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Topological Models for
Extensional Partial Set Theory

Roland Hinnion and Thierry Libert

Abstract We state the consistency problem of extensional partial set theory
and prove two complementary results toward a definitive solution. The proof of
one of our results makes use of an extension of the topological construction that
was originally applied in the paraconsistent case.

Introduction

Since Gilmore’s seminal work on partial set theory [1], different versions of set the-
ory based on positive comprehension schemes have been studied. This paper is con-
cerned with one of these in particular, namely, the simple version of partial set theory
with extensionality, the consistency problem of which is still unsolved, surprisingly.
We describe in this first section that theory, what is known about it, and particularly
the insights the present paper brings into its consistency problem. We shall refer the
reader interested in the historical aspect of the subject to [3].

Consider the language of set theory L defined by the following rules of formation
in first-order predicate calculus without equality—the axioms for equality will be
explicitly stated below:

(1) > (the ‘true’) and ⊥ (the ‘false’) are (atomic) formulas;
(2) if x, y are variables, x ∈ y and x /∈ y are (atomic) formulas;
(3) if x, y are variables, x = y and x 6= y are (atomic) formulas;
(4) if ϕ, ψ are formulas, so are ϕ ∧ ψ and ϕ ∨ ψ ;
(5) if ϕ is a formula and x a variable, then ∀xϕ and ∃xϕ are formulas;
(6) if ϕ is a formula, so is ¬ϕ;

The positive fragment, denoted by L+, is obtained without using rule (6). Note
that /∈ and 6= are considered here as primitive symbols, not as abbreviations of the
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classical negation of ∈ and =, respectively. In other words, we are not assuming the
additional axioms,

Cl(/∈) :≡ ∀x∀y(x /∈ y ↔ ¬(x ∈ y)) & Cl(6=) :≡ ∀x∀y(x 6= y ↔ ¬(x = y)).

We are, however, going to consider that one and only one of the following dual
axioms holds at the same time:

Pt :≡ ∀x∀y(¬(x ∈ y ∧ x /∈ y) ∧ ¬(x = y ∧ x 6= y)) [the partial case]

or

Pd :≡ ∀x∀y((x ∈ y ∨ x /∈ y) ∧ (x = y ∨ x 6= y)) [the paradoxical case]

Thereupon, we define the weak negation ϕ of an L+-formula ϕ as follows:

⊥ is >, > is ⊥,

x ∈ y is x /∈ y, x /∈ y is x ∈ y,

x = y is x 6= y, x 6= y is x = y,

ϕ ∧ ψ is ϕ ∨ ψ, ϕ ∨ ψ is ϕ ∧ ψ,

∀xϕ is ∃xϕ, ∃xϕ is ∀xϕ.

Clearly, ϕ is in L+ and ϕ is ϕ. And it is easy to see that Pt is equivalent to ϕ → ¬ϕ
for all L+-formulas ϕ, whereas Pd is equivalent to ¬ϕ→ ϕ for all L+-formulas ϕ.

As primitive symbol, = is of course intended to be an equality relation, so we
would expect both of the following axiom and scheme of axioms to hold:

Refl :≡ ∀x(x = x) & Subst :≡

[
for any L-formula ϕ and ϕ(y|x),1

∀x∀y(x = y → (ϕ ↔ ϕ(y|x))).

In what follows, we let Eq stand for Refl+ Subst.
In set theory, it is usually required that sets be determined by their (actual) mem-

bers, so = would also be characterized by the so-called axiom of extensionality:

Ext :≡ ∀x∀y(x =. y → x = y),

where x =. y is an abbreviation for ∀z((z ∈ x ↔ z ∈ y) ∧ (z /∈ x ↔ z /∈ y)).2

At last, what characterizes set theory itself, in its naïve conception at least, is
the so-called comprehension scheme, whose natural translation in this context is as
follows:

Comp[L+] :≡
[

for any L+-formula ϕ(x, z̄),
∀z̄∃y∀x((x ∈ y ↔ ϕ(x, z̄)) ∧ (x /∈ y ↔ ϕ(x, z̄))).

Now, the introduction of /∈ and 6= as primitive symbols, and the presentation above
that comes with, can be motivated by the following fact.
Fact On the one hand, Comp[L+] + Cl(/∈) is known to be inconsistent. On the
other hand, Comp[L+] + Pt/Pd has been proved to be consistent.

The inconsistency of Comp[L+] + Cl(/∈) is of course Russell’s paradox, whereas
the consistency of Eq + Comp[L+] + Pt directly follows from Gilmore’s result on
Partial Set Theory [1]; actually, Gilmore’s inductive technique would even enable
one to show that Eq+ Comp[L+] + Pt+ Cl(6=) is consistent, as one could expect.
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We just mention here that the same technique works, and so the same result holds,
with Pd instead of Pt, and that in both cases the key property is the positivity of the
formulas involved in the comprehension scheme. Details and references can be found
in [3], and even further in [5] for the Pd case.

The difficulty arises when one requires Ext. The reason is that Ext asserts that
= coincides with =. , and this latter is not defined by an L+-formula, so those for-
mulas containing = involved in the comprehension scheme are not actually positive.
As a matter of fact, Gilmore himself proved in [1] that his technique is then no
longer applicable.3 Note, however, that it is possible to show by that technique that
Eq + Ext + Comp[L+∗ ] + Pt/Pd is consistent, where L+∗ is the fragment of L ob-
tained without using rule (6) or rule (3); this is due to Brady. Again, we would refer
the reader to [3] for a precise account.

The consistency of Eq+ Ext+ Comp[L+] + Pd came out of [2], where topolog-
ical models are presented. On the other hand, despite the apparent symmetry, the
consistency of Eq + Ext + Comp[L+] + Pt, which we call the “simple” version of
extensional partial theory, has surprisingly resisted all the attempts so far. As this
will be made precise in Part I, the symmetry is indeed perfect if we require Cl(6=),
but the consistency of Eq+ Ext+ Comp[L+] + Cl(6=)—without even adding Pd or
Pt—is also an open problem.

