric. Thus SO 1y S Let
T =S'ASL IS0 >y Q, then SO >,/ P, a contradiction. Similarly for Sland T.
Note that homogeneity implies hyperinseparability. By Theorem 8.1, T is separable
and not hyperseparable. Letting b’ = deg(s?), b! = deg(S'), and a = deg(T), we
arrive at the result. [l

Corollary 8.4 There exists a degree a such that a is separable and not hypersepa-
rable.

9 Hyperseparable and Not Totally Separable

Finally, we work to separate the notions of hyperseparable and not totally separable.
The task is twofold: we must build a hyperseparable degree and avoid being totally
separable.

The first task is complicated by the fact that, previously, the only known construc-
tion of a hyperseparable degree was to build a totally separable degree. We will use
Theorem 7.3 to show that it is sufficient to build a class which is hyperseparable and
not totally separable. We then use the methods of Section 4 to build such a class.

Theorem 9.1 If P is hyperseparable and not totally separable, then deg(P) is
hyperseparable and not totally separable.

Proof That deg(P) is hyperseparable is immediate. Assume deg(P) is totally sep-
arable. Then, by Theorem 7.3, there exists R € P, R =) P, and R totally sep-
arable. As P is not totally separable, R # P. Let C be a clopen set such that
R C PNC C P.SuchaC existsas for X € P\ R thereis someo < X witho & T
and C = I(0)° suffices. Using Lemma 2.3 twice, PNC <y R=y P <y PNCE,
contradicting that P is hyperseparable. Thus, deg(P) is not totally separable. O

Theorem 9.2 There exists a degree which is hyperseparable and not totally sepa-
rable.

Proof We will build a computable tree life {L;}. By Corollary 4.8, P = [limg L]
will be a H? class. We will build P to be hyperseparable and not totally separable.
By Theorem 9.1, deg(P) will be hyperseparable and not totally separable.

H(l) Medvedev Branching Degrees 239

Let (C, ¢) be an enumeration of all pairs of clopen subclasses of 2 and partial
computable functions. For convenience we often refer to such pairs by their index, e,
in the enumeration. We also start the enumeration at e = 1. We will blur the dis-
tinction between e and (C, ¢). For each (C, ¢) we work to satisfy the requirement,

R, : C goodfor P = 3X € PNC[D(X) ¢ PNCE]. (19)

To ensure that P is not totally separable we will use a very simple reduction and
ensure that paths Turing equivalent through that reduction exist. Namely,

$:3X,Y € PIZ€2”[X=0"ZandY =1"Z]. (20)

We have a strategy acting on behalf of each R, which will be careful to ensure
that 4 is satisfied. Strategies are ordered in priority in the order of the enumeration
with earlier strategies having higher priority. Each node has a protection level. The
function ry : 2% — o U {w} indicates the protection level; that is, the protection
level of o at stage s is ry(0). Lower numbers indicate higher protection levels. A
strategy may protect a node with its own priority. Each strategy has two states: wait
and stop. Strategies begin in state wait and may at some point act and enter state
stop. Once in state stop, a strategy will not act unless injured. When a strategy acts,
it injures all lower priority strategies resetting them to state wait. The construction
thus progresses in typical finite injury fashion. Denote the state of strategy e at
stage s by states(e).

In order for all strategies to be able to find witnesses to kill, they must obey a
simple rule regarding protection levels. For a node o protected at level d, strategy e
(e > d) may only kill 7 > ¢ if |t]| > |o| + 2(e — d). As we shall see in the claims
below, this will ensure that every strategy is able to kill a witness if needed.

Let

Ss={0c:070 € D(Ly)and 1 "¢ € D(Ly)}. 21

To ensure 4 is satisfied we require all strategies to preserve Sy # < and only trim the
tree at even stages, growing it with single extensions at odd stages. This will ensure
that S; is never empty and every requirement can act if necessary.

