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Approximate Similarities and Poincaré Paradox

Giangiacomo Gerla

Abstract De Cock and Kerre, in considering Poincaré paradox, observed that
the intuitive notion of “approximate similarity” cannot be adequately represented
by the fuzzy equivalence relations. In this note we argue that the deduction appa-
ratus of fuzzy logic gives adequate tools with which to face the question. Indeed,
a first-order theory is proposed whose fuzzy models are plausible candidates for
the notion of approximate similarity. A connection between these structures and
the point-free metric spaces is also established.

1 Introduction

The so called paradox of Poincaré refers to indistinguishability by emphasizing that,
in spite of common intuition, this relation is not transitive (see [19]). In fact, it is pos-
sible that we are not able to distinguish d1 from d2, d2 from d3, . . . , dm−1 from dm
and, nevertheless, that we have no difficulty in distinguishing d1 from dm . Now an
immediate solution of this paradox would merely conclude that our intuition about
this notion is wrong. A different solution is proposed by fuzzy logic in which the
paradoxical effect of the transitivity is avoided by assuming that the indistinguisha-
bility is a graded property. Indeed, assume that such a notion is represented by a
fuzzy ⊗-equivalence, that is, a fuzzy relation eq : S × S → [0, 1] such that, for
every x, y, z in S,

eq(x, x) = 1 (reflexive)
eq(x, y) = eq(y, x) (symmetric)
eq(x, z) ⊗ eq(y, z) ≤ eq(x, y) (⊗-transitive)

where S is a nonempty set and ⊗ a triangular norm. Also assume that eq(di , di+1) =

λ where λ is very close to 1 but different from 1. Then from the proposed properties
we can conclude only that eq(d1, dm) ≥ λ(m−1) where λ(m−1) denotes the m − 1
power of λ with respect to ⊗. Such a conclusion is not a paradox at all. In fact if ⊗
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is the Łukasiewicz norm and m such that λ(m−1)
= 0, then it asserts only the trivial

inequality eq(d1, dm) ≥ 0 (a more formal argument can be found in Section 4).
Now, De Cock and Kerre in [3] claim that such a solution is not adequate

since the hypothesis λ 6= 1 is not justified. The argumentation of these au-
thors refers to an example such as the following one. Consider the interval
S = [1.50, 2.50] of possible heights a man can have and assume that the no-
tion “approximately equal heights” is modeled by a fuzzy equivalence eq such that
eq(1.50, 1.51) = eq(1.51, 1.52) = · · · = eq(2.49, 2.50) = λ. Then, in accordance
with the fact that we cannot distinguish a difference in heights of less than 0.01,
we have to assume that λ = 1. In fact, we have to differentiate a claim as “1.50 is
approximately equal to 1.51” which is completely true from a claim such as “1.50 is
equal to 1.51” which is only partially true. Moreover, as observed by Bodenhofer [2],

Even if a measuring device can give seemingly precise numbers, accuracy is
limited due to various external influences. It is not even guaranteed that two
measurements of the same person give the same result. So how can we jus-
tify that two persons whose heights differ only by two millimetres are given a
degree of similarity which is strictly less that 1, while two consecutive mea-
surements of the same person may differ in the same range?

On the other hand, if we admit that λ = 1, then, by the ⊗-transitivity and the fact
that 1 ⊗ 1 = 1, we can prove that eq(1.50, 2.50) = 1, that is to say that the height of
1.50 is approximately equal to the height of 2.50. This is clearly an absurdity.

Observe that the same considerations apply to the [0, 1]-valued equalities defined
by Höhle in [14] and [13], that is, the fuzzy relation satisfying the following axioms:

(e1) eq(x, y) ≤ eq(x, x),
(e2) eq(x, y) = eq(y, x),
(e3) eq(x, z) ⊗ (eq(z, z) → eq(y, z)) ≤ eq(x, y)

(where → is the residuum associated with ⊗). Indeed, again the paradox is solved
by assuming that eq(di , di+1) = λ 6= 1, and again in the case λ = 1 we are
forced to conclude that eq(d1, dm) = 1. As a matter of fact, as observed in [2],
the criticism of De Cock and Kerre applies to all the fuzzy relations eq such that
kernel(eq) = {(x, y) ∈ S × S : eq(x, y) = 1} is a transitive relation.

As an alternative, De Cock and Kerre proposed the distance-based notion of “re-
semblance relation” in which is emphasized the idea that “The closer two objects are
to each other, the more they are (approximately) equal” (see Section 2).

Now, even if I completely agree with the criticisms about the hypothesis λ 6= 1,
there is something unsatisfactory in the definition of resemblance relation. Indeed,

(i) there is no reference to the transitivity while, in my opinion, the basic ques-
tion is to give a formal representation of our intuition suggesting that indis-
tinguishability is transitive in some way;

(ii) there is a strong reference to a pseudo-metric and this precludes an approach
within first-order logic formalisms.

In accordance, in this note I propose to face the question by using first-order fuzzy
logic and by admitting a “relaxed” transitivity property. The idea is to take into
account the capability of each element to be “distinguished” from the remaining
ones. This provides a “solution” to Poincaré paradox whose nature is similar to the
solution of the Heap paradox proposed by Goguen [8] and others (for example, see
Hájek and Novák [12]).
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Finally, in the paper we show that, in spite of their logical nature, the proposed
notions can be interpreted in a geometrical setting. Indeed we can connect them with
the approach to point-free geometry based on the notion of distance between regions
and diameter of a region (see Gerla and Volpe [5] and Gerla [6]).

2 The Resemblance Relations

We define the notion of resemblance relation by referring to the simplified definition
given by Klawonn in [15].

Definition 2.1 Let (S, d) be a pseudo-metric space, then a fuzzy relation
e : S × S → [0, 1] is a resemblance relation with respect to d provided that

e(x, x) = 1,

e(x, y) = e(y, x),

d(x, y) ≤ d(z, u) ⇒ e(x, y) ≥ e(z, u).

Given a pseudo-metric space (S, d) and a real number ε ≥ 0, a simple (crisp) exam-
ple of resemblance relation can be obtained by setting e equal to (the characteristic
function of) the relation ≡ defined by setting

x ≡ y ⇔ d(x, y) ≤ ε.

It is apparent that such a relation is not transitive, in general. A more interesting
class of graded resemblance relations can be obtained as follows (see Proposition 7
in [3]).

Proposition 2.2 Consider a pseudo-metric space (S, d), a real number ε ≥ 0 and
set

e(x, y) = 1 if d(x, y) ≤ ε,
e(x, y) = 0 if d(x, y) ≥ 1 + ε,
e(x, y) = 1 − (d(x, y) − ε) otherwise.

Then e is a resemblance relation with respect to d.

We say that e is the resemblance relation associated with (S, d) and ε. A more
synthetic definition of e is given by the following equation,

e(x, y) = 0 ∨ (1 ∧ (1 − (d(x, y) − ε)).

A characteristic of these fuzzy relations is that they cannot distinguish small differ-
ences and that at the same time they are able to detect sufficiently big differences.
This shows the existence of a “fuzzy model” of Poincaré’s conditions and, therefore,
this gives a solution to the paradox from a semantical point of view. Indeed, by re-
considering the example of heights, we can consider the resemblance e obtained by
assuming that S = [1.50, 2.50], d(x, y) = 20 · |x − y|, and ε = 0.2. In such a case
we have

e(1.50, 1.51) = e(1.51, 1.52) = · · · = e(2.49, 2.50) = 1,

while

e(1.50, 1.52) = 0.8, e(1.50, 1.53) = 0.6, . . . ,

e(1.50, 1.56) = 0, . . . , e(1.50, 2.50) = 0.
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3 Some Basic Notions in Fuzzy Logic

The reader is assumed to be familiar with the basic notions of fuzzy logic (see, for
example, Gerla [4] and Novák et al. [17]). In this section we confine ourselves
to list some elementary definitions. We consider as set of truth values the interval
[0, 1] equipped with a continuous t-norm ⊗, that is, an order-preserving associative,
commutative operation such that x ⊗ 1 = x (as an example, see Klement et al. [16]).
From this operation we define a residuum operation → by setting

x → y = Sup{z ∈ [0, 1] : x ⊗ z ≤ y},

a negation by setting ¬x = x → 0 and a co-norm ⊕ by setting x ⊕ y = ¬(¬x ⊗¬y).
A basic property of the pair ⊗ and → is that

x ⊗ z ≤ y ⇔ z ≤ x → y.