We only focus on the consistency problem for Eq+Ext+Comp[L+] + Pt in this
paper, and the progress we make is twofold:

1. In Part I, by a careful analysis of the symmetry Pt/Pd, we show the consis-
tency of Refl1+Subst+Ext1+Comp[L+]+Pt, where Refl1 and Ext1 are
restricted versions of Refl and Ext on classical sets (Theorem I.3).

2. In Part II, we prove the consistency of Eq + Ext + Comp[L+2] + Pt, where
L+2 is obtained by replacing the unrestricted quantifiers ∀ and ∃ in rule
(5) by bounded quantifiers of the form ∀2 and ∃2, which are defined by
∀2x ϕ :≡ ∀x(2x → ϕ) and ∃2x ϕ :≡ ∃x(2x ∧ ϕ), where 2x is some
(N + 1)-ary predicate symbol added to the language (Theorem II.10).

For lack of a definitive solution to that consistency problem, these results at least
give insights into it. Both of them make use of topological models, and those we
describe in Part II are new; the technique we apply here is a generalization of the
original construction by inverse limits used in [2].

Part I Symmetry

Clearly, interchanging ∈ with /∈ and = with 6= preserves Comp[L+]. Likewise, re-
placing any atomic formula by its (strong) negation in all instances of Comp[L+]
does not affect the veracity of that scheme (duality). But each of these transfor-
mations taken individually is rather inappropriate as far as Eq is concerned, in that
neither x 6= y nor ¬(x = y) is likely to behave as an equality relation. Combin-
ing both of these transformations simultaneously is more natural and effective as we
shall see.

We define the adjunct ϕ̂ of an L-formula ϕ as the formula obtained from ϕ by
replacing each of its atomic formulas ψ by ¬ψ . It is easy to see that ϕ̂ is equivalent
to ¬ϕ for each ϕ in L+, and by definition ¬̂ϕ is ¬ϕ̂ for all ϕ. For example, P̂t is
equivalent to Pd, and vice versa. Obviously, ̂̂ϕ is equivalent to ϕ for all ϕ. A formula
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ϕ is said to be self-adjunct if ϕ̂ is equivalent to ϕ. It is easily seen that all instances
of Comp[L+] are self-adjunct.

On the semantic side, we define the adjunct Û of an L-structure U by |Û| := |U|,
∈Û := |U|

2
\ /∈U, /∈Û := |U|

2
\∈U,=Û := |U|

2
\ 6=U, 6=Û := |U|

2
\=U. Clearly,̂̂U is U, and it follows from the definitions that U |H ϕ(ū) if and only if Û |H ϕ̂(ū),

for any L-formula ϕ(x̄) and ū in |U|. In particular, Û models Comp[L+] if and only
if U does. Note also that U is self-adjunct (i.e., Û = U) if and only if U is classical
(i.e., U |H Pd ∧ Pt, that is, U |H Cl(/∈) ∧ Cl(6=)—notice by the way that both Cl(/∈)
and Cl(6=) are self-adjunct).

We now turn to the axioms of equality and extensionality. We first observe that
=. is self-adjunct, whereas = is self-adjunct if and only if Cl(6=). Thus, assuming
U |H Cl(6=), we have U |H Eq + Ext if and only if Û |H Eq + Ext. But, as said
in the Introduction, the existence of U satisfying Eq+ Ext+Comp[L+] +Cl(6=) is
unknown. At least, without Cl(6=), the following implications hold.

Lemma I.1

(i) If U |H Pt+ Refl, then Û |H Pd+ Refl.
(ii) If U |H Pd+ Subst, then Û |H Pt+ Subst.

(iii) If U |H Pt+ Ext, then Û |H Pd+ Ext.

Proof

(i) Suppose U |H Pt+Refl. Then Û |H R̂efl, and as Û |H ∀x(¬(x 6= x)→ x = x)
(Pd case), we get Û |H Refl.

(ii) Suppose U |H Pd + Subst. Then Û |H Ŝubst, and since Û |H ∀x∀y(x = y
→ ¬(x 6= y)) (Pt case), we have Û |H ∀x∀y(x = y → (ϕ̂ ↔ ϕ̂(y|x))), for all
formulas ϕ in L, and so in particular of the form ψ̂ for any L-formula ψ . Hence
Û |H Subst.

(iii) Suppose U |H Pt + Ext. Then Û |H Êxt, and as Û |H ∀x∀y(¬(x 6= y)
→ x = y) (Pd case), we get Û |H Ext, for we recall that x =. y is self-adjunct. �

Without requiring Cl(6=), the converse of (i), (ii), (iii) above fail. To see that
the converse of (ii) does not hold, consider any U |H Pt + Subst such that
U |H u = u ∧ ¬(v = u) ∧ ¬(u 6= v) for some u, v in |U|, so that Û |H

¬(u 6= u) ∧ v 6= u ∧ u = v, and thus Û 6|H Subst. For instance, this will be the
case for any U |H Pt with |U| > 1, =U = δ|U|, and 6=U = ∅.4 A more interesting
example will be given by our topological model in Part II.

Now to see that the converse of (i) and (iii) fail, consider any U |H Pd+Refl+ Ext
such that U |H u 6= u for some u in |U|, so that Û |H ¬(u = u), and thus Û 6|H Refl
and Û 6|H Ext (because Û |H u =. u, obviously). A very interesting example of such
a U appeared in [2] and then was further studied in [5], in both of which papers is
proved the following.

Fact I.2 There exists U |H Pd + Eq + Ext + Comp[L+] such that U |H
∀x∀y(x 6= y ↔ x 6=. y), where x 6=. y :≡ ∃z((z ∈ x ∧ z /∈ y) ∨ (z /∈ x ∧ z ∈ y)).

