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Self-Embeddings of Computable Trees

Stephen Binns, Bjørn Kjos-Hanssen, Manuel Lerman,
James H. Schmerl, and Reed Solomon

Abstract We divide the class of infinite computable trees into three types. For
the first and second types, 0′ computes a nontrivial self-embedding while for
the third type 0′′ computes a nontrivial self-embedding. These results are opti-
mal and we obtain partial results concerning the complexity of nontrivial self-
embeddings of infinite computable trees considered up to isomorphism. We
show that every infinite computable tree must have either an infinite computable
chain or an infinite 50

1 antichain. This result is optimal and has connections to
the program of reverse mathematics.

1 Introduction

In this article, we examine self-embeddings of countable trees from the perspective of
computable algebra. The following definition of a tree is more restrictive than some
other definitions in the literature but it is more general than the notion of computable
tree used in the context of 50

1 classes.

Definition 1.1 A tree is a partial order (T,�) with a least element (called the root
of T and denoted by λ) such that for all n ∈ T , the set {m ∈ T | m � n} is a finite
linearly ordered set. The elements of T are referred to as nodes. If n ≺ m and there
are no elements strictly between n and m in T , we say that m is a successor of n.
If n has no successor, then it is called a leaf and if n has more than one suc-
cessor, then it is called a branching node. If (T0,�0) and (T1,�1) are trees,
then an embedding from T0 to T1 is an injective function f : T0 → T1 such that
n �0 m if and only if f (n) �1 f (m). We write f : T0 ↪→ T1 to denote that f is an
embedding of T0 into T1.

Our concern is with countable trees, so we assume |T | 6 ω for the rest of this article.
The branching function br : T → ω ∪ {∞} of T is the function which maps n ∈ T
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to the number of successors of n. Notice that n is a leaf if and only if br(n) = 0. T
is finitely branching if the range of the branching function is contained in ω and T is
binary branching if the range of the branching function is contained in {0, 1, 2}.

Classically, any countable tree T is isomorphic to a subtree of ω<ω. A tree (T,�)
is computable if T ⊆ ω is a computable set and � is a computable relation defined
on T 2. (It does not hurt to assume that a computable tree is coded in such a way that
T = ω.) For example, if T is a computable nonempty subset of 2<ω or ω<ω which
is closed under initial segments and � is the initial segment relation, then (T,�) is
a computable tree. In these cases, the successor relation is computable and in the
case when T ⊆ 2<ω, the leaf relation and the branching function are computable.
However, in general, it is not the case that the successor relation, the leaf relation, or
the branching function is computable for a computable tree or that a computable tree
is computably isomorphic to a computable subtree of ω<ω.

A large amount of work has been done on 50
1 classes, which are sets of infinite

paths through computable subtrees of 2<ω and ω<ω. (See Cenzer [1] and Cenzer
and Remmel [2] for surveys of this work.) In addition, work has been done on the
possible degrees of isomorphism types of trees by Richter [12] and on computable
categoricity of trees by R. Miller [11] and by Lempp, McCoy, R. Miller, and Solomon
[10]. One of the main tools for working with trees in [10], [11], and [12] and in our
current work is Kruskal’s Lemma.

Lemma 1.2 (Kruskal [9]) Let {Ti | i ∈ ω} be a countable collection of finite trees.
There exists k ∈ ω such that for all i > k, there are infinitely many j > i for which
Ti embeds into T j .

The main motivation for the present work comes from the effective analysis of the
Dushnik-Miller Theorem [6]. This theorem states that any countably infinite linear
order has a nontrivial self-embedding. (A self-embedding of a linear order is called
nontrivial if it moves at least one, and hence infinitely many, points.) Downey and
Lempp [5] analyzed the classical proof of the Dushnik-Miller Theorem and observed
that if L is a computable infinite linear order then 0′′ computes a nontrivial self-
embedding of L . It remains an open question whether there is such an order which
requires 0′′ to compute a nontrivial self-embedding, but they showed that there is a
computable linear order L for which any nontrivial self-embedding computes 0′.