Given x ∈ [0, 1], we denote by x (n) the n-power of x with respect to ⊗; that is, we
set x (n+1)

= x ⊗ x (n) and x (0)
= 1. In this paper we refer to Łukasiewicz triangular

norm defined by setting
x ⊗ y = (x + y − 1) ∨ 0.

For such a norm x → y = min{1, 1 + y − x}, ¬x = 1 − x , and x ⊕ y = (x + y)∧ 1.
Also x (n)

= (n · x − n + 1) ∨ 0 and, therefore, x (n)
= 0 for every n such that

n ≥ 1/(1 − x).
The algebraic structure ([0, 1], ⊗, →) defines a first-order multi-valued logic.

The languages are the usual first-order languages of classical logic further extended
by logical constants {λ : λ ∈ [0, 1]}. The conjunction, disjunction, implication are
interpreted by ⊗, ⊕, →, respectively, and the negation by ¬ and the logical con-
stant λ with λ. Moreover, the universal and existential quantifiers are interpreted by
the greatest lower bound and the least upper bound operators, respectively. A fuzzy
interpretation is a pair (S, I ) where I is a map associating

(i) any constant c with an element I (c) of S,
(ii) any n-ary operation symbol h with an n-ary operation I (h) : Sn

→ S,
(iii) any n-ary relation symbol r with an n-ary fuzzy relation I (r) : Sn

→ [0, 1].

The fuzzy interpretation (S, I ) defines a valuation of the formulas in a truth-
functional way (see, for example, [17], [4], and [11]). So, given a formula α
whose free variables are among x1, . . . , xn and d1, . . . , dn in S, the truth value
Val(S,I )(α, d1, . . . , dn) of α in d1, . . . , dn is defined. We denote by Val(S,I )(α) the
truth value of the universal closure of α. Given a formula α whose free variables
are among x1, x2, . . . , xn , the extension of α is the fuzzy relation |α| : Sn

→ [0, 1]

defined by the equation |α|(d1, . . . , dn) = Val(S,I )(α, d1, . . . , dn).

Definition 3.1 Denote by F the set of closed formulas; then a fuzzy system of
axioms or fuzzy theory, is a fuzzy subset τ : F → [0, 1] of F . A fuzzy interpretation
(S, I ) is a fuzzy model of τ , in brief, (S, I ) |H τ , provided that Val(S,I )(α) ≥ τ(α)
for every α ∈ F . The logical consequence operator Lc is defined by setting

Lc(τ )(α) = Inf{Val(S,I )(α) : (S, I ) |H τ }.

It is useful to represent a fuzzy theory τ by the set

Sign(τ ) = {(α, λ) : α ∈ F, λ = τ(α), λ 6= 0}
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of signed formulas. Then (S, I ) |H τ provided that Val(S,I )(α) ≥ λ for every (α, λ)
in Sign(τ ). In the case of a crisp theory, we represent τ simply by listing the elements
in the support {α ∈ F : τ(α) 6= 0}.

In this paper we are interested mainly in positive clauses, that is, formulas such as
∀x1 . . . ∀xn((α1 ∧ · · · ∧ αh) → α) where α1, . . . , αh and α are atomic. A fuzzy
interpretation satisfies such a formula provided that, for every d1, . . . , dn in S,

|α1|(d1, . . . , dn) ⊗ · · · ⊗ |αh |(d1, . . . , dn) ≤ |α|(d1, . . . , dn).

To define a deduction apparatus for fuzzy logic we refer to the formalization pro-
posed by Pavelka in [18] (see also [4], [8], [17]). The idea is that the notion of
inference rule has to be extended by specifying how a constraint on the truth value of
a conclusion depends on the available constraints on the truth values of the premises.
As an example, we can extend the modus ponens rule by assuming that,

IF you know that α is true at least at degree λ1
AND α ⇒ β is true at least at degree λ2,
THEN you can conclude that β is true at least at degree λ1 ⊗ λ2,

where α and β are formulas and λ1 and λ2 are elements in [0, 1]. Also, given two
formulas α and β, we extend the classical ∧-introduction rule by assuming that

IF you know that α is true at least at degree λ1
AND that β is true at least at degree λ2,
THEN you can conclude that α ∧ β is true at least at degree λ1 ⊗ λ2.

Given a fuzzy theory τ , any proof π of α is evaluated by a number Val(π, τ ) ∈ [0, 1].
This number is a constraint (a lower bound) on the truth value of α depending
on the information carried on by τ . A fuzzy theory is contradictory if there are
two proofs π1 and π2 of a formula α and its negation ¬α, respectively, such that
Val(π1, τ ) ⊗ Val(π2, τ ) > 0. We say that τ is consistent if it is not contradictory.

Because different proofs give different constraints, we have to consider a con-
straint D(τ )(α) obtained by fusing the totality of the constraints furnished by the
proofs of α.

Definition 3.2 Given a fuzzy theory τ and a formula α, we set

D(τ )(α) = Sup{Val(π, τ ) : π is a proof of α}.

The fuzzy subset D(τ ) is interpreted as the fuzzy subset of formulas we can derive
from τ . The operator D is called deduction operator.

We call axiomatizable a fuzzy logic such that there is a fuzzy deduction apparatus
whose deduction operator D coincides with the logical consequence operator Lc. In
such a case a fuzzy theory is consistent if and only if it admits a model. The axioma-
tizability is an important property for a fuzzy logic since, in contrast with the logical
consequence operator, the deduction operator is defined by an “effective” procedure.
The effectiveness is expressed, for example, by the fact that if the fuzzy set τ of ax-
ioms is decidable, then D(τ ) is recursively enumerable; if τ is also complete, then
D(τ ) is decidable (see [7]).

In this paper we refer mainly to Łukasiewicz fuzzy logic and to the axiomatization
proposed in [17]. To simplify the writing of the proofs, besides the basic fuzzy
inference rules proposed in such a book, we also consider some derivable rules.
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4 The Paradox and the Fuzzy Equivalence Relations

Consider a language LE with a binary relation symbol E . Then a fuzzy interpretation
of LE is a pair (S, e) where e is a binary fuzzy relation in S. In such a language
we reformulate the definition of fuzzy ⊗-equivalence relation given in Section 1 in
logical terms.

Definition 4.1 A fuzzy relation e : S × S → [0, 1] is a fuzzy ⊗-equivalence
relation in S if (S, e) is a fuzzy model of the set of formulas,

∀x E(x, x) (reflexive),
∀x∀y(E(x, y) ⇒ E(y, x)) (symmetric),
∀z∀x∀y(E(x, z) ∧ E(y, z) ⇒ E(x, y)) (transitive).

In [20] Valverde shows that the notion of fuzzy ⊗-equivalence is strictly related with
the one of pseudo-distance. To show this, we have to refer to Archimedean t-norms,
that is, those norms such that, for any x, y ∈ (0, 1) an integer n exists such that
x (n) < y. The Archimedean t-norms can be obtained in a very simple way via
additive generators.

Definition 4.2 We call additive generator any continuous strictly decreasing map
h : [0, 1] → [0, ∞] such that h(1) = 0. Also, we denote by h[−1]

: [0, ∞] → [0, 1]

the map defined by setting

h[−1](x) = h−1(x ∧ h(0)).

