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Abstract We prove, by using the concept of schematic interpretation, that the
natural embedding from the category ISL, of intuitionistic sentential pretheories
and i-congruence classes of morphisms, to the category CSL, of classical senten-
tial pretheories and c-congruence classes of morphisms, has a left adjoint, which
is related to the double negation interpretation of Gödel-Gentzen, and a right ad-
joint, which is related to the Law of Excluded Middle. Moreover, we prove that
from the left to the right adjoint there is a pointwise epimorphic natural trans-
formation and that since the two endofunctors at CSL, obtained by adequately
composing the aforementioned functors, are naturally isomorphic to the identity
functor for CSL, the string of adjunctions constitutes an adjoint cylinder. On
the other hand, we show that the operators of Lindenbaum-Tarski of formation
of algebras from pretheories can be extended to equivalences of categories from
the category CSL, respectively, ISL, to the category Bool, of Boolean algebras,
respectively, Heyt, of Heyting algebras. Finally, we prove that the functor of
regularization from Heyt to Bool has, in addition to its well-known right adjoint
(that is, the canonical embedding of Bool into Heyt) a left adjoint, that from the
left to the right adjoint there is a pointwise epimorphic natural transformation,
and, finally, that such a string of adjunctions constitutes an adjoint cylinder.
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1 Introduction

Sentential logics, as any other logics, as is well known, can be investigated at least
from two points of view, the syntactical or proof-theoretic and the semantical or
model-theoretic. Both are, usually, strongly related through the Lindenbaum-Tarski
operators, which associate to every theory in a sentential logic an algebraic construct
of some definite species and this in such a way that the outcome is a representation
of the algebraic constructs into the logical ones.

On the other hand, on some occasions, it happens that for a given couple of logical
systems, as, for example, for the couple formed by (CSL,Bool) and (ISL,Heyt)—
where CSL and ISL are the categories briefly described in the abstract and which
will be formally defined in Section 2—it can be proved that there are adjunctions
both between the proof-theoretic components and between the model-theoretic com-
ponents of them, as is the case, for instance, whenever there are natural interpreta-
tions between the sets of formulas of the logical systems involved as well as naturally
defined functors among the algebraic categories underlying them.

Our objective in this article will be to confirm the above by investigating a particu-
lar case, concretely that of classical and intuitionistic sentential logics. Thus, toward
this goal, in Section 2, after defining the categories of classical and intuitionistic
sentential pretheories, denoted, respectively, by Pthc and Pthi, and having proved
the existence of full and essentially surjective functors `tc from Pthc to Bool, the
category of Boolean algebras and (Boolean) homomorphisms, and `ti from Pthi to
Heyt, the category of Heyting algebras and (Heyting) homomorphisms, we define
two congruences ≡c on Pthc and ≡i on Pthi, and from them we obtain the func-
tors of Lindenbaum-Tarski LTc from CSL = Pthc/ ≡c, the category of classical
sentential pretheories (and c-congruence classes of morphisms), to Bool, and LTi
from ISL = Pthi/ ≡i, the category of intuitionistic sentential pretheories (and i-
congruence classes of morphisms), to Heyt. In this way the well-known operators
of Lindenbaum-Tarski have been extended to functors; that is, they not only take
as arguments pretheories giving as values corresponding algebraic constructs, but
they also operate, in a natural way, on the morphisms between pretheories giving as
values corresponding homomorphisms between the associated algebraic constructs.
Moreover, it happens that both functors of Lindenbaum-Tarski are, as a matter of
fact, equivalences of categories.

In Section 3, from a convenient full subcategory of the category ALog(6) of
abstract logics and logical morphisms between abstract logics defined by Brown and
Suszko in [2], p. 19, and from the compact entailment systems for classical and
intuitionistic sentential logics, we define, from the standpoint of category theory,
the concept of schematic interpretation between classical and intuitionistic sentential
logics. In Section 4, the concept of schematic interpretation will be applied to prove
that there are two adjunctions,

K a J : CSL / ISL and J a G : ISL / CSL,

with the functor K , which embodies the category-theoretic content of the double
negation interpretation of Gödel-Gentzen from classical to intuitionistic sentential
logic, and the functor G, which is related to the Law of Excluded Middle, full em-
beddings from CSL to ISL, and the functor J injective on objects from ISL to CSL,
together with a pointwise epimorphic natural transformation ξ from K to G. These
facts allow us to assert that the string of adjunctions K a J a G constitutes, in
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particular, a special case of the concept of adjoint cylinder as defined by Lawvere
in [7], p. 11. Finally, also in Section 4, we show that there is an adjunction,

T a R : Bool / Heyt,

with the functor T : Bool −→ Heyt obtained from the syntactic functor K or by
means of Freyd’s Adjoint Functor Theorem, and R the regularization functor from
Heyt to Bool, which, we recall, is a left adjoint of the canonical embedding I from
Bool to Heyt, together with a pointwise epimorphic natural transformation ζ from T
to I . Again, since T and I are, in addition, full embeddings, this situation allows us
to assert that the string of adjunctions T a R a I constitutes, in particular, a special
case of the concept of adjoint cylinder.

To simplify matters, we agree that the logical signatures of classical and intu-
itionistic sentential logics are identical and denoted by 6. Moreover, for a set (of
variables) X , T6(X) is the free6-algebra on X , and, for ` ∈ { c, i }, Cn`,X is the con-
sequence operator and ``,X the consequence relation for the classical, respectively,
intuitionistic, sentential logic relative to the set of variables X , and if 8 ⊆ T6(X),
where T6(X) is the underlying set of T6(X), then ≡`,8 is the congruence on T6(X)
defined, for every α, β ∈ T6(X), as follows:

α ≡`,8 β iff α ↔ β ∈ Cn`,X (8).

Lastly, for a set A, we agree to denote by Sub(A) the set of all subsets of A and for
a mapping f : A −→ B, by f [·] the operator of direct image formation, that is, the
mapping from Sub(A) to Sub(B) which to a subset X of A assigns its direct image
f [X ] ⊆ B.

In all that follows we use standard concepts and constructions from category the-
ory (see, for example, Mac Lane [9]), classical universal algebra (see, for example,
Cohn [4]), and lattice theory (see, for example, Balbes and Dwinger [1] and Rasiowa
and Sikorski [12]).