Downey, Jockusch, and J. S. Miller [4] carried this analysis further and showed
that for computable discrete linear orders,1 being PA over 0′ is enough to compute
a nontrivial self-embedding and conversely that there is a computable discrete linear
order for which every nontrivial self-embedding is PA over 0′.2 They also proved
that there is an infinite nondiscrete computable linear order for which 0′ cannot com-
pute a nontrivial self-embedding.

Our goal is to carry out a similar analysis for nontrivial self-embeddings of com-
putable trees. In the context of trees, it is useful to take a slightly more restrictive
definition of nontrivial. We say that a self-embedding f : T → T is nontrivial if it is
not an onto map. (It follows from the proof of the Dushnik-Miller Theorem that every
countably infinite linear order has a self-embedding which is nontrivial in this sense
as well.) We say that a self-embedding f is weakly nontrivial if it is not the identity
map. In the context of trees (as opposed to linear orders), this condition does not
imply that f must move infinitely many nodes. However, frequently one can build
trees for which any weakly nontrivial self-embedding moves infinitely many points.
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We will state our results for nontrivial self-embeddings and occasionally point out
cases in which they can also be applied to weakly nontrivial self-embeddings.

It is known that every countably infinite tree has a nontrivial self-embedding and
such an embedding can be obtained by a simple application of Kruskal’s Lemma.
(For example, see Ross [13]. This existence result also holds for more general defi-
nitions of trees using extensions of Kruskal’s Lemma such as the main theorem from
Corominas [3].) In Section 2, we analyze such a proof and show that 0′′ computes
a nontrivial self-embedding for any computable infinite tree T . This proof naturally
breaks into three cases depending on the structure of T and we use this distinction to
define three classes of trees.

If n is a node in T , we let T (n) denote the subtree {m | n � m} with the in-
herited partial order. We say that n is an infinite node if T (n) is infinite and we say
that n is an ω-node if n has infinitely many successors. A path in T is an infinite
maximal linearly ordered subset of T . We say that a path P ⊆ T is isolated if there
is a node n ∈ P such that P is the only path containing n. T is called a type 1
tree if it contains a maximal infinite node. That is, T contains a node n such that
T (n) is infinite but for all m � n, T (m) is finite. T is called a type 2 tree if it
does not have a maximal infinite node but does have an isolated path. T is called
a type 3 tree if it is infinite but has no maximal infinite node and no isolated paths.
(R. Miller [11] used the same classification of height ω trees as well as proof tech-
niques similar to several of those used here.) We show that if T is an infinite com-
putable tree of type 1 or type 2, then 0′ can compute a nontrivial self-embedding of
T and that if T is an infinite computable type 3 tree, then 0′′ can compute a nontrivial
self-embedding of T .

There are at least two questions that one might ask concerning the optimality of
these results. First, is there a computable type 1 (or type 2) tree T for which every
nontrivial self-embedding computes 0′? Second, is there is computable type 1 (or
type 2) tree T such that for every (classically) isomorphic computable tree S ∼= T
and for every nontrivial self-embedding f of S, f computes 0′? (There are similar
questions concerning the connection between 0′′ and nontrivial self-embeddings of
type 3 trees.) When answering the first question, one is allowed to use facts about the
particular computable coding (or presentation) of T , while in the second question,
one must work with the isomorphism type of T and not with the particular coding.
We examine both questions with respect to each type of trees.

In Section 3, we show that there is a computable type 1 tree for which every
nontrivial self-embedding computes 0′ and there is a computable type 1 tree for
which no (classically) isomorphic computable tree has a computable nontrivial self-
embedding. In Section 4, we show the same results for computable type 2 trees. In
Section 5, we show that there is a computable type 3 tree for which every nontrivial
self-embedding computes 0′′ and there is a computable type 3 tree such that no (clas-
sically) isomorphic computable tree has a 0′-computable nontrivial self-embedding.
(We actually show something slightly stronger but we leave the technical statement
of the result until Section 5.)