Proposition 4.3 A binary operation ⊗ is a continuous Archimedean t-norm if and
only if there exists an additive generator h such that, for all x, y ∈ [0, 1],

x ⊗ y = h[−1](h(x) + h(y)).

As an example, if h(x) = − log(x), then ⊗ is the usual product.

Definition 4.4 We call Łukasiewicz generator the map l : [0, 1] → [0, ∞] defined
by setting l(x) = 1 − x .

Observe that l[−1](x) = 1−(x∧1) = (1−x)∨0 and that l generates the Łukasiewicz
t-norm defined by

x ⊗ y = (x + y − 1) ∨ 0.

We call Łukasiewicz fuzzy logic the fuzzy logic based on such a t-norm.

Theorem 4.5 Let h be an additive generator, ⊗ the related t-norm and d a pseudo-
metric d in a set S. Then we obtain a ⊗-equivalence eq in S by setting

eq(x, y) = h[−1](d(x, y)). (4.1)

Conversely, let eq be a ⊗-equivalence, then we obtain a pseudo-distance d by setting

d(x, y) = h(eq(x, y)). (4.2)

Trivially, given a pseudo-metric d, the fuzzy equivalence eq associated with d by
(4.1) is also a resemblance relation with respect to d.
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Assume that in LE there is a sequence c1, c2, . . . of constants. Then the follow-
ing theorem gives a solution of Poincaré paradox once we admit that the formulas
E(c1, c2), E(c2, c3), . . . are axioms at a degree λ 6= 1

Theorem 4.6 Consider Łukasiewicz fuzzy logic and consider the fuzzy theory ob-
tained by adding to the axioms for the fuzzy ⊗-equivalence relations the following
axioms,

(E(c1, c2), λ),
(E(c2, c3), λ),
...
(¬E(c1, cm), 1),

where λ 6= 1 and m is a fixed number such that λ(m−1)
= 0. Then such a theory

admits a fuzzy model and therefore it is consistent. Also such a logic enables us to
give a formal representation of Poincaré argument preserving its intuitive content
but avoiding its paradoxical character.

Proof Let S be the set of natural numbers and define a distance d in S by setting
d(x, y) = |x − y| ·(1−λ) if |x − y| ·(1−λ) ≤ 1 and d(x, y) = 1 otherwise. Also, set
eq(x, y) = 1 − d(x, y). Then eq is a ⊗-equivalence with respect to the Łukasiewicz
triangular norm ⊗. Moreover, eq(n, n + 1) = 1 − 1 + λ = λ and, since λ(m−1)

= 0
entails (m − 1) · (1 − λ) ≥ 1, eq(1, m) = 0. This proves that (S, eq) is a model of
the considered fuzzy theory.

Also, in fuzzy logic we can formalize Poincaré argument as follows:

Step 1

Since E(c1, c2) [at degree λ ]
and E(c2, c3) [at degree λ ]
we can state

E(c1, c2) ∧ E(c2, c3). [at degree λ ⊗ λ]
Therefore, since

E(c1, c2) ∧ E(c2, c3) ⇒ E(c1, c3) [at degree 1]
we can state

E(c1, c3). [at degree λ ⊗ λ]

Step 2

Since E(c1, c3) [at degree λ(2)]
and E(c3, c4) [at degree λ]
we can state

E(c1, c3) ∧ E(c3, c4). [at degree λ(3)]
Therefore, since

E(c1, c3) ∧ E(c3, c4) ⇒ E(c1, c4) [at degree 1]
we can state

E(c1, c4). [at degree λ(3)]
...
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Step m − 1

Since E(c1, cm−1) [at degree λ(m−2)]
and E(cm−1, cm) [at degree λ]
we can state

E(c1, cm) ∧ E(cm, cm+1). [at degree λ(m−1)]
Therefore, since

E(c1, cm) ∧ E(cm, cm+1)
⇒ E(c1, cm+1) [at degree 1]

we can state
E(c1, cm+1). [at degree λ(m−1)].

Thus, such a proof entails that the conclusion E(c1, cm+1) is true at least at degree
λ(m−1)

= 0 (no information). This is not paradoxical. �

5 Approximate ⊗-Similarity Structures

As argued in Section 1, the assumption that the formulas E(cn, cn+1) are axioms at
degree λ 6= 1 is questionable. Then, to avoid the paradox in the case λ = 1 we
have to consider a new class of fuzzy relations in which the transitivity property is in
some way relaxed. At first observe that if a fuzzy relation is not transitive, then we
can define the following interesting notions.

Definition 5.1 Given a fuzzy relation e, the discernibility measure is the extension
dis : S → [0, 1] of the formula

Dis(z) ≡ ∀x∀y(E(x, z) ∧ E(y, z) ⇒ E(x, y)).

The formula Dis(z) says that things equal to z are also equal to each other. In other
words, it says that z is adequate for comparison. By the way, such a property is the
first common notion in Book 1 of Euclid’s Elements. Observe that I am not sure that
it is correct to interpret dis(z) as a measure of the degree of discernibility of z from
the remaining elements or not. Surely, if e is symmetric, dis(z) is a measure of the
behavior of z with respect to the transitivity. Now, whereas dis is a local measure of
transitivity, in a sense, we can also define a global measure of transitivity as follows.

Definition 5.2 We call transitivity degree of a fuzzy relation e the valuation
trans(e) of the formula

∀z∀x∀y(E(x, z) ∧ E(y, z) ⇒ E(x, y)).

Equivalently, trans(e) is the valuation of the formula

∀z(Dis(z)),

that is, of the claim every element in S is discernible. Obviously,

dis(z) = Inf{e(x, z) ⊗ e(y, z) → e(x, y) : x, y ∈ S} (5.1)

and
trans(e) = Inf{dis(z) : z ∈ S} (5.2)

Notice that the notion of “transitivity degree” was proposed by Gottwald in [9] and
[10] (see also Behounek and Cintula [1]). As an example, let e be the crisp resem-
blance relation defined in Section 2 in the case (S, d) is the usual metric space in the
real line and ε > 0. Then it is clear that dis(z) = 0 for every real number z and
therefore that trans(e) = 0. Instead, if we consider only the positive real line, then
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dis(0) = 1 while again trans(e) = 0. In the graded cases both trans(e) and dis(z) de-
pend strongly on the triangular norm, obviously. As an example, let e be the graded
resemblance relation defined in Section 2. Then, dis(1.50) = dis(2.50) = 1 and

dis(1.51) ≤ e(1.50, 1.51) ⊗ e(1.51, 1.56)

→ e(1.50, 1.56) = 1 ⊗ 0.2 → 0 = 0.2 → 0.

So, in the case ⊗ is either the minimum or the usual product, we have dis(1.51) = 0
and the function dis ranges continuously from 0 to 1. In such a case trans(e) = 0.
Instead, in the case ⊗ is the Łukasiewicz t-norm, dis(1.51) = 0.8 and dis ranges
continuously from 0.8 to 1. In such a case trans(e) = 0.8.

It is easy to prove that the formula

∀x∀y∀z(E(x, z) ∧ E(y, z) ∧ Dis(z) ⇒ E(x, y)) (5.3)

is true, that is, that

e(x, z) ⊗ e(z, y) ⊗ dis(z) ≤ e(x, y). (5.4)

Indeed, recall the basic property of the pair ⊗, → and observe that, for any x, y, z in
S,

e(x, z) ⊗ e(y, z) → e(x, y) ≥ dis(z). (5.5)

Implication (5.3) suggests the following definition.

Definition 5.3 Consider a language LE,P with two relation symbols E and P .
Then an approximate ⊗-similarity structure, in brief, an approximate similarity, is a
fuzzy model of the system of axioms,

A1 ∀x E(x, x),
A2 ∀x∀y(E(x, y) ⇒ E(y, x)),
A3 ∀x∀y∀z(E(x, z) ∧ E(y, z) ∧ P(z) ⇒ E(x, y)).