2 The Functors of Lindenbaum-Tarski between Categories of
Sentential Pretheories and Algebraic Categories

Logicians are well aware of the fact that the operators of Lindenbaum-Tarski, ex-
plicitly introduced by Tarski in [14], p. 510, yield quotients of algebras of formulas
of given sentential logics by congruences associated to subsets of the algebras of
formulas under consideration. Thus, in particular, given a classical or intuitionis-
tic pretheory (X,8), where X is a set of propositional variables and 8 a subset of
T6(X), not necessarily closed either under the consequence operator Cnc,X or under
Cni,X , the values of the operators of Lindenbaum-Tarski `tc, for classical sentential
logic, and `ti, for intuitionistic sentential logic, at (X,8) are the Boolean algebra
`tc(X,8) = T6(X)/ ≡c,8 and the Heyting algebra `ti(X,8) = T6(X)/ ≡i,8,
respectively. In this way an exact formulation of the connection between, on the one
hand, the classical sentential pretheories and the Boolean algebras and, on the other
hand, the intuitionistic sentential pretheories and the Heyting algebras, is obtained,
but, we remark, only at the object level.
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Our main aim in this section is to show that the operators of Lindenbaum-Tarski
can also be defined in a natural way on suitable morphisms between classical, re-
spectively, intuitionistic, pretheories and that they are compatible with definite con-
gruences on the sets of morphisms between pretheories. This allows us to get, be-
fore taking quotients by the aforementioned congruences, a precise expression of
the connection between the morphisms among classical, respectively, intuitionistic,
pretheories and the corresponding homomorphisms among Boolean, respectively,
Heyting algebras, extending in this way the operators of Lindenbaum-Tarski to func-
tors. Moreover, by identifying the aforementioned morphisms between pretheories
by means of the so-called `-congruences, we get equivalences of categories from the
category of classical sentential pretheories and c-congruence classes of morphisms
to the category Bool and from the category of intuitionistic sentential pretheories and
i-congruence classes of morphisms to the category Heyt.

To attain the aim mentioned above we begin by defining two compact entailment
systems Ec and Ei for classical and intuitionistic propositional logics, respectively.
From here we get, in a natural way, the categories Pthc and Pthi of classical and
intuitionistic sentential pretheories, respectively. Then we prove that there are full
and essentially surjective functors `tc from Pthc to Bool and `ti from Pthi to Heyt.
Finally, by defining suitable congruences ≡c and ≡i on Pthc and Pthi, respectively,
we prove that there are equivalences of categories LTc and LTi from Pthc/ ≡c to
Bool and from Pthi/ ≡i to Heyt, respectively.

For the common logical signature 6 of classical and intuitionistic sentential log-
ics, we denote by Kl(T6) the Kleisli category for T6 = (T6, η, µ), the standard
monad derived from the adjunction T6 a G6 between the category Alg(6), of 6-
algebras and homomorphisms, and the category Set, of sets and mappings, where T6
is the endofunctor G6 ◦T6 . Then, for ` ∈ { c, i }, the triple E` = (Kl(T6),GT6 ,``),
where

1. GT6 is the functor from Kl(T6) to Set which sends an object X in Kl(T6),
that is, a set X , to T6(X), and a morphism f from X to Y in Kl(T6), that is,
a mapping f from X to T6(Y ), to the mapping µY ◦ T6( f ) from T6(X) to
T6(Y ), and

2. `` is a subfunctor of the functor Sub(T6(·)) × T6(·) from Kl(T6) to Set
which sends a set X to Sub(T6(X)) × T6(X) and a morphism f from
X to T6(Y ) to the mapping f ][·] × f ] from Sub(T6(X)) × T6(X) to
Sub(T6(Y )) × T6(Y ), where f ] is the canonical extension of f to the free
6-algebra on X ,

is a compact entailment system; that is, `` satisfies the following conditions:

1. for every X ∈ Kl(T6) and every ϕ ∈ T6(X), {ϕ} ``,X ϕ;
2. for every X ∈ Kl(T6), every 0,1 ⊆ T6(X), and every ϕ ∈ T6(X), if
0 ``,X ϕ and 0 ⊆ 1, then 1 ``,X ϕ;

3. for every X ∈ Kl(T6), every set I , every family (ϕi )i∈I in T6(X), every
0 ⊆ T6(X), and every ψ ∈ T6(X), if, for every i ∈ I , 0 ``,X ϕi , and
0 ∪ {ϕi | i ∈ I } ``,X ψ , then 0 ``,X ψ ;

4. for every morphism f from X to Y in Kl(T6), every 0 ⊆ T6(X), and every
ϕ ∈ T6(X), if 0 ``,X ϕ, then f ][0] ``,Y f ](ϕ);

5. for every X ∈ Kl(T6), every 0 ⊆ T6(X), and every ϕ ∈ T6(X), if we have
that 0 ``,X ϕ, then there exists a finite subset 1 of 0 such that 1 ``,X ϕ.
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To the entailment systems Ec and Ei we associate, respectively, and in a natural way,
certain categories of pretheories as stated in the following definition.

Definition 2.1 For the signature 6 we denote by Pthc the category which has as
objects the classical sentential pretheories, that is, the pairs (X,8) with X a set
and 8 a subset of T6(X), and as morphisms from (X,8) to (Y,1) those homo-
morphisms f : T6(X) −→ T6(Y ) which satisfy f [Cnc,X (8)] ⊆ Cnc,Y (1), that is,
such that, for every γ ∈ T6(X), if 8 `c,X γ , then 1 `c,Y f (γ ). The category Pthi,
of intuitionistic sentential pretheories, is similarly defined.

We point out that, for ` ∈ { c, i }, in the category Pth` any pretheory (X,8) is iso-
morphic to the theory (X,Cn`,X (8)), where, we recall, a pretheory (X,8) is called
a theory exactly if 8 = Cn`,X (8). Indeed we have that the category Pth` is equiv-
alent, but not isomorphic, to the full subcategory Th` of Pth` determined by the
theories. However, we maintain the distinction between pretheories and theories,
because the concept of pretheory allows one to make finer distinctions that are im-
portant for proof-theoretic and computational purposes.

On the other hand, by composing the projection functor P` from Pth` to Kl(T6),
which sends a pretheory (X,8) to X and a morphism f ∈ HomPth`((X,8), (Y,1))
to f ◦ ηX ∈ HomKl(T6)(X, Y ), with the functor GT6 from Kl(T6) to Set, we obtain
an extension of the functor GT6 to a functor G`,T6 from Pth` to Set. Moreover, we
obtain an extension of the functor `` from Kl(T6) to Set to a functor, also denoted
by ``, from Pth` to Set by defining, for every (X,8) ∈ Pth`, every 1 ⊆ T6(X),
and every γ ∈ T6(X), the binary relation 1 ``,(X,8) γ as follows:

1 ``,(X,8) γ iff 1 ∪8 ``,X γ.

Since it will be useful in what follows, we gather in the following proposition some
characterizations of the concept of morphism between pretheories.

Proposition 2.2 Let (X,8) and (Y,1) be two sentential pretheories, both intu-
itionistic or both classical, and f a homomorphism from T6(X) to T6(Y ). Then,
for ` ∈ { c, i }, the following conditions are equivalent:

1. the homomorphism f is a morphism from (X,8) to (Y,1);
2. the homomorphism f is such that f [8] ⊆ Cn`,Y (1);
3. for every α, β ∈ T6(X), if we have that α ↔ β ∈ Cn`,X (8), then we also

have that f (α) ↔ f (β) ∈ Cn`,Y (1).