Begin with Lo = {2, 0, 1}, ro(c) = oo for all o, and stateg(e) = wait for all e.
Assume we have run the construction up to stage s. Thus Ls_1, rg_1, and states_
are all defined. A strategy e = (C, ¢) is eligible to act if state;_; (¢) = wait and

3o € Ly_1 NClp(o) € Ly_; N CC 22)
and Vz < ¢(o)[rs—1(t) > e
orlp(o)| > |t + 2(e — rs—1(7))]
andJv € S;_1[07v £ e(g)and 1" v ¥ ¢(o)]].

If s is odd or if no such e exists, then let Ly = extend(Ls—_;), ry = rg—1, and
state; = states_1. Otherwise, let e be the highest priority (least index) strategy

240 Christopher P. Alfeld

eligible to act. Let 6’ € D(L;) be a descendant of ¢ (possibly equal to o). Let

Ly =extend(trim(L;_1, ¢(0))), 23)
e T =0,
rs(t) = 1rs—1(1) rs—1(z) <e, (24)
| @ else,
stop n=e,
stateg(n) = { wait n>e, (25)
| state;—1(n) else.

Equation (23) describes the evolution of the tree life. Equations (24) and (25) serve
to protect o, stop strategy e, and injure (reset) all lower priority strategies. Observe
that S; = @ as 0" v and 1 ~ v were not killed for v as in (22).

This completes the construction. We now prove that the result has the desired
properties.

Claim 9.3 Fix any d and e with d < e. If strategy d is not injured after stage t,
then strategy e will be injured less than or equal to 2¢~~ times after stage t.

Proof Fix d and ¢ and let /(e) denote the maximum number of times e could be
injured after stage r. We will show by induction that I (¢) < 26791,

Consider ¢ = d + 1. Then e will be injured only if d acts after stage . As d
is not injured after stage 7 it will act at most once and thus /(e) = 1 < 2679471 =
2d+]7d71 — 20 =1.

Assume (¢) < 2°79"!foralld < ¢ < e. Any time a strategy below e — 1
is injured, e — 1 is also injured. Thus I (e — 1) is an accurate count of the number
of times e might be injured by strategies < ¢ — 1. Each time e — 1 is injured, e is
injured. In addition, e — 1 may act once before being injured again, injuring e as
well. Thus 7 (e) < 21 (e — 1) = 2(2¢~174-1) = pe—l=d=141 — pe—d—1 O

Claim 9.4 Fix any d and e with d < e. If strategy d is not injured after stage t,
then strategy e will act fewer than 2¢~¢ times after stage t.

Proof Strategy e can only act once before being injured again. Thus the total num-
ber of times it can act is equal to the number of times it is injured plus one. By the
previous claim this is less than or equal to 2¢~¢~1 4 1 which is less than 2¢¢. [

Claim 9.5 Forall o and s such that rg(0) = e < w and strategy e is not injured at
or after stage s, o € limg L.

Proof As strategy e is not injured, no strategy of higher priority will kill any ances-
tor of ¢, so our only worry is that lower priority strategies will kill all the children
of 0. When o was protected, it was a leaf node. Thus any strategy which kills an-
cestors of ¢ must obey the protection. Namely, for d > e, d can only kill 7 > o if
z] > |o| +2(d —e).

Let u be the standard measure on 2%; that is, u (I (7)) = 2-17l. For a finite Ly,
define u(I(o)N Lg)tobe u(I(c)N UTeD(LS) I(7)); that is, we assume that L will
have all possible children. We will show that, for all > s, u(I(¢) N L;) > 0 and,
thus, o € L;.

H(l) Medvedev Branching Degrees 241

Fix a stage ¢ and let d be the lowest priority (highest index) strategy to act so far.
For each e < f < d let Ny be the number of children of ¢ strategy f has killed
and {z; s} be the set of these children. Strategy f can kill only a single child when
it acts, so by the previous claim, Ny < 2/=¢. The requirement on the length of 7
requires that [(z; 5) < 2~ (lo|+2(d~e))

p@)NL)y=pu(@)= D D pl(y) (26)
e<f=<di<Nyg
> 2=lol _ Z Nf2*(|0|+2(f*€)) 27)
e<f<d
N . Z 2 f—en—=(lo]+2(f—e)) (28)
e<f<d
d—e
—olol _ Zziz—(lnlﬂi) (29)
i=1
d—e
=277l = o7l (30)
i=1

d—e
=27ll(1 =) 27 (31)
(1-227)
> 0. (32)
O

Claim 9.6 {L,} is a computable tree life.