As usual, we denote by (S, e, p) a fuzzy interpretation of LE,P where e = I (E) and
p = I (P). The proof of the following proposition is obvious.

Proposition 5.4 A fuzzy interpretation (S, e, p) is an approximate ⊗-similarity
structure if and only if

(i) e(x, x) = 1,
(ii) e(x, y) = e(y, x),

(iii) e(x, z) ⊗ e(y, z) ⊗ p(z) ≤ e(x, y).

We can obtain the usual theory of fuzzy ⊗-equivalences by adding the axiom ∀z P(z),
that is, the condition p(z) = 1 for any z ∈ S. The following proposition relates the
approximate similarities with the discernibility measure.

Proposition 5.5 Let e be a reflexive and symmetric fuzzy relation in a nonempty set
S and let p be a fuzzy subset of S. Then the structure (S, e, p) is an approximate
similarity if and only if p ⊆ dis. In other words, the approximate similarities are the
models of the system of axioms

A1 ∀x E(x, x),
A2 ∀x∀y(E(x, y) ⇒ (E(y, x)),
A3′

∀z(P(z) ⇒ Dis(z)).
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Proof If p ⊆ dis, then

e(x, z) ⊗ e(y, z) ⊗ p(z) ≤ e(x, z) ⊗ e(y, z) ⊗ dis(z) ≤ e(x, y).

Conversely, if e(x, z) ⊗ e(y, z) ⊗ p(z) ≤ e(x, y), then

p(z) ≤ e(x, z) ⊗ e(y, z) → e(x, y) ≤ dis(z).

�

Observe that the equivalence between the systems A1–A2–A3 and A1–A2–A3′ can
be proved also in a syntactical way by the deduction apparatus of Hájek’s basic fuzzy
logic.

Implication (5.3) shows that, given a reflexive and symmetric fuzzy relation e,
the structure (S, e, dis) is the “best” approximate similarity structure we can define
from e. In spite of that, I prefer not to limit the theory to the case p = dis. Indeed,
while dis(z) depends on the behavior of z with respect to the remaining elements in
S, p(z) can represent also an intrinsic property of z (as an example “to be precise”,
to be “sharply defined” and so on). We require only that such a property entails the
discernibility property.

The following proposition, whose proof is immediate, shows that in the case p
is a constant function, we can give another system of axioms for the approximate
similarities in which the predicate P is not involved.

Proposition 5.6 The class of ⊗-similarities in which p is a fuzzy subset constantly
equal to ε coincides with the class of models of the axioms A1 and A2 and the signed
formula

A3′′ (∀x∀y∀z(E(x, z) ∧ E(y, z) ⇒ E(x, y)), ε ),

or, equivalently, the signed formula

A3′′′ (∀zDis(z), ε).

6 Examples of Approximate Similarities

The following proposition gives a class of examples of approximate ⊗-similarities
whose geometrical meaning will be evident in Section 10.

Proposition 6.1 Let ⊗ be the Łukasiewicz t-norm, (S, eq ) a fuzzy ⊗-equivalence,
and p : S → [0, 1] be a fuzzy subset of S. Moreover, set m(x, y) = l((p(x) +

p(y))/2) and

e(x, y) = eq(x, y) ⊕ m(x, y).

Then (S, e, p) is an approximate ⊗-similarity.

Proof It is evident that e is reflexive and symmetric. To prove that

e(x, z) ⊗ e(y, z) ⊗ p(z) ≤ e(x, y)

or, equivalently, that

e(x, z) + e(y, z) + p(z) − 2 ≤ e(x, y),
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it is not restrictive to assume that e(x, y) 6= 1 and therefore that e(x, y) = eq(x, y)
+ 1 − p(x)/2 − p(y)/2. Then

e(x, z) + e(y, z) + p(z) − 2 ≤ (eq(x, z) + 1 − p(x)/2 + 1 − p(z)/2)+

(eq(y, z) + 1 − p(y)/2 − p(z)/2) + p(z) − 2 =

eq(x, z) + eq(y, z) + 1 − p(x)/2 − p(y)/2 ≤

eq(x, y) + 1 − p(x)/2 − p(y)/2 = e(x, y).

�

We call an approximate ⊗-similarity obtained in such a way the approximate ⊗-
similarity associated with (S, eq) and p. The following proposition shows that in
the case p is a constant function, these approximate similarities coincide with the
resemblance relations defined in Proposition 2.2.

Proposition 6.2 Let ⊗ be the Łukasiewicz t-norm and (S, e, p) be the approxi-
mate ⊗-similarity associated with the fuzzy equivalence eq and with the fuzzy set
p constantly equal to ε. Then e coincides with the resemblance relation associated
with the pseudo-metric d(x, y) = l(eq(x, y)) and ε. Conversely, let e be the resem-
blance relation associated with the pseudo-metric space (S, d) and ε ∈ [0, 1]. Then
e coincides with the approximate similarity associated with the fuzzy equivalence
eq(x, y) = l(d(x, y)) and the fuzzy set p constantly equal to ε.

Proof Let e be the ⊗-similarity obtained from the fuzzy ⊗-equivalence (S, eq) and
the fuzzy subset p constantly equal to ε and set d(x, y) = l(eq(x, y)). Then

e(x, y) = (eq(x, y) + ε) ∧ 1 = (1 − d(x, y) + ε) ∧ 1,

and, therefore, e(x, y) = 1 if d(x, y) ≤ ε, and e(x, y) = 1−(d(x, y)−ε) otherwise.
Then, in account of the fact that e(x, y) < 1+ε, this shows that e is the resemblance
relation defined from d and ε. In a similar way one proves the second part of the
proposition. �

Proposition 6.3 In the approximate ⊗-similarities defined in Proposition 6.2 we
have p 6= dis, in general.

Proof To give an example in which dis 6= p, assume that S = [0, 1], eq(x, y) =

l(|x − y|) and ε 6= 1. Then e(x, y) = 1 if |x − y| ≤ ε and e(x, y) = 1 − |x − y| + ε
otherwise. We claim that

e(x, y) ≥ e(x, 0) ⊗ e(y, 0)

for any x, y in S and therefore that dis(0) = 1 6= p(0). Indeed, it is not restrictive
to assume that x ≥ y and e(x, y) 6= 1 and therefore that e(x, y) = 1 − x + y + ε .
Consider the case e(x, 0) = 1. Then x ≤ ε and, therefore,

1 − x + y + ε ≥ 1 − ε + y + ε = 1 + y ≥ e(y, 0) = e(x, 0) ⊗ e(0, y).

Consider the case e(x, 0) 6= 1. Then e(x, 0) = 1 − x + ε and, therefore,

1 − x + y + ε = e(x, 0) + y ≥ e(x, 0) ≥ e(x, 0) ⊗ e(0, y).

Consider the just exposed example in the case ε = 1/2. Then while dis(0) =

dis(1) = 1, we have that dis(1/2) = 1/2. �
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The structures defined in such a section can be embedded into a unique structure.
Given a nonempty set S, we call fuzzy point a pair (x, λ) such that x ∈ S and
λ ∈ [0, 1]. We denote by xλ the fuzzy point (x, λ) and by FP(S) the set S × [0, 1]

of all the fuzzy points in S. We can interpret a fuzzy point xλ as an event x to-
gether a discriminability degree of the observation instrument in x . The proof of the
following proposition is trivial.

Proposition 6.4 Let ⊗ be the Łukasiewicz t-norm and (S, eq) be a fuzzy ⊗-
equivalence. Moreover, define e′ by setting

e′(xλ, yµ) = eq(x, y) ⊕ l((λ + µ)/2)

and define p′ by setting p′(yµ) = µ. Then (FP(S), e′, p′) is an approximate ⊗-
similarity structure. Let (S, e, p) be defined as in Proposition 6.1. Then the map
h : S → S′ associating any x ∈ S with x p(x) is an embedding of (S, e, p) into
(S f , e′, p′).