Following this we prove that there are full and essentially surjective, but not neces-
sarily faithful, functors from Pthc to Bool and from Pthi to Heyt, rendering catego-
rial the well-known Lindenbaum-Tarski representations of some algebraic constructs
through logical systems.

Proposition 2.3 There are full and essentially surjective functors `tc from Pthc to
Bool and `ti from Pthi to Heyt.

Proof We restrict ourselves to the classical case, because the intuitionistic one is
formally identical. We define the functor `tc as follows.

1. On objects: If (X,8) is a classical sentential pretheory, then

`tc(X,8) = T6(X)/ ≡c,8,

that is, the quotient6-algebra of T6(X) by the congruence ≡c,8 on it, which,
as is well known, is a Boolean algebra.
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2. On morphisms: If f is a morphism from (X,8) to (Y,1) in Pthc, then
Ker(pr≡c,8

) ⊆ Ker(pr≡c,1
◦ f ), where pr≡c,8

is the canonical projection from
T6(X) to T6(X)/ ≡c,8 and pr≡c,1

the canonical projection from T6(Y )
to T6(Y )/ ≡c,1. Hence there exists a unique homomorphism, denoted
by `tc( f ), from the Boolean algebra T6(X)/ ≡c,8 to the Boolean algebra
T6(Y )/ ≡c,1 such that the homomorphisms pr≡c,1

◦ f and `tc( f ) ◦ pr≡c,8
from T6(X) to T6(Y )/ ≡c,1 are identical.

So defined `tc is an essentially surjective functor from Pthc to Bool, that is, a functor
such that, for every Boolean algebra B, there exists a classical sentential pretheory
(X,8) such that `tc(X,8) is isomorphic to B (a proof of this assertion can be found,
for example, in Monk [10], Theorem 9.60, p. 160).

Following this we prove that `tc is full. Let g be a Boolean homomorphism
from `tc(X,8) = T6(X)/ ≡c,8 to `tc(Y,1) = T6(Y )/ ≡c,1. Then, because the
canonical projection pr≡c,1 is an epimorphism and the 6-algebra T6(X) is projec-
tive (since it is free), there exists a homomorphism f from T6(X) into T6(Y ) such
that the homomorphisms pr≡c,1

◦ f and g ◦ pr≡c,8
from T6(X) to T6(Y )/ ≡c,1

are identical. Moreover, f is a morphism from (X,8) to (Y,1). For suppose that
α, β ∈ T6(X) are such that α ≡c,8 β. Then g([α]≡c,8) = g([β]≡c,8). There-
fore, [ f (α)]≡c,1 = [ f (β)]≡c,1 ; that is, f (α) ≡c,1 f (β). Finally, it is obvious that
`tc( f ) = g. Hence, as we wanted to prove, the functor `tc is full. �

As we have said above neither `tc nor `ti is necessarily faithful; however, we can get
equivalences of categories from them by defining convenient congruences ≡c and ≡i
on the categories Pthc and Pthi, respectively.

Definition 2.4 We denote, for ` ∈ { c, i }, by ≡` the binary relation on the set of
morphisms of Pth` defined, for every f, g ∈ Mor(Pth`), as follows:

f ≡` g iff


d0( f ) = (X,8) = d0(g), &
d1( f ) = (Y,1) = d1(g), &
pr≡`,1

◦ f = pr≡`,1
◦ g,

where d0 and d1 are, among the structural mappings of Pth`, precisely those which
assign to a morphism of Pth` its domain and codomain, respectively. If f and g are
in the relation ≡`, then we say that f and g are `-congruent.

Proposition 2.5 The relation ≡`, for ` ∈ { c, i }, defined on the set of morphisms of
Pth`, is a congruence on the category Pth`.

Proof It is easy to check that the relation ≡` is an equivalence and right compatible
with the composition of morphisms. In order to prove the left compatibility of the re-
lation ≡`, let f, g : (X,8) −→ (Y,1) be a coterminal pair of parallel morphisms in
Pth` such that f ≡` g and let h : (Y,1) −→ (Z ,2) be another morphism in Pth`.
Then pr≡`,1

◦ f = pr≡`,1
◦ g and the homomorphisms pr≡`,2

◦ h and `t`(h) ◦ pr≡`,1

from T6(Y ) to T6(Z)/ ≡`,2 are identical. Hence pr≡`,2
◦ (h ◦ f ) = pr≡`,2

◦ (h ◦g);
therefore, h ◦ f ≡` h ◦ g. �

This proposition has as an immediate consequence the following corollary.

Corollary 2.6 The quotient category CSL = Pthc/ ≡c, called the category of clas-
sical sentential pretheories (and c-congruence classes of morphisms), is equivalent
to Bool, and we call the equivalence of categories LTc from CSL to Bool the functor
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of Lindenbaum-Tarski for the classical sentential logic. Analogously, the quotient
category ISL = Pthi/ ≡i, called the category of intuitionistic sentential pretheo-
ries (and i-congruence classes of morphisms), is equivalent to Heyt, and we call the
equivalence of categories LTi from ISL to Heyt the functor of Lindenbaum-Tarski
for the intuitionistic sentential logic.

Remark 2.7 Since the operators of Lindenbaum-Tarski are really equivalences of
categories, the quotient categories of the type Pth/ ≡, which have an essentially log-
ical character, can be investigated indirectly through the algebraic categories canon-
ically equivalent to them. Thus, for example, since Bool and Heyt are bicomplete
categories, we can assert that CSL and ISL also are bicomplete. On the other hand,
since Bool and Heyt are Mal’cev varieties, we have, in a derived way, cohomol-
ogy theories for CSL and ISL, as in Smith [13]; therefore, the extensions of one
pretheory by another, as well as the obstructions to such extensions, can also be
cohomologically investigated. Inasmuch as the indicated topics do not fall under
the mainstream of this article, we leave the corresponding development for a future
work.

3 Schematic Interpretations

Our objective in this section is to define, from the standpoint of category theory, a
concept of transformation, which we call schematic interpretation, between senten-
tial logics under which some, although not all, of the historical interpretations from
classical to intuitionistic (or modal) sentential logics fall. To attain this aim, we begin
by defining a full subcategory of the category ALog(6) of abstract logics and logical
morphisms, defined by Brown and Suszko in [2], p. 19. But before that, and to make
the article self-contained, we recall that ALog(6) has as objects the abstract logics,
that is, the ordered pairs (A,Cn), where A is a 6-algebra and Cn a closure operator
on A, the underlying set of A, and as morphisms from an abstract logic (A,Cn) to
another (A′,Cn′) the logical morphisms, that is, the homomorphisms f from A to
A′ such that, for every subset X of A, f [Cn(X)] ⊆ Cn′( f [X ]).

Definition 3.1 We denote by ALogs,a(6) the category which has as objects pre-
cisely those abstract logics (A,Cn) which are structural and algebraic, that is, those
for which the closure operator Cn on A satisfies the following two properties:

1. Cn is structural; that is, for every endomorphism f of A and every subset X
of A, f [Cn(X)] ⊆ Cn( f [X ]), and

2. Cn is algebraic; that is, for every subset X of A, Cn(X) =
⋃

K∈Subf(X) Cn(K ),
where Subf(X) is the set of all finite subsets of X ,

and as morphisms from a structural algebraic abstract logic (A,Cn) to another
(A′,Cn′) the logical morphisms.