Proof The previous claim shows that, at all stages, Ly is nonempty. By Lemmas
4.11 and 4.12, each Ly is a growth of L;_1. As single extensions and trims are
computable, it is a computable tree life. (]

Thus, by Corollary 4.8, P = [lim L] is a nonempty H(l) class.
Claim9.7 Vn3sVt > S[IS,| > n]

Proof Define a clump in S; to be a proper subset U C S; maximal with respect to
U= {6 "t:7 €2 forsomec and i. Let ¢, be the size of the smallest clump in
St.

First we show that ¢,1 > ¢, for all £. At each stage something may be killed and
then every living leaf is extended; that is, each stage is a composition of (possibly) a
trim and a single extension. As any living leaf is at least in a clump of itself (i = 0),
¢; > 0. There are four possibilities:

1. Nothing in S; is killed. Then the clump doubles and ¢;+1 = 2¢;.

2. The smallest clump is killed. As it was not everything there is another clump
of at least equal size. That clump will double, but it could now be everything
in which case it is not a clump but rather two clumps of size equal to the
original. So ¢;4+1 > ¢;.

3. Everything but the smallest clump is killed. Then the smallest clump will
double but as it is now everything it is now two clumps rather than one. So
Ct+1 = Ct-

242 Christopher P. Alfeld

4. Part of a clump is killed. At worst it will kill half the smallest clump. The
other half will then double and ¢;+1 = ¢;.

At odd stages, case (1) occurs, so ¢;1 > ¢; for t odd. Thus ¢, is unbounded in ¢ and
S; is unbounded in ¢. O

Observe that while clumps of arbitrary finite size exist during the construction they
may move around. The final H? class may be very nonclumpy.

Claim 9.8 Forall e, R, is satisfied.

Proof By a previous claim, let s be sufficiently large such that strategy e is not
injured at or after stage s. Let e = (C, ¢). If C is not good for P, then we are done.
Assume C is good for P.

Assume there exists X € P N C such that ®(X) € P N C€. For stages ¢t > s, the
set of nodes protected by strategies d < e will stay fixed. Thus there is a stage ¢ and
annsuchthato = X [n € Ly, |p(0)| = |t] 4+ 2(e — r1—1 (7)) for all 7 <X ¢ (o) with
r—1(r) < e. Strategy e may still not be able to act because of the requirement to
preserve S;. As higher priority strategies will not act again the strategy will continue
to be otherwise eligible to act at later stages. Let Y be such that X =i 7 Y for some
i € 2. If we never act that means that at each stage 7, S; = {Y [/(L;)}, contradicting
the previous claim that |S;| is unbounded. O

Claim 9.9 & is satisfied.

Proof By the definition of Sy and that Lj is a tree life, if a string o leaves S, that is,
o € S5\ Ss+1, then no descendant of it can ever enter Sy later. Thus, using an above
claim, [limg S;] exists and is nonempty. Then, for any Z in [limg Sg], X =07 Z and
Y = 17 Z serve as witnesses that 4§ is satisfied. [l

Thus P is hyperseparable as for any C good for P and any ®, R(c,,) shows that
® is not a witness of P N C >); P N CC. As 4§ is satisfied, P contains a pair of
comparable paths, namely, 0~ X and 1~ X for some X. O

References

[1] Alfeld, C. P., “Non-branching degrees in the Medvedev lattice of H(l) classes,” The
Journal of Symbolic Logic, vol. 72 (2007), pp. 81-97. Zbl 1122.03043. MR 2298472.
228,229, 230, 231

[2] Binns, S., “A splitting theorem for the Medvedev and Muchnik lattices,” Mathematical
Logic Quarterly, vol. 49 (2003), pp. 327-35. Zbl 1022.03021. MR 1987431. 228,237

[3] Cenzer, D., and P. G. Hinman, “Density of the Medvedev lattice of H(l) classes,” Archive
for Mathematical Logic, vol. 42 (2003), pp. 583-600. Zbl 1037.03040. MR 2001061.
228, 230, 231, 238