7 Approximate ⊗-Similarities and the Paradox

The kernel of an approximate ⊗-similarity e is not an equivalence relation, in gen-
eral. Indeed, given an element z ∈ S such that p(z) 6= 1, from e(x, z) = 1 and
e(z, y) = 1 we can only derive that e(x, y) ≥ p(z). This suggests that these re-
lations are good candidates to face the Poincaré paradox in spite of the fact that
E(cn, cn+1) is accepted as an axiom at degree 1.

Theorem 7.1 Consider in Łukasiewicz fuzzy logic the fuzzy theory obtained by
adding to the axioms for the approximate ⊗-similarities the axioms

(E(c1, c2), 1)
(E(c2, c3), 1)
...
(¬E(c1, cm), 1)
(P(c1), ε)
(P(c2), ε)
...

where ε is different from 0 and 1 and m is such that ε(m−2)
= 0. Then such a theory

admits a fuzzy model and therefore it is consistent. Moreover, such a logic enables
us to give a formal representation of the Poincaré argument preserving its intuitive
content but avoiding its paradoxical character.

Proof Let S be the set of positive natural numbers and set e(x, y) = ε(|x−y|−1) if
x 6= y and e(x, y) = 1 if x = y. Then it is evident that e is symmetric and reflexive.
We claim that

e(x, z) ⊗ e(y, z) ⊗ ε ≤ e(x, y).

In fact, in all the cases x = z, y = z, and x = y such an inequality is immediate.
Otherwise, since |x − z| + |y − z| − 1 ≥ |x − y| − 1,

e(x, z) ⊗ e(y, z) ⊗ ε = ε(|x−z|−1)
⊗ ε(|y−z|−1)

⊗ ε =

ε(|x−z|+|y−z|−1)
≤ ε(|x−y|−1)

= e(x, y).
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As a consequence, if we define p by setting p(x) = ε for every x ∈ S, we obtain
a ⊗-similarity structure (S, e, p). Moreover, since e(n, n + 1) = ε(0)

= 1 and
e(1, m) = ε(m−2)

= 0, such a structure is a model of the proposed fuzzy theory.
To formalize the Poincaré argument we can consider the following proof:

Step 1

Since E(c1, c2) [at degree 1]
and E(c2, c3) [at degree 1]
and P(c2) [at degree ε]
we can state

E(c1, c2) ∧ E(c2, c3) ∧ P(c2). [at degree 1 ⊗ 1 ⊗ ε]
Therefore, since

E(c1, c2) ∧ E(c2, c3) ∧ P(c2)
⇒ E(c1, c3) [at degree 1]

we can state
E(c1, c3). [at degree ε(1)]

Step 2

Since E(c1, c3) [at degree ε(1)]
and E(c3, c4) [at degree 1]
and P(c3) [at degree ε]
we can state E(c1, c3) ∧ E(c3, c4) ∧ P(c3). [at degree ε(2)]
Therefore, since

E(c1, c3) ∧ E(c3, c4) ∧ P(c3)
⇒ E(c1, c4) [at degree 1]

we can state
E(c1, c4). [at degree ε(2)]

...

Step m-1

Since E(c1, cm−1) [at degree ε(m−3)]
and E(cm−1, cm) [at degree 1]
and P(cm−1) [at degree ε]
we can state

E(c1, cm−1) ∧ E(cm−1, cm) ∧ P(cm−1). [at degree ε(m−2)]
Therefore, since

E(c1, cm) ∧ E(cm, cm+1) ∧ P(cm)
⇒ E(c1, cm+1) [at degree 1]

we can state
E(c1, cm). [at degree ε(m−2)]

Thus, such proof entails that the conclusion E(c1, cm) is true at least at de-
gree ε(m−2)

= 0. As such, this conclusion is not contradictory with the axiom
(¬E(c1, cm), 1). �

We emphasize that the fact that a proof π of E(c1, cm) is evaluated to 0 does not
mean that such a formula is false but rather that π gives no information on its truth
value. As an example imagine that we add the axiom E(c1, c3) to our theory. Then



216 Giangiacomo Gerla

there is a proof to prove E(c1, cm) at degree ε(m−3) and it is possible that such a
value is different from 0.

8 Some Connections with the Sorites Paradox

We will compare the solution we have just proposed for the Poincaré paradox with
the solutions proposed by fuzzy logic to another famous paradox: the sorites para-
dox. In particular, we refer to [12] by Hájek and Novák. This paradox runs as
follows. Consider a predicate Small and an infinite sequence c1, c2, . . . of constants.
The intended meaning is that cn denotes a heap dn with n grains and Small(cn) means
that such a heap is small. In accordance with such an interpretation, we assume that
the formulas

Small(c1), Small(c1) ⇒ Small(c2), . . . , Small(cn) ⇒ Small(cn+1), . . .

hold true. On the other hand, it is evident that, given any n ∈ N , from these formulas
we can prove Small(cn) by a suitable number of applications of modus ponens. This
contradicts our intuition suggesting that there is m ∈ N such that Small(cm) is false.

A first analysis of such a paradox in fuzzy logic was proposed by Goguen in [8].
Successively, Hájek and Novák in [12] rendered his considerations more precise and
introduced new interesting ideas. In particular, two approaches are considered. The
first one is based on the idea for which if “dn is small”, then it is almost true that
“dn+1 is small”. The second idea is that the implication “if dn is small then dn+1 is
small” is almost true.

In the first case the logical connective “almost true” At is considered and
it is interpreted in such a way that the two axiom schemata α ⇒ At (α) and
(α ⇒ β) ⇒ (At (α) ⇒ At (β)) are satisfied. A simple example is obtained
by considering a value ε different from 0 and 1 and by interpreting At by the
function at (x) = ε → x . In particular, by assuming that → is the Łukasiewicz
implication, we obtain that at (x) = 1 ∧ (x + 1 − ε). In such a case, since
atn(x) = 1 ∧ (x + n(1 − ε)), we have that atn(0) = 1 ∧ n · (1 − ε) and, therefore,
if ε 6= 1, atn(0) = 1 for every n such that n ≥ 1/(1 − ε). This means that given
a false formula α, there is m ∈ N such that Atm(α) is true. Now, in this enriched
fuzzy logic we can formulate the heap’s axioms as follows:

Small(c1), Small(c1) ⇒ At (Small(c2)), . . . , Small(cn) ⇒ At (Small(cn+1)), . . . .

From these axioms we can derive Atm(Small(cm)) (and not Small(cm)). If
m ≥ 1/(1 − ε), since atm(0) = 1, this conclusion is not in contradiction with
the falsity of Small(cm). Thus such a reformulation of the paradoxical argument
gives no paradox. Observe that the price to pay for such a solution is to admit that
Atm(α) is true in spite of the falsity of α. Now, in spite of the justification given
in the paper for which “we may not be 100% sure that something is false,” there is
something unsatisfactory in such an acceptance. Indeed, the interpretation of a logic
connective is independent of the meaning of the formulas since it depends only on
the considered truth values. Then it is sufficient that there is only a formula which
is surely false (as an example 0, or β ∧ ¬β) to impose that at (0) = 0 and therefore
that atn(0) = 0 for every natural n. Then the property admitted for the logical
connective At is no less “paradoxical” than the heap paradox.
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The second idea exposed in [12] leads us to assume the axioms Small(cn) ⇒

Small(cn+1) at a degree ε 6= 1. Indeed, it is easy to see that in the deduction ap-
paratus of fuzzy logic the sorites argument enables us to prove Small(cm) only at a
degree ε(m)

= 0. Such an approach is the same proposed first by Goguen in [8] (see
also [4]).