From the definition of the category ALogs,a(6) it follows immediately that it is
a full subcategory of the category ALog(6) of Brown and Suszko, and the reason
why we work in this section in such a subcategory instead of working in ALog(6)
rests ultimately upon the fact that classical and intuitionistic sentential logics, as is
well known, have structural and algebraic consequence operators.

After having defined the category ALogs,a(6), we derive from the compact en-
tailment system E` = (Kl(T6),GT6 ,``), for ` ∈ { c, i }, described, we recall, at
the beginning of Section 2, the functor F`, for ` ∈ { c, i }, from Set to ALogs,a(6)
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which assigns to a set X the abstract logic (T6(X),Cn`,X ) and to a mapping f
from X to Y its canonical extension T6( f ) from T6(X) to T6(Y ), which is a log-
ical morphism from (T6(X),Cn`,X ) to (T6(Y ),Cn`,Y ). Moreover, we notice that
from ALogs,a(6) to Alg(6) we have the forgetful functor U6 which sends an object
(A,Cn) of ALogs,a(6) to A and a logical morphism f from (A,Cn) to (A′,Cn′) to
the homomorphism f from A to A′, and it happens that U6 ◦ F` = T6 .

After these preliminaries, we define the concept of schematic interpretation from
the pair (6,Fc) to the pair (6,Fi), which is related to the concepts of interpre-
tation of Prawitz and Malmnäs in [11] and of Wójcicki in [15], p. 69. But be-
fore that, we choose, once and for all, an effectively enumerated set of variables
V = { vn | n ∈ N } (isomorphic to N) and make the following observations.

1. If d is a derivor from a signature 6 to another 6′, that is, a mapping from 6
to T6′(V ) such that, for every n ∈ N and every formal operation σ ∈ 6n , the
term d(σ ) ∈ T6′(↓vn), where ↓vn = { v0, . . . , vn−1 } ⊆ V , then the map-
ping d determines a functor d∗, from the category Alg(6′) to the category
Alg(6) that assigns to a 6′-algebra A′ the derived 6-algebra d∗(A′) whose
underlying set is that of A′ and whose structural operations are the term op-
erations of the 6′-algebra A′ associated to the terms d(σ ), for every formal
operation σ in 6. In our case, since we have agreed that the signatures of
classical and intuitionistic sentential logics are the same, we will speak of an
endoderivor.

2. If P ∈ T6′(↓v1) is a term in the variable v0 ∈ V , then P induces a natural
endotransformation P6

′

of the functor G6′ ◦ T6′ that to a set X assigns the
term operation P6

′,X
: T6′(X) −→ T6′(X).

Definition 3.2 A schematic interpretation from (6,Fc) to (6,Fi) is an ordered
triple (d, P, t), where d is an endoderivor of 6, P ∈ T6(↓v1), and t a natural trans-
formation from Fc to D ◦ Fi, where D is the endofunctor of ALogs,a(6) (uniquely
determined by d) which sends an object (A,Cn) of ALogs,a(6) to (d∗(A),Cn) such
that

U6 ◦ D = d∗
◦ U6 and ((G6 ◦ U6) ∗ t) ◦ η6 = P6 ◦ η6,

where η6 is the unit of T6 a G6 and (G6 ◦U6)∗ t is the horizontal composition of
the natural transformation t and the natural transformation associated to the functor
G6 ◦ U6 .

Since the notion of strong subderived system, defined by Cleave in [3], p. 63, is used
immediately below, we recall it next for the sake of completeness.

Definition 3.3 For an abstract logic (A′,Cn′), with A′ a 6′-algebra, and a derivor
d from 6 to 6′, an abstract logic (A,Cn), with A a 6-algebra, is said to be a strong
subderived system of (A′,Cn′) if A is a subalgebra of d∗(A′) and, for every subset
X of A, Cn(X) = A ∩ Cn′(X).

Proposition 3.4 The interpretation (dG , PG , tG) from classical to intuitionistic
sentential logic defined by Gödel in [6] (and slightly transformed) as follows,

1. dG is the mapping from 6 to T6(V ) which assigns to ¬, dG(¬) = ¬ v0, to
∧, dG(∧) = v0 ∧ v1, to ∨, dG(∨) = ¬(¬ v0 ∧ ¬ v1), and, finally, to →,
dG(→) = ¬(v0 ∧ ¬ v1),

2. PG is ¬¬ v0,
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3. for every set X, tG
X , the component of tG at X, is

tG
X (γ ) =



¬¬ x, if γ = x(∈ X);
¬ tG

X (ϕ), if γ = ¬ϕ;
tG
X (ϕ) ∧ tG

X (ψ), if γ = ϕ ∧ ψ;
¬(¬ tG

X (ϕ) ∧ ¬ tG
X (ψ)), if γ = ϕ ∨ ψ;

¬(tG
X (ϕ) ∧ ¬ tG

X (ψ)), if γ = ϕ → ψ ,

is schematic and such that, for each set X, each ψ ∈ T6(X), and each 8 ⊆ T6(X),
if tG

X (ψ) ∈ Cni,X (tG
X [8]), then ψ ∈ Cnc,X (8). Moreover, by [3], p. 103, for each set

X, (T6(X),Cnc,X ) is isomorphic to a strong subderived system of (T6(X),Cni,X ).

Remark 3.5 The schematic interpretations of Gödel, (dG , PG , tG), and Gentzen,
denoted by (dGz, PGz, tGz), this last defined by Gentzen in [5], p. 532, as follows,

1. dGz is the mapping from 6 to T6(V ) which assigns to ¬, dGz(¬) = ¬ v0,
to ∧, dGz(∧) = v0 ∧ v1, to ∨, dGz(∨) = ¬(¬ v0 ∧ ¬ v1), and, finally, to →,
dGz(→) = v0 → v1,

2. PGz is ¬¬ v0,
3. for every set X , tGz

X , the component of tGz at X , is

tGz
X (γ ) =



¬¬ x, if γ = x(∈ X);
¬ tGz

X (ϕ), if γ = ¬ϕ;
tGz
X (ϕ) ∧ tGz

X (ψ), if γ = ϕ ∧ ψ ;
¬(¬ tGz

X (ϕ) ∧ ¬ tGz
X (ψ)), if γ = ϕ ∨ ψ ;

tGz
X (ϕ) → tGz

X (ψ), if γ = ϕ → ψ ,

as is well known, are intuitionistically equivalent; that is, for every set X and every
ψ ∈ T6(X), it happens that `i,X tG

X (ψ) ↔ tGz
X (ψ) (for a proof see, for example,

Luckhardt [8], pp. 42–43).
If we agree, on the one hand, that P+ is the endofunctor of Set which assigns to a

set X its power set P+(X) = Sub(X) and to a mapping f from X to Y the mapping
P+( f ) = f [·] from Sub(X) to Sub(Y ), and, on the other hand, that, for every set
X , {·}T6(X) is the mapping from T6(X) to Sub(T6(X)) which to a ψ ∈ T6(X) as-
signs {ψ}, then, from the standpoint of category theory, the intuitionistic equivalence
mentioned above can be explained by saying that the natural endotransformation
ε = (Cni,X )X∈Set of P+

◦ T6 is such that ε ◦ δG
= ε ◦ δGz , where δG and δGz are the

natural transformations (tG
X [·] ◦ {·}T6(X))X∈Ob(Set) and (tGz

X [·] ◦ {·}T6(X))X∈Ob(Set)
from T6 to P+

◦ T6 , respectively. Indeed, for every set X and every ψ ∈ T6(X), it
happens that

(ε ◦ δG)X (ψ) = Cni,X ({tG
X (ψ)}) and (ε ◦ δGz)X (ψ) = Cni,X ({tGz

X (ψ)}).