In such a U, we have U |H ∀x(x 6= x ↔ ∇(x)), where ∇(x) :≡ x 6=. x ≡
∃z(z ∈ x ∧ z /∈ x) is just the statement asserting that x is not classical (with re-
spect to the Pd case). And as U |H Comp[L+], there does exist r in |U| such that
U |H ∀x(x ∈ r ↔ x /∈ x) (i.e., r is the Russell set), from which it is easy to see that
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U |H ∇(r), so that U |H r 6= r . As noticed above, it follows that Û 6|H Refl and
Û 6|H Ext. Nevertheless, thanks to the characterization of 6= in U, something of Refl
and Ext remains in Û; namely, Refl and Ext are preserved on classical sets, that is,
those sets x satisfying 1(x) :≡ ∀z(z ∈ x ∨ z /∈ x). More precisely, the following
theorem follows from Fact I.2.

Theorem I.3 There exists V |H Pt + Refl1 + Subst + Ext1 + Comp[L+] where
Refl1 :≡ ∀x(x = x ↔ 1(x)), Ext1 :≡ ∀x∀y(1(x) ∧ x =. y → x = y).

Proof Take V := Û with U as in Fact I.2. By Lemma I.1 and what has been said
above, we already know that V |H Pt + Subst + Comp[L+]. Now we observe that
U |H ∀x∀y(x 6= y ↔ ((∇(x) ∧ ∇(y)) ∨ ¬(x = y))). Indeed, if x 6= y and x = y,
then x 6= x and y 6= y, that is, ∇(x) and ∇(y); for the converse, if ¬(x = y), then
x 6= y (because U |H Pd), or if x = y and ∇(x), then x 6=. y (because U |H Subst),
and so x 6= y. It follows that V |H ∀x∀y(¬(x = y)↔ ((∇̂(x) ∧ ∇̂(y)) ∨ x 6= y)),
or equivalently, that V |H ∀x∀y(x = y ↔ ((1(x) ∨ 1(y)) ∧ ¬(x 6= y)), seeing
that 1(x) ≡ ¬∇̂(x). Therefrom, it is easy to see that, on the one hand, V |H Ext1
(considering that V |H Êxt), and that, on the other hand, V |H Refl1 (using the fact
that U |H Refl, and hence that V |H ∀x¬(x 6= x)). �

So here is the first of the results announced in the Introduction proved. We now turn
to the proof of the second one.

Part II Topological Models

Before proceeding to the description of the model we will be studying in the rest of
this paper, we introduce a couple of notational conventions that will be useful.

Notation II.1 Given a function f , we use f ‘x for the pointwise image of x if
this is defined; otherwise, we write @ f ‘x , and we use f “X for the setwise image
of X ; that is, f “X := { f ‘x | x ∈ X}—which is always defined, thanks to the
existence of ∅.

Notation II.2 Given an ordered pair z = (x, y), we let z+ and z− stand for x and
y, respectively.

Description The universe |U| of any L-structure U |H Ext+ Pt can be identified
with a (proper!) subset of F(|U|), where F(·) is defined by

F(X) := {(A, B) | A, B ⊆ X & A ∩ B = ∅}.

The universe of our model will be obtained as inverse limit by iterating the operator
F(·), as in [2], except that here, due to the nature itself of F(·), we will have to
consider partial maps between consecutive levels; so we are led to define the notion
of inverse limit for partial projective systems. The presentation we give is general
enough to encompass the original construction given in [2] for the Pd case (which is
sketched at the end of the paper).

The levels of the partial projective system (Un+1
s
→ Un | n ∈ ω)we are interested

in are defined by {
U0 := {∅}
Un+1 := F(Un), for all n ∈ ω.
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We then define the partial maps sn+1 : Un+1 → Un inductively as follows:
Given (A, B) ∈ Un+1, with n > 1,

sn+1‘(A, B) := (sn“A, sn“B) if this latter belongs to Un ;
otherwise, sn+1‘(A, B) is not defined, that is, @sn+1‘(A, B).

And we take the following definition for s1 (which is just a matter of choice):

s1‘(∅,∅) := ∅ & @s1‘({∅},∅),@s1‘(∅, {∅}).

Note that, whatever the definition of s1 is, sn+1 : Un+1 → Un will always
be partial for n > 2;5 this is due to the definition of F(·). Nevertheless, each
sn+1 : Un+1 → Un is surjective, and this is a key property for our construction to
work. To see this, we inductively define a family of right inverses in : Un → Un+1
by

i0‘∅ := (∅,∅) & in+1‘(A, B) := (in“A, in“B), for any (A, B) ∈ Un .

It is easily seen by induction that each in : Un → Un+1 so defined is indeed a
total injective map such that sn+1 ◦ in = δUn . From here on, we will let s (respec-
tively, i) stand for the union of the sns (respectively, the ins). Then, by definition,
we have (s‘ξ)± = s“ξ± for all ξ ∈

⋃
n>2 Un such that s‘ξ is defined, as well as

(i‘ξ)± = i“ξ± for all ξ ∈
⋃

n>1 Un .
Sets in our model will be “s-sequences” (elements of Uω defined below), and

these are particular elements of the amalgamated Cartesian product:

V :=
⋃
m∈ω

Vm, where Vm :=
∏

n∈ω\m

Un .

Thus, any element u ∈ V is of the form (un)n>m with un ∈ Un for each n > m;
we call m the rank of u and denote it by ρ(u) (i.e., ρ(u) is the unique m for which
u ∈ Vm). We will always be looking at V as a topological space with the topology
induced by the following notion of limit: limk→∞ uk

= u if and only if for all
n > ρ(u), there exists kn such that for all k > kn , ρ(uk) 6 n and uk

n = un (in other
words, limk→∞ uk

= u if and only if for each n > ρ(u), limk→∞ uk
n = un in Un

equipped with the discrete topology).
Now we consider

Uω =
n∈ω
lim
←−s

Un := {u ∈ V | ∀n > ρ(u), s‘un+1 = un & @s‘uρ(u)},

which we thus define as the limit of the system (Un+1
s
→ Un | n ∈ ω). We note that

Uω is a closed subset of V , but it is not a compact subspace. This will be clear under
the next alternative presentation, which also shows that generalized projective limits
as defined here are just particular subspaces of usual ones.