These results show that the bounds of 0′ and 0′′ are optimal in the sense of
specific computable trees but we only obtain partial results in terms of the isomor-
phism types. It remains an open question whether there exists a type 1 or 2 com-
putable tree for which 0′ is necessary to compute a nontrivial self-embedding in every
isomorphic computable copy and whether there exists a type 3 computable tree for
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which 0′′ is necessary to compute a nontrivial self-embedding in every isomorphic
computable copy.

In Section 6, we turn to a slightly different question. The Chain/Anti-Chain Prin-
ciple states that every infinite partial order has either an infinite chain or an infinite
antichain. (This principle is a simple consequence of Ramsey’s Theorem for pairs.)
Herrmann [7] investigated this result from the perspective of computable combina-
torics and proved that every infinite computable partial order has either an infinite
10

2 chain or an infinite50
2 antichain. Furthermore, he proved that these bounds were

optimal by constructing an infinite computable partial order which has no infinite60
2

chains or antichains.
We examine how these results can be improved in the context of trees as a special

type of partial order. We show that every infinite computable tree has either an
infinite computable chain or an infinite 50

1 antichain. Furthermore, we show that
these bounds are optimal by constructing an infinite computable tree which has no
infinite 60

1 chains or antichains. Our construction is easily modified to work in the
context of models of the subsystem WKL0 of second-order arithmetic. Thus we
show that WKL0 is not strong enough to prove the Chain/Anti-Chain Principle for
binary branching trees.

Our computability theoretic notation is standard and follows Soare [15]. In par-
ticular, we use ϕe to denote the eth partial computable function, we use K to denote
the halting set (or any other complete computably enumerable set), and we use X [n]

to denote {m ∈ X | m < n} for any set X . The relation � denotes a tree order, 6
denotes the standard order on ω, and 6T denotes Turing reducibility.

2 Nontrivial Self-Embeddings

In this section we show that 0′′ suffices to compute a nontrivial self-embedding of
any infinite computable tree and that for certain special cases, 0′ is sufficient. For
any tree T , let S(m, n) denote the successor relation on T (that m is a successor of
n) and let br : T → ω ∪ {∞} denote the branching function on T . As mentioned
in the introduction, the successor relation and the branching function need not be
computable even if T is computable.

Lemma 2.1 Every computable tree T embeds into 2<ω and the embedding is com-
putable in 0′.

Proof Given an arbitrary n ∈ T we compute the image of n as follows. 0′ computes
the successor relation of T (which is explicitly 50

1 ) so we can use 0′ to compute the
sequence

λ = n0 ≺ n1 ≺ · · · ≺ nk = n,
where S(ni+1, ni ) for all i . The image of n will then be

1n0 ∗ 0 ∗ 1n1 ∗ 0 ∗ . . . 1nk ∗ 0.

(where 1m denotes the string of m ones and ∗ denotes concatenation). It is straight-
forward to confirm that this gives an embedding. (Recall that an embedding does not
need to be closed under initial segments.) �

We defined a path in T to be an infinite maximal linearly ordered subset of T . Often
we specify a path by giving an infinite sequence of elements x0 ≺ x1 ≺ x2 ≺ · · ·

such that S(xi+1, xi ). (This method of specifying a path corresponds to the notion of
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path used in the study of 50
1 classes in which the successor relation is computable.)

From such a sequence, we can compute the path P = {y | ∃i(y � xi )} by calcu-
lating the elements xi in order until we find an xi such that either y � xi or y is
incomparable with xi . This procedure cannot necessarily be reversed; in general,
we cannot compute such a sequence from a given path P because the successor re-
lation need not be computable from P . However, we can compute a sequence of
elements y0 ≺ y1 ≺ · · · which is cofinal in P without requiring that S(yi+1, yi )
holds. Furthermore, from such a sequence we can also compute the associated path.