Hence, (ε ◦ δG)X (ψ) = (ε ◦ δGz)X (ψ); therefore, ε ◦ δG
= ε ◦ δGz .
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4 Adjoint Cylinders between Classical and Intuitionistic Sentential Logics and
between Boolean and Heyting Algebras

In this section we prove, first and foremost, that there are two adjunctions,

K a J : CSL / ISL and J a G : ISL / CSL,

between the categories CSL and ISL, with the functor K , which embodies the
category-theoretic content of the schematic interpretation of Gödel-Gentzen from
classical to intuitionistic sentential logic, and the functor G, which is related to the
Law of Excluded Middle, full embeddings from CSL to ISL, and the functor J in-
jective on objects from ISL to CSL. Moreover, we prove that there exists a pointwise
epimorphic natural transformation ξ from K to G.

Since not only are the three involved functors adjoint, but moreover the two com-
posites at CSL are naturally isomorphic to the identity functor for CSL, because K
and G are full embeddings, we have an example of a special case of the concept of
adjoint cylinder as defined by Lawvere in [7], thus confirming Mac Lane’s slogan
([9], Preface), “Adjoint functors arise everywhere,” and what probably is more im-
portant in this case, Lawvere’s slogan ([7], p. 11), “Adjoint cylinders (satisfying the
additional conditions mentioned above) are mathematical models for many instances
of the Unity and Identity of Opposites.”

Following this, and connected with the equivalences of Lindenbaum-Tarski and
the adjunctions mentioned above, we prove in a derived way that there exists an
adjunction,

T a R : Bool / Heyt,
with R the regularization functor from Heyt to Bool, which we recall is a left adjoint
of the canonical full embedding I from Bool to Heyt, and T : Bool −→ Heyt the
functor obtained as the composition LTi ◦ K ◦ Qc, where Qc is an arbitrary but
fixed inverse equivalence to the functor LTc, of Lindenbaum-Tarski for the classical
sentential logic. However, before proving that there exists such an adjunction we
state that the functors R ◦LTi and LTc ◦ J from ISL to Bool are naturally isomorphic.
This result has, on the one hand, a certain intrinsic value and, on the other hand, it is
necessary to state one of the proofs of the aforementioned adjunction, precisely that
one which proceeds by using natural isomorphisms between hom-sets. Moreover,
we prove that there exists a pointwise epimorphic natural transformation ζ from T
to I .

Proposition 4.1 There are two adjunctions,

K a J : CSL / ISL and J a G : ISL / CSL,

with K and G full embeddings from CSL to ISL, and J injective on objects from
ISL to CSL, together with a pointwise epimorphic natural transformation ξ from K
to G.

Proof We define the functor J : ISL −→ CSL as follows.
1. On objects: If (X,8) is an intuitionistic sentential pretheory, then

J (X,8) = (X,8).

2. On morphisms: If [ f ]≡i is a morphism from (X,8) to (Y,1) in ISL, then
J ([ f ]≡i) = [ f ]≡c .
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For the functor J we restrict ourselves to prove that it is well defined on the mor-
phisms; that is, if [ f ]≡i is a morphism from (X,8) to (Y,1) in ISL, then [ f ]≡c

is a morphism from (X,8) to (Y,1) in CSL (that is, for every ψ in T6(X), from
8 `c,X ψ , it follows that1 `c,Y f (ψ)), since it is not particularly difficult to verify
that J preserves identity morphisms and the composition of morphisms.

Let us suppose that [ f ]≡i is a morphism from (X,8) to (Y,1) in ISL and that,
for ψ in T6(X), 8 `c,X ψ . Then, since f is a homomorphism from T6(X)
to T6(Y ), we have that f [8] `c,Y f (ψ), but it happens, on the one hand, that
f [8] ⊆ Cni,Y (1), because by hypothesis [ f ]≡i is a morphism from (X,8) to (Y,1)
in ISL, and, on the other hand, that Cni,Y (1) ⊆ Cnc,Y (1), therefore 1 `c,Y f (ψ).

After having defined the functor J : ISL −→ CSL, which is neither faithful nor
full, but which is obviously injective on the objects, we prove that J has a right
adjoint G. To attain this goal, let (X,8) be a classical sentential pretheory. Then for
the intuitionistic sentential pretheory G(X,8) = (X,8 ∪ LEMX ), where LEMX is
the Law of Excluded Middle (relative to X), that is, the set {ψ ∨¬ψ | ψ ∈ T6(X) },
and for [idT6(X)]≡c (which is a morphism from J (G(X,8)) to (X,8), since, for
every ψ in T6(X), it happens that 8 ∪ LEMX `c,X ψ if and only if 8 `c,X ψ),
we have that, for every intuitionistic sentential pretheory (Y,1) and every morphism
[g]≡c from J (Y,1) to (X,8), there exists a unique morphism [h]≡i from (Y,1) to
G(X,8) such that the following diagram commutes.

J (Y,1)

J ([h]≡i )

��

[g]≡c

))SSSSSSSSSSSSSSS

J (G(X,8))
[idT6(X)]≡c

// (X,8)

Indeed, put [h]≡i = [g]≡i and let us check that [g]≡i is a morphism from (Y,1)
to G(X,8) in ISL; that is, for every ψ in T6(Y ), from 1 `i,Y ψ , it follows that
8 ∪ LEMX `i,X g(ψ).

Let ψ be an arbitrary element of T6(Y ) and let us suppose that 1 `i,Y ψ . Then
1 `c,Y ψ . Hence, keeping in mind that [g]≡c is a morphism from J (Y,1) to (X,8)
in CSL, 8 `c,X g(ψ). But we have, by Theorem 13.11, p. 410, stated by Rasiowa
and Sikorski in [12], that 8 `c,X g(ψ) is equivalent to 8 ∪ LEMX `i,X g(ψ);
therefore, 8 ∪ LEMX `i,X g(ψ).