Take any object † /∈
⋃

n>0 Un and then, for each n ∈ ω, let Ũn := Un ∪ {†}
and s̃n+1 be the extension of sn+1 on Ũn+1 defined by s̃n+1 ‘ξ := † if @sn+1‘ξ , and
s̃n+1 ‘† := †. We would define ĩn accordingly. Again we let s̃ (respectively, ĩ) stand
for the union of the s̃ns (respectively, the ĩns).

Now we look at the limit of the projective system (Ũn+1
s̃
→ Ũn | n ∈ ω); that is,

Ũω =
n∈ω
lim
←−s̃

Ũn := {a ∈ Ṽ0 | ∀n ∈ ω, s̃ ‘an+1 = an} where Ṽ0 :=
∏
n∈ω

Ũn,

with the corresponding natural topology defined as above.
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The next fact, the proof of which is left to the reader, shows in particular that Ũω
is nothing but the Alexandroff compactification of Uω.

Fact II.3 Uω ∼= Ũω\{(†)k>0} and X ⊆ Uω is compact if and only if (†)k>0 /∈ X in
Ũω, if and only if {ρ(x) | x ∈ X} is bounded in ω.

In the sequel, we shall only look at Uω as subspace of V . We will denote the projec-
tion of Uω onto Un by πn ; that is, for all u ∈ V , πn‘u := un if n > ρ(u), otherwise,
@πn‘u. By definition of Uω, πn‘u = s ◦ πn+1‘u for all n > ρ(u).

As said, the universe of the L-structure U we are considering is Uω, in which we
define the interpretations of the primitive symbols of L as follows:

u ∈ω v :≡ ∀n > max{ρ(u), ρ(v)}, un ∈ v
+

n+1, ;

u /∈ω v :≡ ∀n > max{ρ(u), ρ(v)}, un ∈ v
−

n+1 ;

u =ω v :≡ ρ(u) = ρ(v) & ∀n > ρ(u), un = vn ;

u 6=ω v :≡ ∀n > max{ρ(u), ρ(v)},¬(un = vn).

It is easy to see that these binary relations thus defined are all closed subsets of U 2
ω

and that they are such that U |H Pt. Obviously, =ω is nothing but the identity on
Uω, so U |H Eq already. We are going to elaborate on 6=ω subsequently. We start
investigating the properties of U by showing it is extensional.

Extensionality

Lemma II.4 Given u ∈ Uω, n + 1 > ρ(u), and ξ ∈ u+n+1 (respectively, ξ ∈ u−n+1),
there exists w ∈ Uω such that wn = ξ and w ∈ω u (respectively, w /∈ω u).

Proof By definition of s, given j > 1 and ζ ∈ u+n+ j , we may always find some
ζ ′ ∈ u+n+ j+1 such that s‘ζ ′ = ζ . Therefore, using the axiom of (dependent) choice,
we can find a sequence ξ k , k > 0, such that ξ0

= ξ , ξ k
∈ u+n+k+1 and s‘ξ k+1

= ξ k

for all k > 0. We then take w := (. . . , s‘s‘ξ0, s‘ξ0, ξ0, ξ1, ξ2, . . .). (The proof is
similar with ξ ∈ u−n+1.) �

Proposition II.5 U |H Ext.

Proof Assume U |H u =. v. Let n + 1 > ρ(u) and ξ ∈ u+n+1. By Lemma II.4,
there exists w ∈ Uω such that wn = ξ and w ∈ω u. Then, by assumption, w ∈ω v
too, so that ξ = wn ∈ v

+

n+1. Hence, u+n+1 ⊆ v
+

n+1 for all n + 1 > ρ(u). Likewise,
we show that v+n+1 ⊆ u+n+1 for all n + 1 > ρ(v), so that u+n+1 = v+n+1 for all
n + 1 > max{ρ(u), ρ(v)}. In the same way, using Lemma II.4, we get u−n+1 = v

−

n+1
for all n+ 1 > max{ρ(u), ρ(v)}. It follows that un = vn for each n > ρ(u) = ρ(v).
Therefore, u =ω v; that is, U |H u = v. �

We now turn to investigating the properties of U with respect to comprehension.
We will need several preliminary definitions and results. Let us first identify those
elements of F(Uω) that define sets in U.

Coded pairs We say that ξ ∈ F(Uω) is coded in U if there exists v ∈ Uω such
that ∀u ∈ Uω, u ∈ ξ+ ⇔ u ∈ω v and u ∈ ξ− ⇔ u /∈ω v. More generally, we will say
that an ordered pair ξ of subsets of Uω is precoded in U if there exists v ∈ Uω such
that ∀u ∈ Uω, u ∈ ξ+ ⇒ u ∈ω v and u ∈ ξ− ⇒ u /∈ω v. Clearly, if ξ is precoded,
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then ξ ∈ F(Uω), but the converse is false. This should be clear in view of the next
lemma.

We say that an ordered pair ξ of subsets of Uω is eventually partial if there exists
m ∈ ω such that (πn“ξ+, πn“ξ−) ∈ Un+1(= F(Un)) for each n > m.6

Lemma II.6 ξ is precoded in U if and only if ξ is eventually partial.

Proof That ξ is eventually partial if ξ is precoded is obvious. Now, assuming ξ is
eventually partial, it is easily seen that v ∈ Uω defined by vn+1 := (πn“ξ+, πn“ξ−)
for each n > n0, where n0 is the least n such that (πn“ξ+, πn“ξ−) ∈ Un+1 (so
ρ(v) = n0 + 1), is a precode of ξ in U. �

The following refinement is central to our investigations.

Proposition II.7 ξ is coded in U if and only if ξ is eventually partial and ξ+, ξ−

are closed subsets of Uω.