Lemma 2.2 If T is an infinite tree and it has no maximal infinite node then it has a
path.

Proof Suppose T is an infinite tree and has no maximal infinite node. If T has no
ω-node then it is finitely branching and has a path by König’s Lemma. Otherwise, T
must have an ω-node n0 and a successor n1 of n0 such that T (n1) is infinite (other-
wise n0 would be a maximal infinite node). If T (n1) has no ω-nodes, then T (n1) has
a path (and so does T ) by König’s Lemma. Otherwise, T (n1) must have an ω-node
n2 which has a successor n3 such that T (n3) is infinite. Iterating in this way, we ei-
ther arrive at an infinite finitely branching tree T (ni ) which has a path, or we obtain
an infinite sequence n0 ≺ n1 ≺ n2 ≺ · · · which defines a path. �

Theorem 2.3 Every infinite computable tree has a nontrivial self-embedding com-
putable in 0′′.

The proof splits (nonuniformly) into three cases depending on whether the infinite
computable tree is of type 1, 2, or 3. By Lemma 2.2, if T is infinite but not of type 1,
then T must have a path, so either T has an isolated path (and is a type 2 tree) or T
has no isolated path (and is a type 3 tree). Therefore, every infinite tree is either type
1, 2, or 3. The next three lemmas cover these cases and show that for computable
trees of type 1 or 2, 0′ computes a nontrivial self-embedding.

Lemma 2.4 Every computable type 1 tree has a nontrivial self-embedding com-
putable in 0′.

Proof Let T be a computable type 1 tree with maximal infinite node n. Be-
cause T (n) is infinite but T (m) is finite for all m � n, n must be an ω-node. Let
n0 < n1 < · · · be the successors of n. (These are computable from 0′.) By Kruskal’s
Lemma, there is a k such that

∀m > k∃
∞s > m(T (nm) ↪→ T (ns)).

Fix such a k. We define a 0′-computable embedding ϕ such that for all m, ϕ(m) 6= m
if and only if m � nl for some l > k. Furthermore, for all l > k, ϕ(nl) = n j for
some j > l.

To define ϕ, we set ϕ(m) = m for all m ∈ T such that n 6� m or m = n or ni � m
for some i < k. We define ϕ on the subtrees T (n j ) for k 6 j by induction on j . Fix
j > k and suppose that ϕ has been defined on T (ni ) for all i < j . We let Ts denote
the subtree formed by restricting � to {0, 1, . . . , s}. Use 0′ to find an s and t such
that

1. nt > max{ϕ(ni ) : i < j} + 1 (the max is taken with respect to 6),
2. Ts(n j ) embeds into Ts(nt ),
3. ∀s′ > s Ts′(n j ) = Ts(n j ).
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Such an s and t exist by our choice of k and because n is a maximal infinite
node and hence T (ni ) is finite for each i . We extend ϕ to include the embedding of
T (n j ) = Ts(n j ) into Ts(nt ). Because ϕ(ni ) = ni for i < k, we have that for all
j > k, if ϕ(n j ) = nt , then t > k. Therefore, nk is not in the range of ϕ, so ϕ is
nontrivial. �

If n is a successor of the root of a tree T , then we say T (n) is a successor tree of T .
Similarly, if n is a successor of m in T , then we say that T (n) is a successor tree of
T (m).

Lemma 2.5 Every computable type 2 tree has a nontrivial self-embedding com-
putable in 0′.

Proof Let T be a computable type 2 tree. By definition, T has no maximal infinite
node and has an isolated path X . Fix i ∈ T such that there is only one infinite path
extending i . By Lemma 2.2, if j � i is any node on X there is exactly one successor
j ′ of j such that T ( j ′) is infinite, namely, the successor that is on X . Therefore,
the only possible ω-nodes extending i lie on X . If m � i is an ω-node, all but one
of its successor trees are finite and we are essentially in the case of a type 1 tree.
(Let n0 < n1 < · · · be the successor nodes of m and let l be such that T (nl) is the
only infinite successor tree. Apply the argument in the proof of Lemma 2.4 to the
sequence of successor nodes nl+1 < nl+2 < · · · .) Therefore, we assume there are
no ω-nodes above i .