It is easy to verify that [h]≡i = [g]≡i is, in fact, the unique morphism from (Y,1)
to G(X,8) such that [idT6(X)]≡c ◦ J ([h]≡i) = [g]≡c . On the other hand, the functor
G is a full embedding from CSL to ISL because it has a left adjoint, J , and the
counit of the adjunction J a G is, obviously, an isomorphism of functors.

Our next goal is to define a functor K : CSL −→ ISL which has J as a right
adjoint. Let K be defined as follows.

1. On objects: If (X,8) is a classical sentential pretheory, then

K (X,8) = (X, tX [8]),

t being the underlying natural transformation of an arbitrary, but fixed,
schematic interpretation from classical to intuitionistic sentential logic.

2. On morphisms: If [ f ]≡c is a morphism from (X,8) to (Y,1) in CSL, then
K ([ f ]≡c) = [ f ]≡i .



196 Climent and Soliveres

For the functor K , as was the case for J , we also restrict ourselves to prove that it
is well defined on the morphisms; that is, if [ f ]≡c is a morphism from (X,8) to
(Y,1) in CSL, then [ f ]≡i is a morphism from (X, tX [8]) to (Y, tY [1]) in ISL (that
is, for every ψ in T6(X), from tX [8] `i,X ψ , it follows that tY [1] `i,Y f (ψ)),
since it is not particularly difficult to verify that K preserves identity morphisms and
the composition of morphisms.

Let us suppose that [ f ]≡c is a morphism from (X,8) to (Y,1) in CSL and that,
for ψ in T6(X), tX [8] `i,X ψ . Then, taking into account that f is a homomorphism
from T6(X) to T6(Y ), we can affirm that f [tX [8]] `i,Y f (ψ). However, what we
want to show is that tY [1] `i,Y f (ψ). But to attain this goal it suffices, by transitiv-
ity, to prove, for every ϕ in 8, tY [1] `i,Y f (tX (ϕ)); that is, tY [1] `i,Y f [tX [8]].

One way to state that tY [1] `i,Y f [tX [8]] is as follows. On the one hand, for each
ϕ in 8, it happens that 8 `c,X ϕ; therefore, for each ϕ in 8, since, by hypothesis,
[ f ]≡c is a morphism from (X,8) to (Y,1), it also happens that 1 `c,Y f (ϕ). But
tY : (T6(Y ),Cnc,Y ) −→ (d∗(T6(Y )),Cni,Y ); hence tY [1] `i,Y tY ( f (ϕ)). On the
other hand, from the fact that f is a homomorphism and taking into account that, for
every ϕ in 8, `i,X tX (ϕ) ↔ ¬¬ϕ, we conclude that `i,Y f (tX (ϕ)) ↔ ¬¬ f (ϕ).
But also `i,Y tY ( f (ϕ)) ↔ ¬¬ f (ϕ); hence, `i,Y f (tX (ϕ)) ↔ tY ( f (ϕ)). Therefore,
for every ϕ in 8, tY [1] `i,Y f (tX (ϕ)) as we wanted to show. From this last result
and by transitivity we can finally assert that tY [1] `i,Y f (ψ).

Before proving that K has J as a right adjoint, it seems to us appropriate to state
otherwise that tY [1] `i,Y f [tX [8]]. As above, from 8 `c,X ϕ, for every ϕ in 8,
it follows that 1 `c,Y f [8], because [ f ]≡c is a morphism from (X,8) to (Y,1).
Thus ¬¬1 `i,Y ¬¬ f [8], where ¬¬1 is the set {¬¬ δ | δ ∈ 1} and ¬¬ f [8] is
the set {¬¬ f (ϕ) | ϕ ∈ 8}. But, bearing in mind that f is a homomorphism, we have
that ¬¬ f [8] = f [¬¬8], where f [¬¬8] is the set { f (¬¬ϕ) | ϕ ∈ 8}; therefore,
since it happens that `i,Y tY [1] ↔ ¬¬1, we conclude that tY [1] `i,Y f [¬¬8].
On the other hand, for every ϕ in 8, it is the case that `i,X tX (ϕ) ↔ ¬¬ϕ; thus, for
every ϕ in 8, `i,Y f (tX (ϕ)) ↔ f (¬¬ϕ), or, what is equivalent, for every ϕ in 8,
`i,Y f (tX (ϕ)) ↔ ¬¬ f (ϕ). Hence, as we wanted to state, tY [1] `i,Y f [tX [8]].

Following this we prove that K has J as a right adjoint. Let (X,8) be an
intuitionistic sentential pretheory. Then for the classical sentential pretheory
J (X,8) = (X,8) and for [idT6(X)]≡i , which is a morphism from K (J (X,8)) to
(X,8) (since, for every ψ in T6(X), from tX [8] `i,X ψ it follows that 8 `i,X ψ ,
because, for every ϕ in 8, it happens that 8 `i,X tX (ϕ)) we have that, for every
classical sentential pretheory (Y,1) and every morphism [g]≡i from K (Y,1) to
(X,8), there exists a unique morphism [h]≡c from (Y,1) to J (X,8) such that the
following diagram commutes.

K (Y,1)

K ([h]≡c )

��

[g]≡i

))SSSSSSSSSSSSSSS

K (J (X,8))
[idT6(X)]≡i

// (X,8)

Indeed, put [h]≡c = [g]≡c and let us check that [g]≡c is a morphism from (Y,1) to
J (X,8) in CSL; that is, for every ψ in T6(Y ), if 1 `c,Y ψ , then 8 `c,X g(ψ).

Let us suppose that, for ψ in T6(Y ), 1 `c,Y ψ . Then, since tY is a morphism
from (T6(Y ),Cnc,Y ) to (d∗(T6(Y )),Cni,Y ), we have that tY [1] `i,Y tY (ψ), and
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from here, and taking into account that [g]≡i is a morphism from K (Y,1) to (X,8),
we immediately obtain that 8 `i,X g(tY (ψ)). Therefore, 8 `c,X g(tY (ψ)). How-
ever, what we want to show is that 8 `c,X g(ψ). But to attain this goal it suffices,
by transitivity, to show that, for every ψ in T6(Y ), `c,X g(ψ) ↔ g(tY (ψ)).

One way to prove this last statement is to proceed as follows. It happens
that, for ψ in T6(Y ), `i,Y tY (ψ) ↔ ¬¬ψ . Hence, bearing in mind that
g is a homomorphism, it also happens that `i,Y g(tY (ψ)) ↔ ¬¬g(ψ); thus
`c,X g(tY (ψ)) ↔ ¬¬g(ψ), but `c,X g(ψ) ↔ ¬¬g(ψ). Therefore, `c,X g(ψ)
↔ g(tY (ψ)) as we wanted to show. From this last result and by transitivity we can
finally assert that 8 `c,X g(ψ).