Proof It is easy to show that ξ+, ξ− are closed in Uω provided ξ is coded. Con-
versely, assume that ξ is eventually partial and that ξ+, ξ− are closed in Uω, and then
let v ∈ Uω defined by vn+1 := (πn“ξ+, πn“ξ−) for each n > n0, where n0 is the
least n such that (πn“ξ+, πn“ξ−) ∈ Un+1. We already know by the proof of the pre-
ceding lemma that v is a precode of ξ . To see that v is the code of ξ ,7 let u ∈ω v. So
un ∈ v

+

n+1 = πn“ξ+ for all n > max{ρ(u), n0}. Then, for each k > max{ρ(u), n0},
choose uk in ξ+ such that uk

k = uk . Clearly, limk→∞ uk
= u, and as ξ+ is closed,

we get u ∈ ξ+. Likewise, one can show that u /∈ω v implies u ∈ ξ−. �

So the main task is to look at those definable ordered pairs of subsets of Uω that are
both eventually partial and closed.

Partiality We say that a function f : ωN
→ ω is progressive if f is non-

decreasing (i.e., f ‘(l0, . . . , lN−1) > f ‘(k0, . . . , kN−1) whenever li > ki for each
i = 0, . . . , N − 1) and f ‘(k0, . . . , kN−1) > max{k0, . . . , kN−1}.

Given two (N + 1)-ary predicates P(x, ȳ) and P(x, ȳ) on Uω, with ȳ :=
y0, . . . , yN−1, we say that (P, P) is uniformly eventually partial with respect to x if
there exists a progressive f : ωN

→ ω such that for all v̄ := v0, . . . , vN−1 in Uω, for
all n > f ‘(ρ(v0), . . . , ρ(vN−1)), we have ({un | P(u, v̄)}, {un | P(u, v̄)}) ∈ Un+1
(i.e., {un | P(u, v̄)} ∩ {un | P(u, v̄)} = ∅). Indication: the progressive function
f guarantees that the level n at which {un | P(u, v̄)} and {un | P(u, v̄)} become
disjoint only depends on the rank of the parameters v̄. For instance, it is easy to see
that (x ∈ω y, x /∈ω y) and (x =ω y, x 6=ω y) are both uniformly eventually partial
with respect to x and with respect to y.

Now, given an (M + 1)-ary predicate C(y, z̄) on Uω, with z̄ := z0, . . . , zM−1,
we say that C is uniformly compact with respect to y if there exists a progressive
function g : ωM

→ ω such that for all w̄ := w0, . . . , wM−1 in Uω, we have
ρ(v) 6 g‘(ρ(w0), . . . , ρ(wM−1)) for all v in Uω such that C(v, w̄). Indication:
the progressive function g guarantees here that {ρ(v) | C(v, w̄)} is bounded in ω, so
that {v | C(v, w̄)} is compact in Uω by Fact II.3 and that the corresponding bound
only depends on the rank of the parameters w̄.
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This last definition is motivated by the third point of the following result.

Lemma II.8

(i) If (P, P) is uniformly eventually partial with respect to x, so is (P, P).
(ii) If (P, P) & (Q, Q) are uniformly eventually partial with respect to x, so are

(P ∧ Q, P ∨ Q) & (P ∨ Q, P ∧ Q).
(iii) Suppose that C is uniformly compact with respect to y and that x (distinct

from y) is not free in C. Then, if (P, P) is uniformly eventually partial
with respect to x, so are (∀C y P, ∃C y P) & (∃C y P,∀C y P), where ∀C y X and
∃C y X are the abbreviations for ∀y(C → X) and ∃y(C ∧ X), respectively.

Proof (i) is obvious, and (ii), (iii) are easily proved, so we may concentrate on
establishing (iii). Let us write C as C(y, z̄) and P as P(x, ȳ), where ȳ := y, z̄
and z̄ := z0, . . . , zM−1, and then, under the hypotheses, let g : ωM

→ ω and
f : ωM+1

→ ω be progressive functions associated with C and P , respec-
tively, as in the definitions. We are going to show that h : ωM

→ ω defined
by h‘(k0, . . . , kM−1) := f ‘(g‘(k0, . . . , kM−1), k0, . . . , kM−1) is a progressive
function ensuring that (∀C y P, ∃C y P) is uniformly eventually partial with re-
spect to x . Being given w̄ := w0, . . . , wM−1 in Uω, consider u, u′ ∈ Uω
such that ∀y(C(y, w̄) → P(u, y, w̄)) and ∃y(C(y, w̄) ∧ P(u′, y, w̄)). Then
choose v ∈ Uω such that C(v, w̄) ∧ P(u′, v, w̄)), so that P(u, v, w̄)) as well. As
ρ(v) 6 g‘(ρ(w0), . . . , ρ(wM−1)), we have n > f ‘(ρ(v), ρ(w0), . . . , ρ(wM−1))
as soon as n > h‘(ρ(w0), . . . , ρ(wM−1)), so that un and u′n must be different for
each n > h‘(ρ(w0), . . . , ρ(wM−1)). It follows that {un | ∀C y P(u, y, w̄)} and
{un | ∃C y P(u, y, w̄)} are disjoint for all n > h‘(ρ(w0), . . . , ρ(wM−1)). Now, that
(∃C y P,∀C y P) is uniformly eventually partial with respect to x too can be seen as a
consequence of (i). �

Continuity An N -ary predicate P(x̄) on Uω will be said to be continuous if and
only if {(ū) | P(ū)} is closed in U N

ω . Examples of continuous (binary) predicates are
given by x ∈ω y, x /∈ω y, x =ω y, x 6=ω y.

Given an (M + 1)-ary predicate C(y, z̄) on Uω, with z̄ := z0, . . . , zM−1, we
say that C is approximable with respect to y if, whenever wi = limk→∞w

k
i

in Uω, for each i = 0, . . . ,M − 1, and C(v,w0, . . . , wM−1) holds for some
v ∈ Uω, one can find a sequence vk , k ∈ ω, in Uω such that limk→∞ v

k
= v and

C(vk, wk
0, . . . , w

k
M−1) holds for sufficiently large k. This technical definition will

be seen at work in the proof of (ii) below.