Now the first approach suggests the possibility to solve the Poincaré paradox by
considering the following class of fuzzy relations defined by using the logical oper-
ator At .

Definition 8.1 A fuzzy relation eq in a set S is called an almost-⊗-similarity pro-
vided that (S, eq) satisfies the following axioms:

∀x E(x, x) (reflexive),
∀x∀y(E(x, y) ⇒ E(y, x)) (symmetric),
∀z∀x∀y(E(x, z) ∧ E(y, z) ⇒ At (E(x, y)) (almost-transitive).

Then in an almost-⊗-similarity e the transitivity is expressed by the inequality

e(x, z) ⊗ e(y, z) ≤ at (e(x, y)).

Now, in such a case the Poincaré argument gives as a theorem the formula
Atm(E(c1, cm)) and not E(c1, cm). Such a theorem is not in contradiction with
the falsity of E(c1, cm).

As a matter of fact if we consider as an interpretation of At the fuzzy func-
tion ε → x , the notion of almost-⊗-similarity coincides with the one of fuzzy
⊗-similarity with respect to the fuzzy subset p constantly equal to ε . In fact, we
have

e(x, z) ⊗ e(y, z) ≤ at (e(x, y)) ⇔ e(x, z) ⊗ e(y, z) ≤ (ε → e(x, y))

⇔ e(x, z) ⊗ e(y, z) ⊗ ε ≤ e(x, y)

⇔ e(x, z) ⊗ e(y, z) ⊗ p(z) ≤ e(x, y).

Then it is not surprising that the notion of almost-⊗-similarity enables us to prove
one analogous to Theorem 7.1 and therefore to solve the paradox.

The second approach suggests that we consider the transitivity property as an
axiom at degree ε with ε 6= 1, that is, to represent such a property by the signed
formula (∀z∀x∀y(E(x, z) ∧ E(y, z) ⇒ E(x, y)), ε). A fuzzy relation satisfies such
a property provided that

e(x, z) ⊗ e(y, z) → e(x, y) ≥ ε.

Again, the presence of such a weak formulation of the transitivity enables us to solve
the paradox. Again, this is not surprising since, in accordance with Proposition 5.6,
assuming the transitivity at degree ε is equivalent to referring to the ⊗-similarities in
which p is constantly equal to ε.

Finally, we observe that the sorites paradox can be expressed by involving the
distinguishability relation E , too. As an example, a phenomenal reformulation of
such a paradox is obtained by assuming that

(i) the heaps d1, . . . , d1000 look to be small for me,
(ii) for n ≥ 1000 I am not able to distinguish dn from dn+1,

(iii) if a heap x is small and we are not able to distinguish x from a heap y, then
y is small,

(iv) dm is not small,
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where m is a sufficiently big number. In classical logic we can express this by the
following system of axioms

Small(cn) for n ≤ 1000
E(cn, cn+1) for every n ≥ 1000
¬Small(cm)
∀x∀y(Small(x) ∧ E(x, y) ⇒ Small(y)).

Trivially, for every n ∈ N , the formula Small(cn) is a theorem of such a system and
this contradicts the axiom ¬Small(cm). In fact, Small(c1), . . . , Small(c1000) are ax-
ioms (and therefore theorems). Assume that Small(cn) is a theorem with n ≥ 1000;
then since E(cn, cn+1) and Small(cn−1) ∧ E(cn−1, cn) ⇒ Small(cn) are axioms,
Small(cn) is a theorem, too. It is interesting to observe that in such a version of
sorites paradox the transitivity property of E plays no role and the only hypothesis
is that the formulas E(cn, cn+1) are assumed at degree 1 for every n ≥ 1000. Then,
independently from the fact that E is interpreted by a fuzzy equivalence relation, by
a resemblance relation, or by an approximate ⊗-similarity, the paradoxical argument
remains valid. Obviously, fuzzy logic is able to give a solution in the case the formu-
las E(cn, cn+1) are substituted with the signed formulas (E(cn, cn+1), λ) where λ is
a suitable number different from 1.

Theorem 8.2 Given q ∈ N and λ 6= 1, consider in Łukasiewicz fuzzy logic the fuzzy
theory obtained by adding to the axioms for the fuzzy ⊗-equivalences the axioms

Small(cn) for n ≤ q
(E(cn, cn+1), λ) for every n > q
∀x∀y(Small(x) ∧ E(x, y) ⇒ Small(y)).

Then there is a fuzzy model of such a theory satisfying the formula ¬Small(cm) for a
suitable m ∈ N.

Proof Let S be the set of heaps and let (an)n∈N be a sequence of real numbers in
[0, 1]. Define eq by setting

eq(dh, dk) = 1 if h = k
eq(dh, dk) = ah−1 ⊗ ah−2 ⊗ · · · ⊗ ak if h > k
eq(dh, dk) = eq(dk, dh) otherwise.

Then e is a fuzzy ⊗-equivalence. In fact, while it is evident that eq is reflexive and
symmetric, to prove that, for every dh and dk in S,

eq(dh, dk) ≥ eq(dh, di ) ⊗ eq(di , dk),

it is not restrictive to assume that h > k. Then, in the case i ≥ h,

eq(dh, dk) ≥ eq(di , dk) ≥ eq(dh, di ) ⊗ eq(di , dk);

in the case i ≤ k,

eq(dh, dk) ≥ eq(dh, di ) ≥ eq(dh, di ) ⊗ eq(di , dk).

Finally, in the case h > i > k,

eq(dh, dk) = ah−1 ⊗ ah−2 ⊗ ai ⊗ ai−1 ⊗ · · · ⊗ ak =

(ah−1 ⊗ ah−2 ⊗ ai ) ⊗ (ai−1 ⊗ · · · ⊗ ak) = eq(dh, di ) ⊗ eq(di , dk).
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Define the fuzzy relation small by setting small(d1) = 1 and, for n > 1,

small(dn) = an−1 ⊗ · · · ⊗ a1.

Obviously, (small(dn))n∈N is an order-reversing sequence. We claim that

small(dh) ≥ small(dk) ⊗ eq(dh, dk)

for every pair dh, dk in S. In fact, in the case h > k,

small(dh) = (ah−1 ⊗ ah−2 ⊗ · · · ⊗ ak) ⊗ (ak−1 ⊗ ak−2 ⊗ · · · ⊗ a1) =

eq(dh, dk) ⊗ small(dk).

In the case h ≤ k,

small(dh) ≥ small(dk) ≥ small(dk) ⊗ eq(dh, dk).

In order to satisfy the remaining axioms, we have to consider a sequence (an)n∈N
satisfying suitable properties. Now, consider a sequence (cn)n∈N of elements in
[0, 1] such that cn ≤ 1 − λ and

∑n=∞

n=1 cn > 1 and define (an)n∈N by setting
an = 1 if n ≤ q and an = 1 − cn−q otherwise. Then, small(d1) = small(d2) =

· · · = small(dq) = 1 and eq(dn, dn+1) = an = 1 − cn−q ≥ λ for every n > p.
Let k ∈ N such that

∑n=k
n=l cn ≥ 1. Then, since 1 − aq+1 + · · · + 1 − aq+k = c1 +

· · ·+ck ≥ 1, we have that aq+1+· · ·+aq+k−k+1 ≤ 0. Thus, if we set m = k+1+q ,
we obtain that aq+1 + · · · + am−1 + q − m + 2 ≤ 0 and, therefore,

small(dm) = a1 ⊗ · · · ⊗ am−1 =

aq+1 ⊗ · · · ⊗ am−1 = (aq+1 + · · · + am−1 − m + q + 2) ∨ 0 = 0

and this proves that (S, eq, small) is a fuzzy model of our fuzzy theory satisfying
Small(cm).