We compute X from 0′ by computing the sequence i = x0 ≺ x1 ≺ x2 ≺ · · · such
that S(xi+1, xi ) and each xi ∈ X . Suppose we have calculated x j . We use 0′ to find
a stage s such that

∀n � x j∃m ∈ Ts(x j )(m 6= x j and n � m).

Such an s much exist as T (x j ) is finitely branching by our assumption. The finite
number of nodes which appear to be the successors of x j at stage s are the actual
successors of x j . Again using 0′, search for a successor x ′ of x j and a t such that

∀v > t [v � x j H⇒ v � x ′
].

Such x ′ and t must exist as x j has exactly one path through it. Since x ′ is the
successor of x j on X , we set x j+1 = x ′.

We have defined (from 0′) the sequence i = x0 ≺ x1 ≺ x2 ≺ · · · such that for all
i , xi is on the path X and S(xi+1, xi ). We now can apply Kruskal’s theorem to the
sequence of finite trees T (xi )r T (xi+1) and use an argument similar to the proof of
Lemma 2.4. �

Lemma 2.6 Every computable type 3 tree has a nontrivial self-embedding com-
putable in 0′′.

Proof Let T be a computable type 3 tree. By definition, T is infinite but has no
maximal infinite node and no isolated path. We use 0′′ to define an embedding
ϕ : 2<ω ↪→ T by recursion (described below) and then use 0′ to define an em-
bedding β : T ↪→ 2<ω as in Lemma 2.1. The composition α = ϕ ◦ β is the desired
nontrivial self-embedding α : T ↪→ T . (There are numerous ways to see that the
self-embedding α is nontrivial. The empty sequence ∅, which is the root of 2<ω,
is not mapped to the root of T by ϕ and hence ϕ is not onto. Also, the map β
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from Lemma 2.1 is not onto. Either of these facts is enough to conclude that α is
nontrivial.)

We define the embedding ϕ : 2<ω → T by recursion using 0′′. Let m be any node
other than the root of T for which T (m) is infinite. By our case assumption, T (m)
has no maximal infinite nodes and no isolated paths. Let ϕ(∅) = m. Assume that
ϕ(τ) has been defined for all τ such that |τ | 6 k, that T (ϕ(τ )) is infinite and that ϕ
gives an embedding of 26k into T . Consider each σ with |σ | = k separately and we
show how to define ϕ(σ ∗ 0) and ϕ(σ ∗ 1). Assume ϕ(σ) = n. Using 0′′ find two
incomparable extensions of n, say n0 and n1, such that T (n0) and T (n1) are both
infinite. Because T (n) is infinite and T has no isolated paths or maximal infinite
nodes, such nodes n0 and n1 must exist. Set ϕ(σ ∗ 0) = n0 and ϕ(σ ∗ 1) = n1. It is
easy to check that the inductive assumptions hold at level k + 1. �

Theorem 2.3 gives an analysis of the existence of nontrivial self-embeddings in terms
of the jump hierarchy. We could also ask for an analysis in terms of other computable
relations on T . That is, are there natural algebraic relations on T such that we can
compute a nontrivial self-embedding from these relations? For computable trees of
type 1 or 2, there is a nontrivial self-embedding computable from the join of the
successor relation and the branching function.

Corollary 2.7 If T is a computable type 1 tree, then T has a nontrivial self-
embedding computable from the join of the successor relation and the branching
function.

Proof We used 0′ twice in the proof of Lemma 2.4. First, we used 0′ to determine
the successors of n. Clearly, we can determine these successors from the successor
relation. Second, we used 0′ to determine if ∀s′ > s(Ts′(n j ) = Ts(n j )). That is, we
used it to find a stage by which the finite tree T (n j ) had stopped growing. Since the
trees T (n j ) are finite, we can also determine such a stage from the successor relation
together with the branching function. �

Corollary 2.8 If T is a computable type 2 tree, then T has a nontrivial self-
embedding computable from the join of the successor relation and the branching
function.