Lemma II.9

(i) If P & Q are continuous, so are P ∧ Q & P ∨ Q.
(ii) Suppose that C is approximable with respect to y. Then, if P is continuous,

so is ∀C y P.
(iii) Suppose that C is continuous and that C is uniformly compact with respect

to y. Then, if P is continuous, so is ∃C y P.

Proof (i) is obvious. For the proof of (ii), assume P(x, y, z̄) is continuous and
C(x, y, z̄) is approximable with respect to y, with z̄ := z0, . . . , zM−1, and then
consider converging sequences uk, wk

0, . . . , w
k
M−1, k ∈ ω, with respective limits

u, w0, . . . , wM−1 in Uω, such that ∀y(C(uk, y, wk
0, . . . , w

k
M−1)→ P(uk, y, wk

0, . . . ,

wk
M−1)) holds for all k. We have to show that ∀y(C(u, y, w0, . . . , wM−1) →
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P(u, y, w0, . . . , wM−1)). So let v in Uω such that C(u, v, w0, . . . , wM−1). As C is
approximable with respect to y, there exists some sequence vk , k ∈ ω, in Uω such
that limk→∞ v

k
= v and C(uk, vk, wk

0, . . . , w
k
M−1) holds for sufficiently large k,

and so does P(uk, vk, wk
0, . . . , w

k
M−1) by assumption. As P is continuous, we thus

get P(u, v, w0, . . . , wM−1)), as expected.

For (iii), suppose that P(x, y, z̄) & C(x, y, z̄) are continuous, with z̄ := z0, . . . ,
zM−1, and C(x, y, z̄) is uniformly compact with respect to y; then consider converg-
ing sequences uk, wk

0, . . . , w
k
M−1, k ∈ ω, with respective limits u, w0, . . . , wM−1

in Uω such that ∃y(C(uk, y, wk
0, . . . , w

k
M−1) ∧ P(uk, y, wk

0, . . . , w
k
M−1)) holds

for all k. As C is uniformly compact with respect to y, there exists a progressive
function g : ωM+1

→ ω such ρ(v) 6 g‘(ρ(uk), ρ(wk
0), . . . , ρ(w

k
M−1)) for each

v such that C(uk, v, wk
0, . . . , w

k
M−1). Choose K ∈ ω such that for all k > K ,

ρ(uk) 6 ρ(u) & ρ(wk
0) 6 ρ(w0) & · · · & ρ(wk

M−1) 6 ρ(wM−1). Thus, for each
k > K , any v in Uω such that C(uk, v, wk

0, . . . , w
k
M−1) ∧ P(uk, v, wk

0, . . . , w
k
M−1)

will also be such that ρ(v) 6 g‘(ρ(u), ρ(w0), . . . , ρ(wM−1)). Let vk be one such v
for each k > K . So the sequence vk , k > K , is inside {v | ρ(v) 6 g‘(ρ(u), ρ(w0),
. . . , ρ(wM−1)}, which is compact in Uω by Fact II.3 (for any fixed u, w0, . . . ,
wM−1); therefore, there exists a subsequence vk j , j ∈ ω, that has a limit v in Uω. As
we have C(uk j , vk j , w

k j
0 , . . . , w

k j
M−1)∧ P(uk j , vk j , w

k j
0 , . . . , w

k j
M−1) for all k j > K ,

we also get C(u, v, w0, . . . , wM−1)∧ P(u, v, w0, . . . , wM−1), because C and P are
continuous. Thus, ∃y(C(u, y, w0, . . . , wM−1) ∧ P(u, y, w0, . . . , wM−1)). �

The result Let 8(r̄) & 8(r̄) be two abstract N -ary predicates, with r̄ := r0, . . . ,
rN−1, and let 2s(t̄) be an abstract (M + 1)-ary predicate, in which we distinguish
a free variable s distinct from a given list t̄ := t0, . . . , tM−1 of other free variables.8

We define the language L+
8,8,2

by means of the following rules:

(1) > and ⊥ are formulas;
(2) If x, y are variables, x ∈ y and x /∈ y are formulas;
(3) If x, y are variables, x = y and x 6= y are formulas;

(3)′ For any list x̄ := x0, . . . , xN−1 of variables, 8(x̄) and 8(x̄) are formulas;
(4) If ϕ, ψ are formulas, so are ϕ ∧ ψ and ϕ ∨ ψ ;
(5)′ If ϕ is a formula and x is a variable distinct from the free variables t̄ of

2s(t̄), then ∀2xϕ and ∃2xϕ are formulas, to be understood as abbrevia-
tions for ∀x(2x (t̄)→ ϕ) and ∃x(2x (t̄) ∧ ϕ), respectively.9

Thereupon, we should add here the following rule, which is usually tacit or derivable
in normal contexts:

(0) If x, y are variables and ϕ is a formula, so is ϕ(y|x), the result of substituting
y for some (not necessarily all) free occurrences of x in ϕ.

Rule (0) allows us to change the names of the free variables of a formula ϕ obtained
from rule (5)′ in order to apply again rule (5)′ to ϕ without unnecessary restrictions—
as stated above, rule (5)′ does not permit quantifications over one of the given free
variables t̄ of 2s(t̄)!
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We then define the weak negation ϕ of an L+
8,8,2

-formula ϕ as in the Introduc-
tion, with here

8(x̄) is 8(x̄), 8(x̄) is 8(x̄),
and

∀2xϕ is ∃2xϕ, ∃2xϕ is ∀2xϕ.
We are now ready to state the second main result of this paper.