It is easy to show that [h]≡c is the unique morphism from (Y,1) to J (X,8)
such that [idT6(X)]≡i ◦ K ([h]≡c) = [g]≡i . On the other hand, the functor K is a
full embedding from CSL to ISL because it has a right adjoint, J , and the unit of the
adjunction K a J is, obviously, an isomorphism of functors (that is, J ◦ K and IdCSL
are isomorphic). Let us point out that although the functor K has been defined by
using an arbitrary but fixed schematic interpretation, this fact is, from the standpoint
of category theory, inessential, because it will necessarily be naturally isomorphic to
any other left adjoint of J .

Next let ξ = (ξ(X,8))(X,8)∈Ob(CSL) be the family defined, for every classical sen-
tential pretheory (X,8), as ξ(X,8) = [idT6(X)]≡i . Then ξ(X,8) is a morphism from
the intuitionistic sentential pretheory K (X,8) = (X, tX [8]) to the intuitionistic
sentential pretheory G(X,8) = (X,8 ∪ LEMX ). Let us suppose that, for ψ in
T6(X), tX [8] `i,X ψ . Then tX [8] `c,X ψ ; hence, by [12] (Theorem 13.11, p. 410)
tX [8] ∪ LEMX `i,X ψ . But 8 `i,X ¬¬8 and ¬¬8 `i,X tX [8]. Therefore,
8 ∪ LEMX `i,X ψ . Moreover, keeping in mind the definition of the congruence ≡i
(stated in Definition 2.4), it is evident that ξ(X,8) is an epimorphism.

Finally, it is not difficult to show that ξ , as defined, is actually a natural transfor-
mation from K to G, and given that for every classical sentential pretheory (X,8)
the component of ξ at (X,8) is an epimorphism, it is, in addition, pointwise epimor-
phic. Indeed, since J ◦ K is naturally isomorphic to IdCSL, ξ is simply η ∗ K , where
η is the unit of the adjunction J a G. �

Since the functors G and K from CSL to ISL are full embeddings and both have
the same functor J as a left and a right adjoint, respectively, we have obtained an
instance of a special case of the concept of adjoint cylinder of Lawvere, and we
could say that, from the syntactical, or proof-theoretic, point of view, the intellectual
reflection of Gödel, and others, on the relationships between the classical and intu-
itionistic sentential logics, becomes category-theoretically reflected by the fact that
CSL can be identified with a full reflective and a full co-reflective subcategory of
ISL. Moreover, the category ISL is subordinated to CSL by virtue of the existence
of the natural transformation ξ from the functor K to the functor G.

On the semantical, or model-theoretic, side, since the variety of Boolean algebras
is a subvariety of the variety of Heyting algebras, we have the full embedding I from
the category Bool to the category Heyt, which is, in addition, injective on the objects.
On the other hand, we have the regularization functor R from the category Heyt to
the category Bool which, we recall, is defined as follows.

1. On objects: If H is a Heyting algebra, then R(H) is the Boolean algebra of
the regular elements of H. Thus R(H) has as elements those elements a of
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H , the underlying set of H, such that a = ¬¬ a, and as structural operations
∧R(H), ∨R(H), and ¬R(H) those defined, for every x, y ∈ R(H), respectively,
as x ∧R(H) y = x ∧ y, x ∨R(H) y = ¬¬(x ∨ y), and ¬R(H)x = ¬x .

2. On morphisms: If f is a Heyting homomorphism from H to H′, then R( f ) is
the bi-restriction of f to R(H) and R(H′).

The functor R is a left adjoint of I and such that, for every Heyting algebra H, the
value of r , the unit of the adjunction R a I , at H (that is, the homomorphism rH
from H to I (R(H)) which sends a to ¬¬ a, for every a ∈ H ) is surjective and, con-
sidered as a functor between ordered sets, a left adjoint of the canonical embedding
of I (R(H)) into H. Additionally, in this case, and mainly as a consequence of the
existence of the functor K from CSL to ISL, it happens that the reflector R has, in
its turn, a left adjoint T .

But before proving it we need to establish that there exists a natural isomorphism
between the functors R ◦ LTi and LTc ◦ J from ISL to Bool. We notice that, as
a matter of fact, this is exactly the categorial rendering of Theorem 13.10, p. 410,
stated by Rasiowa and Sikorski in [12].

Lemma 4.2 Let (Y,1) be an intuitionistic sentential pretheory. Then there is a
natural isomorphism from the Boolean algebra R(LTi(Y,1)) = R(T6(Y )/ ≡i,1) to
the Boolean algebra LTc(J (Y,1)) = T6(Y )/ ≡c,1. Therefore, for every classical
sentential pretheory (X,8), since (X,8) ∼= J (K (X,8)) = (X, tX [8]), there is a
natural isomorphism from R(T6(X)/ ≡i,tX [8]) to T6(X)/ ≡c,8.

Proof From T6(Y )/ ≡i,1 to I (R(T6(Y )/ ≡i,1)) we have the canonical surjective
homomorphism rT6(Y )/≡i,1 , which, to abbreviate, we agree to denote, simply, by
r(Y,1). On the other hand, from T6(Y )/ ≡i,1 to I (T6(Y )/ ≡c,1) there exists a
canonical surjective homomorphism pr(Y,1) which sends [α]≡i,1 in T6(Y )/ ≡i,1 to
[α]≡c,1 in I (T6(Y )/ ≡c,1). Hence, by the universal property of R(T6(Y )/ ≡i,1),
there exists a unique homomorphism pr\(Y,1) from R(T6(Y )/ ≡i,1) to T6(Y )/ ≡c,1
such that the following diagram commutes.

T6(Y )/ ≡i,1
r(Y,1) //

pr(Y,1) **VVVVVVVVVVVVVVVVV
I (R(T6(Y )/ ≡i,1))

I (pr\(Y,1))
��

I (T6(Y )/ ≡c,1)

Therefore, pr\(Y,1) is a surjective homomorphism.

Following this we prove that the homomorphism pr\(Y,1) is, in addition, injective.
Let [α]≡i,1 and [β]≡i,1 be elements of R(T6(Y )/ ≡i,1) such that [α]≡c,1 = [β]≡c,1 .
Then, by definition, we have that 1 `c,Y α ↔ β. Thus, ¬¬1 `i,Y ¬¬ (α ↔ β),
but `i,Y ¬¬ (α ↔ β) → (¬¬α ↔ ¬¬β). Hence ¬¬1 `i,Y ¬¬α ↔ ¬¬β, and
bearing in mind that 1 `i,Y ¬¬1, we get that 1 `i,Y ¬¬α ↔ ¬¬β. On the other
hand, since, by hypothesis, [α]≡i,1 and [β]≡i,1 are regular elements of the Heyting al-
gebra T6(Y )/ ≡i,1, we have that 1 `i,Y α ↔ ¬¬α and 1 `i,1 β ↔ ¬¬β. From
the just stated result and taking into account that 1 `i,Y ¬¬α ↔ ¬¬β, it follows
that 1 `i,1 α ↔ β or, what by definition is equivalent, that [α]≡i,1 = [β]≡i,1 . Thus
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pr\(Y,1) is an injective homomorphism. Consequently, pr\(Y,1) is an isomorphism
from the Boolean algebra R(T6(Y )/ ≡i,1) to the Boolean algebra T6(Y )/ ≡c,1.