Proof Consider the proof of Lemma 2.5. If there is anω-node m � i , then this proof
reduces to the proof of Lemma 2.4 so we are done by Corollary 2.7. Otherwise, we
used 0′ twice in the definition of the sequence i = x0 ≺ x1 ≺ · · · . First, we used it
to find a stage s such that all the successors of x j had appeared by stage s. However,
if we know the branching function then we can calculate the number of successors of
x j (which in this situation is finite) and we can use the successor relation to find this
number of successors. Second, we used 0′ to determine the unique infinite successor
of x j . Because the successor relation together with the branching function can tell
when a finite tree has stopped growing, we can use them to make this determination
as well. �

The same type of argument does not work in the case of a computable type 3 tree.
As we will show in Section 5, there is an infinite computable tree T which is finitely
branching (and hence has no maximal infinite nodes), has no isolated paths and for
which every nontrivial self-embedding computes 0′′. We claim that the branching
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function for this tree T is computable from 0′. To calculate br(n), ask 0′ if there is
a node m � n. If not, br(n) = 0. If so, use 0′ to find a successor n0 of n. Ask
0′ if there is a node m � n such that n0 6� m. If not, br(n) = 1. If so, use 0′ to
find a second successor n1 of n. Because T is finitely branching, this process must
eventually stop with a complete set of successors n0, . . . , nk−1 for n. Therefore, 0′

can compute both the branching function and the successor relation in T . Since every
nontrivial self-embedding of T computes 0′′, there cannot be such a self-embedding
computable from the join of the successor relation and the branching function.

3 Type 1 Trees

Recall that a computable type 1 tree is a computable tree which has a maximal infinite
node. By Lemma 2.4, 0′ computes a nontrivial self-embedding for such trees. In this
section, we show that this result is optimal in the sense that there is a computable
type 1 tree for which every nontrivial self-embedding computes 0′. We also show
that there is a computable type 1 tree T such that for all computable trees S ∼= T , S
does not have a computable self-embedding.

The height of a node n in T (denoted by ht(n)) is the size of the set {m | m ≺ n}.
For example, the root of any tree has height 0 and the successors of the root have
height 1. The height of a finite tree T (denoted ht(T )) is the maximum height of a
node of T . Frequently, our examples of type 1 trees have an ω branching root λ and
have T (x) finite for all x 6= λ. Recall that for each x of height 1, we say that T (x) is
a successor tree of T .

Theorem 3.1 There is a computable type 1 tree T such that any nontrivial self-
embedding of T computes 0′.

Proof Our proof will show that even the weakly nontrivial self-embeddings of T
compute 0′. We describe the tree before explicitly constructing it. 0 will be the
root of T and the set of successors of 0 will be the set of positive even numbers
E+. Each subtree T (n) with n ∈ E+ will be a finite tree with no branching nodes
and ht(T (n)) > n. (That is, T (n) is a finite linear order of length at least n. The
exact length of this order will be determined during the construction.) We construct
a sequence of positive even numbers 2 = m0 < m1 < m2 < · · · which will have the
following properties:

I. For all i ∈ ω, ht(T (mi )) < ht(T (mi+1));
II. For all i ∈ ω and p, q ∈ E+, if mi 6 p < q < mi+1 then ht(T (p)) > ht(T (q))

and if i > 0, then ht(T (q)) > ht(T (mi−1));
III. Let K =

⋃
∞

s=0 Ks be a fixed computable enumeration of a complete c.e. set.
For all i , K [i] = Kmi [i]. (Recall that for any set X , X [i] = {n < i | n ∈ X}.)