Theorem II.10 Let 8ω(r̄), 8ω(r̄), 2ω(s, t̄) be respective interpretations of 8(r̄),
8(r̄), 2s(t̄) on Uω such that 8ω,8ω,2ω are continuous, (8ω,8ω) is uniformly
eventually partial with respect to r j for all j = 0, . . . , N − 1, and 2ω is both
uniformly compact with respect to s and approximable with respect to s. Then
U |H Comp[L+

8,8,2
]; that is,

U |H ∀z̄∃y∀x((x ∈ y ↔ ϕ(x, z̄)) ∧ (x /∈ y ↔ ϕ(x, z̄))),

for any L+
8,8,2

-formula ϕ(x, z̄), with the proviso that the variable x does not occur

free within some occurrence of the predicate 2·(· · · ) in ϕ;10 the variable y is also
supposed not to be free in ϕ, as usual.

Proof With any formula ϕ(x, z̄) of L+
8,8,2

we associate the predicate Pϕ(x, z̄) on
Uω defined by

for all u, w̄ in Uω, Pϕ(u, w̄)⇔ U |H ϕ(u, w̄).

On the one hand, using the assumptions and Lemma II.8, one can show by induction
on the complexity of ϕ that (Pϕ, Pϕ) is uniformly eventually partial with respect to
x (the requirement on the variable x is here justified for applying (iii) of Lemma
II.8). On the other hand, using the assumptions and Lemma II.9, one can show by
induction on the complexity of ϕ that Pϕ (and so Pϕ) is continuous. It follows that,
for any L+

8,8,2
-formula ϕ(x, z̄) (with the condition on x) and all w̄ in Uω, the pair

ξ := ({u | U |H ϕ(u, w̄)}, {u | U |H ϕ(u, w̄)}) is eventually partial and ξ+, ξ− are
closed subsets of Uω; so ξ is coded in Uω by Proposition II.7. �

Theorem II.10 can naturally be extended to the case where are given several primitive
predicates 8,8,2, 8′,8′,2′, 8′′,8′′,2′′, and so on. We will now give three
examples of natural and suitable 2 definable on Uω.

Example 1 Consider the preorder 4ω on Uω defined by u 4ω v ⇔ ρ(u) 6 ρ(v)
and the corresponding strict version ≺ω defined by u ≺ω v ⇔ ρ(u) < ρ(v). We
denote the equivalence associated with 4ω by ∼ω; that is, u ∼ω v ⇔ ρ(u) = ρ(v).
It is easy to see that all these binary relations define continuous predicates on Uω. It
is not difficult either to show that s 4ω t , s ≺ω t , and s ∼ω t are all both uniformly
compact with respect to s and approximable with respect to s. By Theorem II.10,
U |H Comp[L+2], where 2ω(s, t) :≡ s R t , with R being any of 4ω,≺ω,∼ω.

Example 2 We here define a linear order 6ω on Uω as follows. Take 60:= {(∅,∅)}
on U0 = {∅} and then choose inductively any linear order 6n+1 on Un+1, for
each n ∈ ω so that the partial map sn+1 : Un+1 → Un be order preserving,
with ξ <n+1 ζ whenever sn+1‘ξ is defined but @sn+1‘ζ . Now define 6ω on
Uω by u 6ω v ⇔ ∀n > max{ρ(u), ρ(v)}, un 6n vn . Note incidentally that
u 6ω v ⇒ u 4ω v and u ≺ω v ⇒ u <ω v. Caveat: 6ω thus defined may not
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be a well-ordering on Uω, although each 6n is one on Un (this latter being finite!).
One can, however, show that 6ω is indeed a well-ordering when considered in U
in the following sense: if ∅ 6= A ⊆ Uω and A = {u | u ∈ω v} for some v ∈ Uω,
then A has a least element for 6ω.11 For our purposes, we notice that 6ω defines a
continuous binary predicate on Uω, but not <ω. Nevertheless, if we define <∗ω on
Uω by u <∗ω v ⇔ u 6ω v ∧ u 6=ω v, then <∗ω is continuous. Then it is not hard
to show that s 6ω t and s <∗ω t are also both uniformly compact with respect to s
and approximable with respect to s. By Theorem II.10, U |H Comp[L+2], where
2ω(s, t) :≡ s R t , with R being 6ω or <∗ω.

Example 3 As refinement of∼ω above, the equivalence relation≈ω on Uω defined
by u ≈ω v ⇔ (u ∼ω v & uρ(u) = vρ(v)) is also easily seen to be suitable, so
U |H Comp[L+2] with 2ω(s, t) :≡ s ≈ω t . Note that u ≈ω v ⇔ ¬(u 6=ω v), and
we are going to have a closer look at 6=ω precisely, as promised.

The inequality relation in U We point out some interesting properties of 6=ω on
Uω. The first one at least ensures that 6=ω is not trivial—that is, 6=ω is nonempty—
which should not be taken for granted in the Pt case!

Fact II.11 (nontriviality) 6=ω distinguishes infinitely many sets in U.

Proof As noticed, u 6=ω v ⇔ ¬(u ≈ω v), and ≈ω has infinitely many classes. �

Now let x 6 .= y :≡ ∃z((x ∈ z ∧ y /∈ z) ∨ (x /∈ z ∧ y ∈ z)).12 We have the following
fact.

Fact II.12 (upper separability) U |H ∀x∀y(x 6= y → x 6 .= y).

Proof Suppose u 6=ω v, and consider w ∈ Uω defined by wn+1 := ({un}, {vn}) for
sufficiently large n. Clearly, u ∈ω w and v /∈ω w. �

Thereupon, we would just mention that U 6|H ∀x∀y(x 6 .= y → x 6= y) and that 6= is
not linked at all to 6=. in U.

For the next property, let ∅ω denote the code of (∅,∅) in U, 3ω the one of
(∅,Uω), and Vω the one of (Uω,∅). Note that ρ(∅ω) = 0, whereas ρ(3ω) =
ρ(Vω) = 1; 3ω and Vω are, respectively, the empty set and the universal set in the
sense of U.

Fact II.13 (hereditary separation) Suppose that u 6=ω ∅ω & u 6=ω 3ω (respec-
tively, u 6=ω ∅ω & u 6=ω Vω), and let v ∈ Uω be such that ∀w ∈ω u,∀w′ ∈ω v,
w 6=ω w

′ (respectively, ∀w /∈ω u,∀w′ /∈ω v,w 6=ω w′). Then u 6=ω v.