We conclude the proof by observing that there is no difficulty in exhibiting a
sequence (cn)n∈N satisfying the required property. As an example, we can set
ci = 1 − λ and, therefore, aq+i = λ for every n ∈ N . In such a case, it is sufficient
to assume that m ≥ 1 + q + 1/(1 − λ) to obtain that small(dm) = λ(m−1−q)

= 0.
A more interesting example is obtained, under the hypothesis λ < 1/2, by con-
sidering a real number h such that 1/2 < h ≤ 1 − λ and set cn = hn . Then∑n=∞

n=1 cn =
1

1−h − 1 =
h

1−h ≥ 1 and it is evident that cn ≤ 1 − λ. In such a case,
since

c1 + · · · + ck = (1 − hk+1)/(1 − h) − 1 and

c1 + · · · + ck ≥ 1 ⇔ 1 − hk+1
≥ 2(1 − h) ⇔ k ≥ logh(2h − 1),

we can set m equal to any natural number such that m ≥ logh(2h − 1) − 1 − q. �

It is an open question to find a similar solution of the sorites paradox in which the
axioms E(cn, cn+1) are assumed at degree 1 and E is interpreted by an approximate
⊗-similarity.

9 Distances and Diameters in Point-free Geometry

Theorem 4.5 points to a bridge between a notion logical in nature and a notion met-
rical in nature. We can extend such a connection to the approximate ⊗-similarities
provided we refer to the notion of pointless metric space. Such a notion was proposed
in a series of papers as a basis for a metrical approach to point-free geometry (see [5]
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and [6]) in which the notion of region, distance, diameter, and inclusion are assumed
as primitive and the points are defined in a suitable way. This is in accordance with
the ideas of Whitehead (see [21]).

Definition 9.1 A pointless pseudo-metric space, in short a ppm-space, is a struc-
ture (S, ≤, δ, | |), where (S, ≤) is an ordered set, δ : S × S → [0, ∞) is order-
reversing, | | : S → [0, ∞] is order-preserving, and for every x, y, z ∈ S,
(a1) δ(x, x) = 0,
(a2) δ(x, y) = δ(y, x),
(a3) δ(x, y) ≤ δ(x, z) + δ(z, y) + |z|.

The elements in S are called regions, the order ≤ is called inclusion relation, δ(x, y)
distance between x and y, |x | the diameter of x . Observe that (a3) is a weak form
of the triangular inequality taking in account the diameters of the regions. In fact, if
all the diameters are equal to zero, then (a3) coincides with the triangular inequality
and the ppm-space is a pseudo-metric space. Then the notion of ppm-space extends
the one of pseudo-metric space (and therefore of metric space). More precisely, we
can identify the pseudo-metric spaces as the ppm-spaces in which ≤ is the identity
and all the diameters are equal to zero. The prototypical examples of ppm-space are
given in the following proposition (see [6]).

Proposition 9.2 Let (M, d) be a pseudo-metric space and let C be a nonempty
class of bounded and nonempty subsets of M. Define δ and | | by setting

δ(X, Y ) = inf{d(x, y) : x ∈ X, y ∈ Y } (9.1)
|X | = sup{d(x, y) : x, y ∈ X}, (9.2)

respectively. Then (C, ⊆, δ, | |) is a ppm-space.

We call the so-defined spaces canonical. Such an interpretation enables us to il-
lustrate the meaning of (a3). Indeed, by referring to the Euclidean plane, in the
following picture
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it is evident that δ(X, Y ) > δ(X, Z) + δ(Z , Y ) and therefore that the usual tri-
angular inequality cannot be assumed. Instead, it is routine matter to prove that
δ(X, Y ) ≤ δ(X, Z) + δ(Z , Y ) + |Z |.

For instance, let (E, d) be a Euclidean metric space, and s : E → [0, ∞) be
a function. Also, denote by B(P, s(P)) the closed ball centered in P and whose
diameter is s(P) and set S = {B(P, s(P)) : P ∈ E}. Then we can consider the
canonical space defined by this class of closed balls. In such a space the order is the
identity relation, the diameter | | coincides with the function s, and

δ(B(P, s(P)), B(Q, s(Q))) = 0 if d(P, Q) ≤ (s(P) + s(Q))/2
δ(B(P, s(P)), B(Q, s(Q))) =

d(P, Q) − (s(P) + s(Q))/2 otherwise.
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If we denote by P the ball B(P, s(P)), we can define directly in E a ppm-space by
setting

δ(P, Q) = 0 if d(P, Q) ≤ (s(P) + s(Q))/2
δ(P, Q) = d(P, Q) − (s(P) + s(Q))/2 otherwise.

This suggests the definition of a simple class of ppm-spaces we call formal balls
space.

Proposition 9.3 Given a pseudo-metric space (S, d) and a function s : S → [0, ∞),
define δs by setting

δs(x, y) = (d(x, y) − (s(x) + s(y))/2) ∨ 0.

Then, the structure (S, δs, s) is a ppm-space.

Proof In the case d(x, y) < (s(x) + s(y))/2 the inequality

δs(x, z) + δs(z, y) + s(z) ≥ δs(x, y)

is trivial. So, we assume that d(x, y) ≥ (s(x)+s(y))/2. In the case d(x, z) ≥ (s(x)+
s(z))/2 and d(z, y) ≥ (s(z) + s(y))/2,

δs(x, z) + δs(z, y) + s(z) =

d(x, z) − (s(x) + s(z))/2 + d(z, y) − (s(y) + s(z))/2 + s(z) ≥

d(x, y) − (s(x) + s(y))/2 = δs(x, y).

Assume that d(x, z) < (s(x) + s(z))/2 and therefore that

s(z)/2 − s(y)/2=(s(x) + s(z))/2 − (s(x) + s(y))/2 ≥ d(x, z) − (s(x) + s(y))/2.

Then, in the case d(z, y) ≥ (s(z) + s(y))/2,

δs(x, z) + δs(z, y) + s(z) = d(z, y) − (s(z) + s(y))/2 + s(z) =

d(z, y) + s(z)/2 − s(y))/2 ≥ d(z, y) + d(x, z) − (s(x) + s(y))/2 ≥

d(x, y) − (s(x) + s(y))/2 = δs(x, y).

In the case d(z, y) ≤ (s(z) + s(y))/2, we have that d(x, z) + d(z, y) ≤ (s(x) +

s(z))/2 + (s(z) + s(y))/2 and, therefore,

s(z) ≥ d(x, z) + d(z, y) − (s(x) + s(y))/2.

So,

δs(x, z) + δs(z, y) + s(z) =

s(z) ≥ d(x, z) + d(z, y) − (s(x) + s(y))/2 ≥

d(x, y) − (s(x) + s(y))/2 = δs(x, y).

In a similar way we go on in the remaining cases. �

In a canonical space a region can be interpreted as an incomplete information (that
is, a constraint) on a point. This means that the approximation originates from the
imprecision of the objects whose distance we have to calculate. We can consider
also the case in which the objects are given in a precise way but the approximation
originates from the instrument used to measure distances. As an example, given a
natural number n, denote by truncn(x) the n-decimal truncation of a real number x .
Then the proof of the following proposition is routine matter.
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Proposition 9.4 Let (M, d) be a pseudo-metric space and n be a fixed natural
number. Also, set δ(x, y) = truncn(d(x, y)) and |x | = 2 · 10−n . Then (M, =, δ, | |)
is a ppm-space.

10 Geometrical Interpretations of the Approximate ⊗-Similarities

This section is devoted to show that the logical notion of approximate ⊗-similarity
is strictly connected with the metrical notion of ppm-space. We are not interested in
the order relation ≤ and therefore we confine ourselves to the cases in which ≤ is the
identity. For these structures we write (S, δ, | |) instead of (S, =, δ, | |). Notice that
if (S, ≤, δ, | |) is a ppm-space, then (S, =, δ, | |) is a ppm-space too.