Since it is not difficult to verify that the isomorphisms pr\(Y,1) are the components
of a natural transformation λ from R ◦ LTi to LTc ◦ J we leave this piece of work to
the reader. Hence λ is a natural isomorphism from R ◦ LTi to LTc ◦ J . �

Corollary 4.3 The regularization functor R from Heyt to Bool has a left adjoint T .
Moreover, there exists a pointwise epimorphic natural transformation ζ from T to I .

Proof We begin by proving that the functor R from Heyt to Bool has a left adjoint
T . Since LTc is an equivalence of categories from CSL to Bool, let Qc be an inverse
equivalence to LTc fixed once and for all (and similarly for LTi). Let T be the functor
from Bool to Heyt defined as the composite functor LTi ◦ K ◦ Qc, where K is the
functor defined in Proposition 4.1. Thus, if we agree to represent the value of Qc
on a Boolean algebra B by the classical sentential pretheory (X,8), then we have
that T (B) is the Heyting algebra T6(X)/ ≡i,tX [8]. Therefore, the values of the object
mapping of T have an explicit construction by generators and relations (for example,
for a Boolean algebra B, (X,≡i,tX [8]) is a presentation of T (B)).

That the functor T is a left adjoint of R follows, taking into account Lemma 4.2
and after a long chain of natural isomorphisms, from the fact that, for every Boolean
algebra B and every Heyting algebra H, the hom-sets HomHeyt(T (B),H) and
HomBool(B, R(H)) are naturally isomorphic.

On the other hand, the functor T is a full embedding from Bool to Heyt because
it has a right adjoint, R, and the unit of the adjunction T a R, by the second part of
Lemma 4.2, is an isomorphism of functors; that is, R ◦ T and IdBool are isomorphic.

An alternative proof of the existence of a left adjoint for the regularization functor
R, which rests upon Freyd’s Adjoint Functor Theorem, is as follows. The category
Heyt has small hom-sets and, since it is a Mal’cev variety, it is small-complete. The
functor R preserves small limits because (1) R preserves small-products, since for
a small set J and a J -indexed family (H j ) j∈J of Heyting algebras, we have that
R(

∏
j∈J H j ) =

∏
j∈J R(H j ), and (2) R preserves equalizers, since for two homo-

morphisms f, g : H −→ H′, if we denote by Eq( f, g) the equalizer of f and g,
then R(Eq( f, g)) = Eq(R( f ), R(g)). Finally, R satisfies the solution set condi-
tion. In fact, given a Boolean algebra B, a Heyting algebra H, and a homomorphism
f : B −→ R(H), the cardinal of SgH( f [B]), the Heyting subalgebra of H gener-
ated by f [B], is bounded. Then taking one copy of each isomorphism class of such
Heyting algebras SgH( f [B]) we obtain a small set of Heyting algebras, and the set
of all homomorphisms B −→ R(SgH( f [B])) is a solution set for B. Therefore, the
functor R has a left adjoint.

Finally, we prove that there exists a pointwise epimorphic natural transformation
ζ from T to I . This follows, taking into account that we have the equivalences
CSL ' Bool and ISL ' Heyt, from the fact, proved in Proposition 4.1, that ξ is a
pointwise epimorphic natural transformation from K to G. Indeed, since R ◦ T is
naturally isomorphic to IdBool, the natural transformation ζ is r ∗ T , the horizontal
composite of r and T , where r is the unit of the adjunction R a I .

An alternative proof of the existence of a pointwise epimorphic natural transfor-
mation ζ from T to I which, as distinguished from the proof just stated, is direct
and, in addition, independent of the natural transformation ξ , is as follows. Let B
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be an arbitrary, but fixed, Boolean algebra. Then, from the definition of T and bear-
ing in mind the convention that has already been made about the value of Qc at a
Boolean algebra, we have that T (B) is the Heyting algebra T6(X)/ ≡i,tX [8]. On
the other hand, from the fact that the functors R ◦ T and IdBool are naturally iso-
morphic, it follows that R(T (B)) is isomorphic to T6(X)/ ≡c,8∼= IdBool(B) and
that I ◦ R ◦ T and I are also naturally isomorphic. Hence I (B) is naturally iso-
morphic to I (T6(X)/ ≡c,8) = T6(X)/ ≡c,8. But it happens that the congruence
≡i,tX [8] is included in the congruence ≡c,8. In fact, for every α, β ∈ T6(X), from
tX [8] `i,X α ↔ β it follows that tX [8] `c,X α ↔ β which, in its turn, is equivalent
to 8 `c,X α ↔ β, because `c,X tX [8] ↔ 8. Hence there exists a unique ho-
momorphism ζB from T (B) = T6(X)/ ≡i,tX [8] to I (B) ∼= T6(X)/ ≡c,8 such that
pr≡c,8

= ζB ◦pr≡i,tX [8]
. It is straightforward to prove that the homomorphisms ζB are

surjective and the components of a natural transformation ζ from T to I . Therefore,
ζ is a pointwise epimorphic natural transformation. �

Since the functors I and T from Bool to Heyt are full embeddings and both have
the same functor R as a left and a right adjoint, respectively, we have that the string
of adjunctions T a R a I also constitutes a special case of the concept of adjoint
cylinder of Lawvere, and we could say that, from the semantical, or model-theoretic,
standpoint, the category Bool can be identified with a full reflective and a full co-
reflective subcategory of Heyt. Moreover, the category Heyt is subordinated to Bool
by virtue of the existence of the natural transformation ζ from the functor T to the
functor I .

For completeness, and owing to the information contained in the referee’s report,
it seems suitable to mention that there is one more functor C from Heyt to Bool in
the aforementioned string of adjunctions: The functor assigning to a Heyting algebra
the Boolean algebra of its complemented elements, which, we add, is a right adjoint
of I .

Remark 4.4 For future research it would be useful and interesting (1) to determine
the magnitude of the underlying set of the Heyting algebra T (B) in function of that of
the Boolean algebra B; (2) to calculate, something which one can sensibly expect to
achieve, for example, the values of T at the free Boolean algebras, or at the Boolean
algebras of the form Sub(n) = (Sub(n),⊆), for n in N − 1, or at the finite-cofinite
Boolean algebras on an infinite set; and (3) to complete the edges of the triangle with
vertices adjoint cylinders of “logics” (classical and intuitionistic sentential pretheo-
ries), of “algebras” (Boolean and Heyting algebras), and of “geometries” (Stone and
Priestley spaces) by explicitly showing the relation between algebra and geometry
through the corresponding dualities. We notice that getting such a triangular corre-
spondence would be suitable, in particular, to provide transference methods between
the three involved fields.

Additionally, it would be also appropriate to investigate if there are further adjoint
cylinders in between those that have been considered in this article (for example, by
considering intermediate logics between classical and intuitionistic sentential logics,
or intermediate algebraic constructs between Boolean and Heyting algebras).
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