Proof First, if ρ(u) = 0, then obviously u ≈ω ∅ω. Hence ρ(u) > 1. Now it is
easy to see that if u+ρ(u) = ∅, then u ≈ω ∅ω or u ≈ω 3ω (respectively, if u−ρ(u) = ∅,
then u ≈ω ∅ω or u ≈ω Vω). Therefore, if u 6=ω ∅ω & u 6=ω 3ω (respectively,
u 6=ω ∅ω & u 6=ω Vω), and we assume u ≈ω v, one can show by using Lemma II.4
that ∃w ∈ω u, ∃w′ ∈ω v with w ≈ω w′ (respectively, ∃w /∈ω u, ∃w′ /∈ω v with
w ≈ω w

′). �

Fact II.14 (separation of complements) If u 6=ω ∅ω, then u 6=ω uc, where uc is
the complement of u in the sense of U; that is, uc is the code of (A, B) in U if and
only if u is the code of (B, A) in U.
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Proof Assume u 6=ω ∅ω, but u ≈ω uc. Then, for k := ρ(u) = ρ(uc), we
have uk

+
= uc

k
+ and uk

−
= uc

k
−. But also, by definition of uc, uk

+
= uc

k
− and

uk
−
= uc

k
+. On the other hand, as u 6=ω ∅ω, u+k ∪ u−k should be nonempty, but

u+k ∪u−k =(u
+

k ∩u+k )∪(u
−

k ∩u−k )=(u
+

k ∩uc
k
+)∪(u−k ∩uc

k
−)=(u+k ∩uk

−)∪(u−k ∩uk
+)=

∅ ∪∅ = ∅ : a contradiction. �

We shall end this paper with a remark clarifying the link between the construction
given here and the one in [2].

The Pd case revisited Let us see what we get if we reiterate the construction de-
scribed in Part II in the Pd case, that is, with F(·) defined by

F(X) := {(A, B) | A, B ⊆ X & A ∪ B = X}.

First of all, the maps sn+1 of the projective system (Un+1
s
→ Un | n ∈ ω) under con-

sideration are now total maps, so that Uω is simply a closed subset of V0 =
∏

n∈ω Un ;
that is, ρ(u) = 0 for all u ∈ Uω. As V0 is compact, so is Uω now.

The definitions of ∈ω, /∈ω,=ω remain unchanged (with ρ(u) = ρ(v) = 0), but
we have to modify 6=ω so that U |H Pd. The definition of 6=ω taken in [2] is u 6=ω v
if and only if U |H u 6=. v, which too gives a closed subset of U 2

ω.
A corresponding notion of “eventually paradoxical” pairs is useless here as now

it is easily seen that ξ ∈ F(Uω) implies (πn“ξ+, πn“ξ−) ∈ Un+1 for all n, so Propo-
sition II.7 becomes “ξ is coded in U if and only if ξ+ & ξ− are closed in Uω only”,
and there is no analogue of Lemma II.8 here. On the other hand, Lemma II.9 is still
of use, but we can dispense with requiring C to be uniformly compact with respect
to y in clause (iii), for any closed subset of Uω is compact here.

Examples of continuous predicates 2ω(s, t) on Uω that are approximable
with respect to s are now given by s ∈ω t & s /∈ω t . So Theorem II.10 yields
U |H Comp[L+2,2′ ], where 2ω(s, t) :≡ s ∈ω t and 2′ω(s, t) :≡ s /∈ω t , and that
is the main result of [2], which we stated as Fact I.2 in this paper and used to prove
Theorem I.3. We have thus come full circle.

1 Conclusion

What makes the usual technique of construction of models by inverse limits effective
is the good behavior of positive (or more generally bounded positive) formulas with
respect to the operations used in such constructions. In that regard, the paradoxi-
cal case is sensibly different and more appropriate than the partial one, in that the
defining formula Pd is positive, whereas Pt is not. Indeed, as noticed above, Pd is
preserved under projections, whereas Pt is not, which led us to consider generalized
projective systems in this paper.

More generally, paradoxical pairs, that is, members of {(A, B) | A, B ⊆ U &
A ∪ B = U }, are preserved under topological closure on U , whereas partial ones,
that is, members of {(A, B) | A, B ⊆ U & A ∩ B 6= ∅}, are not, which should
introduce limitations for the Pt case, as in Theorem II.10. On the other hand, the
topological interior operator does preserve partial pairs, by symmetry, so it would
be more natural to think of partial sets in a topological model as partial open pairs.
However, no such model could be normal13 (otherwise, each singleton would be
open and the topology would be discrete), which also introduces limitations, as in
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Theorem I.3. So the present paper has somehow shown the limits of topological
normal models in the Pt case.

Notes

1. Where ϕ(y|x) denotes any formula obtained from ϕ by substituting y for some—not nec-
essarily all—free occurrences of x .

2. With that definition of =. , the formulation of Ext here above may be referred to as the
semantic version of extensionality.

3. We should remark that this is also related to the presence of an abstractor ‘{· | −}’ in the
language he considered, as explained in [3].

4. Given a set X , we let δX stand for {(x, x) | x ∈ X}.

5. With our definition s2 is actually total!

6. It is easy to see that this amounts to only demanding that there exists some n ∈ ω such
that (πn“ξ+, πn“ξ−) ∈ Un+1.

7. Such a code is necessarily unique by Proposition II.5.

8. We would stress here that all those specified variables are actually definite concrete vari-
ables of the object language, not metavariables standing for variables, as the x, y, . . . in
the rules below.

9.2x (t̄) naturally stands for the result of substituting x for s in 2s(t̄).

10. That requirement will be justified in the proof.

11. A proof of this can be found in [4], where a similar construction is considered for the Pd
case.

12. Compare with the definition of x 6=. y in Fact I.2.

13. By a normal model U, we mean one in which =U is interpreted by the identity δ|U|.
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