Theorem 10.1 Let h be an additive generator and ⊗ be the related t-norm. Then
we can associate any ppm-space(S, δ, | |) with an approximate ⊗-similarity space
(S, e, p) such that

e(x, y) = h[−1](δ(x, y)); p(x) = h[−1](|x |).

Conversely, we can associate any approximate ⊗-similarity space (S, e, p) with a
ppm-space (S, δ, | |) by setting

δ(x, y) = h(e(x, y)); |x | = h(p(x)).

Proof Let (S, δ, | |) be a ppm-space. Then, since

δ(x, y) ∧ h(0) ≤ δ(x, z) ∧ h(0) + δ(z, y) ∧ h(0) + |z| ∧ h(0),

we have

e(x, y) = h−1(δ(x, y) ∧ h(0)) ≥

h−1((δ(x, z) ∧ h(0)) + (δ(z, y) ∧ h(0)) + (|z| ∧ h(0))) =

h−1(δ(x, z) ∧ h(0)) ⊗ h−1(δ(z, y) ∧ h(0)) ⊗ h−1(|z| ∧ h(0))) =

e(x, z) ⊗ e(y, z) ⊗ p(z).

This proves that (S, e, p) is an approximate similarity space.
Conversely, let (S, e, p) be an approximate similarity space and set λ +

t µ =

(λ + µ) ∧ h(0). Then, since h is an order-reversing isomorphism from ([0, 1], ⊗, 1)
to ([0, h(0)], +t , 0),

δ(x, y) = h(e(x, y)) ≤ h(e(x, z) ⊗ e(y, z) ⊗ p(z)) =

h(e(x, z)) +
t h(e(y, z)) +

t h(p(z)) ≤ δ(x, z) + δ(z, y) + |z|.

This proves that (S, δ, | |) is a ppm-space. �

In accordance with such a theorem, every example of ppm-space gives an example
of approximate ⊗-similarity. As a first example, we consider the ppm-spaces of the
formal balls.

Proposition 10.2 The Łukasiewicz generator l defines a connection between the
ppm-spaces of the formal-balls and the class of the approximate ⊗-similarities de-
fined in Proposition 6.1.
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Proof Consider a pseudo-metric (S, d) and let s : S → [0, 1] be a function. Define
d1 by setting d1(x, y) = d(x, y) ∧ 1 and let (S, δs, s) be the ppm-space associated
with (S, d1) and s by Proposition 9.3. Then by the Łukasiewicz generator l we
can obtain an approximate ⊗-similarity (S, e, p) where e(x, y) = 1 − δs(x, y) and
p(x) = 1 − s(x). Moreover, if we set eq(x, y) = 1 − d1(x, y), we have that eq is
a fuzzy ⊗-equivalence and that e(x, y) = 1 in the case d1(x, y) ≤ (s(x) + s(y))/2;
that is, in the case

eq(x, y) = 1 − d1(x, y) ≥ 1 − (s(x) + s(y))/2 =

(1 − s(x) + 1 − s(y))/2 = m(x, y).

Otherwise, we have

e(x, y) = 1 − (d1(x, y) − (s(x) + s(y))/2) ∨ 0 =

eq(x, y) + 1 − (p(x) + p(y))/2 = eq(x, y) + m(x, y).

This proves that e(x, y) = eq(x, y) ⊕ m(x, y).
Conversely let (S, e, p) be the approximate ⊗-similarity defined in Proposi-

tion 6.1 from the fuzzy ⊗-equivalence eq and the function p. Also, set d(x, y) =

1 − eq(x, y) and s(x) = 1 − p(x); then d is a pseudo-metric and, in accordance
with Proposition 9.3, the pair d, s define a ppm-space (S, δs, s). Trivially, the
approximate ⊗-similarity associated with such a space coincides with (S, e, p). �

In accordance with Proposition 6.2, we obtain a geometrical interpretation for the
resemblance relations defined in Proposition 2.2. In fact, these relations are the dual
ones of the ppm-spaces of the formal balls with a fixed diameter.

A second class of examples is furnished by the ppm-spaces defined in Proposi-
tion 9.4.

Proposition 10.3 Consider a pseudo-metric space (M, d) and a fixed natural num-
ber n. Then we obtain an approximate ⊗-similarity by setting

e(x, y) = l[−1](truncn(d(x, y))) = 1 − truncn(d(x, y)) ∧ 1; p(x) = 1 − 2 · 10−n .

Such a ⊗-similarity is a resemblance relation with respect to d.

Notice that, since e(x, y) = 1 for every x, y such that d(x, y) ≤ 10−n , the similarity
so defined is not able to detect small differences.

Finally, we show that the duality defined in Theorem 10.1 gives geometrical ex-
amples of [0, 1]-valued equalities.

Proposition 10.4 Let (S, d) be a pseudo-metric, ε ∈ [0, 1], and consider the func-
tion δε defined by setting

δε(x, y) = d(x, y) + ε.

Then the fuzzy relation e defined by setting

eq(x, y) = l[−1](δ(x, y)),

is a [0, 1]-valued equality.

Proof Properties (e1) and (e2) are evident. To prove (e3) at first observe that

eq(x, y) = (1 − δε(x, y)) ∨ 0 = (1 − d(x, y) − ε) ∨ 0.



224 Giangiacomo Gerla

Since it is not restrictive to assume that eq(x, z) ⊗ (eq(z, z) → eq(y, z)) is different
from 0, we have that eq(x, z) 6= 0 and therefore that eq(x, z) = 1 − δε(x, z) =

1 − d(x, z) − ε > 0. Also, since

eq(x, z) ⊗ (eq(z, z) → eq(y, z)) =

1 − d(x, z) − ε + (eq(y, z) + ε) ∧ 1 − 1 ≤

1 − d(x, z) − ε + (eq(y, z) + ε) − 1 =

− d(x, z) + eq(y, z),

we have, −d(x, z) + eq(y, z) > 0 and therefore eq(y, z) > 0. Then,

eq(x, z) ⊗ (eq(z, z) → eq(y, z)) ≤

− d(x, z) + 1 − d(y, z) − ε ≤ −d(x, y) − ε + 1 ≤

(−d(x, y) − ε + 1) ∨ 0 = eq(x, y).

�

11 Conclusions and Future Works

This paper is addressed mainly to face the “paradoxes” arising from the indistin-
guishability relation and this was done by proposing a weakened form of the tran-
sitivity property in the framework of fuzzy logic. Patently, I do not affirm that the
solution I propose is the definitive one. Indeed, any genuine paradox admits sev-
eral different solutions, in general. Moreover, all these solutions are interesting from
some point of view and no solution is definitive. For example, in set theory the
paradoxes where faced by proposing totally different systems of axioms or mathe-
matical philosophies and we cannot exclude that further answers will be given in the
future. Then the main role of a paradox is to stimulate analyses and discussions and
to suggest new mathematical formalisms.

From a theoretical point of view there is a lot of work to do. As an example,
an important task is to give a suitable notion of morphism and to investigate the
properties of the resulting category. This in analogy with the papers of Höhle. Also,
in order to make the duality established in Theorem 10.1 complete, it should be
opportune to extend the notion of approximate similarity structure by introducing an
order relation over the set S of elements under consideration. Once we interpret the
elements in S as pieces of information, the interpretation of x ≤ y should be that x
is obtained from y by adding further information.

Finally, another interesting task is to investigate the potentialities of the notion
of approximate similarity for applications. Now, assume that the elements in S are
pieces of information on the elements we are interested in and that p is a measure
of the completeness of the information. Then perhaps applications are possible in all
the frameworks in which

(i) the notion of similarity (or distance) plays a basic role,
(ii) there is not complete information on the objects under consideration.

Nevertheless, due to the initial state of my research on this subject, I have no concrete
example to support this claim.
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