[4] Cenzer, D., and C. G. Jockusch, Jr., “H(l) classes—Structure and applications,” pp. 39-59
in Computability Theory and Its Applications (Boulder, CO, 1999), vol. 257 of Contem-
pory Mathematics, American Mathematics Society, Providence, 2000. Zbl 0962.03040.
MR 1770733. 227

http://www.emis.de/cgi-bin/MATH-item?1122.03043
http://www.ams.org/mathscinet-getitem?mr=2298472
http://www.emis.de/cgi-bin/MATH-item?1022.03021
http://www.ams.org/mathscinet-getitem?mr=1987431
http://www.emis.de/cgi-bin/MATH-item?1037.03040
http://www.ams.org/mathscinet-getitem?mr=2001061
http://www.emis.de/cgi-bin/MATH-item?0962.03040
http://www.ams.org/mathscinet-getitem?mr=1770733

H(l) Medvedev Branching Degrees 243

[5] Cenzer, D., and J. B. Remmel, “H(l) classes in mathematics,” pp. 623-821 in Handbook
of Recursive Mathematics, Vol. 2, vol. 139 of Studies in Logic and the Foundations of
Mathematics, North-Holland, Amsterdam, 1998. Zbl 0941.03044. MR 1673586. 227

[6] Jockusch, C. G., Jr., and R. I. Soare, “H(]) classes and degrees of theories,” Transactions
of the American Mathematical Society, vol. 173 (1972), pp. 33-56. Zbl 0262.02041.
MR 0316227. 228,233

[7] Rogers, H., Jr., Theory of recursive functions and effective computability, The MIT
Press, Cambridge, 1987. MR 886890. 229

[8] Simpson, S. G., “Mass problems and randomness,” The Bulletin of Symbolic Logic,
vol. 11 (2005), pp. 1-27. Zbl 1090.03015. MR 2125147. 228

[9] Simpson, S. G., “H? sets and models of WKLg,” pp. 352-78 in Reverse Mathematics
2001, edited by S. G. Simpson, vol. 21 of Lecture Notes in Logic, A. K. Peters, Ltd.,
Wellesley, 2005. Zbl 1106.03051. MR 2186912. 228

[10] Simpson, S. G., “An extension of the recursively enumerable Turing degrees,” Jour-
nal of London Mathematical Society, Second Series, vol. 75 (2007), pp. 287-97.
Zbl 1119.03037. MR 2340228. 228

[11] Soare, R. L., Recursively Enumerable Sets and Degrees, Perspectives in Mathematical
Logic, Springer-Verlag, Berlin, 1987. Zbl 0667.03030. MR 882921. 229

Acknowledgments

I thank my advisor, Steffen Lempp, for his guidance and conversations. I also thank the
anonymous referees for their detailed feedback.

Department of Mathematics
University of Wisconsin
Madison W1 53706
calfeld@mac.com

http://www.emis.de/cgi-bin/MATH-item?0941.03044
http://www.ams.org/mathscinet-getitem?mr=1673586
http://www.emis.de/cgi-bin/MATH-item?0262.02041
http://www.ams.org/mathscinet-getitem?mr=0316227
http://www.ams.org/mathscinet-getitem?mr=886890
http://www.emis.de/cgi-bin/MATH-item?1090.03015
http://www.ams.org/mathscinet-getitem?mr=2125147
http://www.emis.de/cgi-bin/MATH-item?1106.03051
http://www.ams.org/mathscinet-getitem?mr=2186912
http://www.emis.de/cgi-bin/MATH-item?1119.03037
http://www.ams.org/mathscinet-getitem?mr=2340228
http://www.emis.de/cgi-bin/MATH-item?0667.03030
http://www.ams.org/mathscinet-getitem?mr=882921
mailto:calfeld@mac.com

	1. Introduction
	2. Basic Definitions and Theory
	3. Nonbranching Review
	4. Tree Lifes
	5. Separable Degrees
	6. Hyperseparable Degrees
	7. Totally Separable Degrees
	8. Separable and Not Hyperseparable
	9. Hyperseparable and Not Totally Separable
	References
	Acknowledgments