We picture T as looking like a series of strictly descending staircases. That is, for any
i , the subtrees T (mi ), T (mi + 2), T (mi + 4), . . . , T (mi+1 − 2) are all linear orders
which are decreasing in height (but all taller than T (mi−1)). The subtree T (mi+1)
jumps up in height (to be taller than T (mi )) and begins another sequence of sub-
trees of decreasing height (but all taller than T (mi )) which continues until we reach
T (mi+2). The idea behind this tree is that if q ∈ E+ is such that mi 6 q < mi+1,
then T (q) does not embed into any subtree of the form T (p) where p ∈ E+ satisfies
p < mi or q < p < mi+1. (It follows from properties I and II that in both of these
cases ht(T (q)) > ht(T (p)).) Therefore, if δ is a weakly nontrivial self-embedding
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which moves the node q, then δ must map T (q) into a subtree T (p) such that p ∈ E+

and either mi 6 p < q or mi+1 6 p. In the former case, by iterating δ we must
arrive at some k > 1 such that δk maps T (q) into T (p) where p ∈ E+ and p > q
(and so p > mi+1 by the previous comments).

Properties I, II, and III are sufficient to guarantee that any weakly nontrivial self-
embedding ϕ computes K . Because ϕ is weakly nontrivial, there must be an n ∈ ω
such that ϕ(n) 6= n. Fix any such n. For all m > 0 let bmc be the unique element
of E+ such that m ∈ T (bmc). We define a strictly increasing function ψ from ϕ as
follows:

ψ(0) = bnc ,

ψ(s + 1) = bϕk(n)c where k = k(s + 1) is the least natural number such that
bϕk(n)c > ψ(s).

(The existence of ψ follows from the comments above about the general form of
T .) Once we prove by induction that ψ(s) > ms for all s ∈ ω, we will have by
property III that K [i] = Kψ(i)[i] and hence that ψ >T K . Since ϕ >T ψ , we have
ϕ >T K as claimed.

The base of the induction is ψ(0) = bnc > 2 = m0. Suppose that ψ(s) > ms .
Let j be such that m j 6 ψ(s) < m j+1. Then j > s as 〈ms〉 is an increasing
sequence. If j > s, then we are done as ψ is increasing, so we can assume that
ms 6 ψ(s) < ms+1.

Property I ensures that for all l if ψ(s) < l < ms+1, then T (ψ(s)) 6↪→ T (l).
Therefore, for all t > k = k(s),

bϕt (n)c > ψ(s) H⇒ bϕt (n)c > ms+1.

But k(s + 1) > k(s) and so in particular ψ(s + 1) > ms+1 as required.
It remains to give the construction of a computable type 1 tree T satisfying I, II,

and III. We build T in stages. At stage s we build T s and T will be
⋃

s T s . T 0 will
consist of all the even nodes as above as well as an infinite/coinfinite computable set
of odd numbered nodes arranged so that for all e ∈ E+, ht(T (e)) = e. (That is, T (e)
is a linear chain of length e.)

We use a movable marker argument to create the sequence 〈mi 〉. As we do this
we also ensure that I, II, and III are satisfied. We describe a uniformly computable
sequence 〈mi,s〉 with the properties

(i) ∀i (mi,0 = 2i),
(ii) ∀i, s (mi,s < mi+1,s),

(iii) ∀i, s (mi,s 6 mi,s+1),
(iv) ∀i (lims mi,s exists).

For each i , mi is defined to be lims mi,s . We enumerate K one element at a time.
Suppose s is a stage at which i ∈ Ks+1 r Ks and let k > i be the smallest number
such that mk,s > s + 1. Then we set

m j,s+1 =

{
m j,s if j < i
mk+t,s if j = i + t, (t ∈ ω).

At the same time it is necessary to adjust the subtrees T s(e) with e ∈ E+.
We leave all successor trees in T unchanged except perhaps those T s(e) with
mi−1,s = mi−1,s+1 6 e < mk,s = mi,s+1 (if i = 0 take mi−1 = 2). To the subtrees
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T (e) with mi−1,s 6 e < mi,s+1, we add the minimum number of nodes to the top of
each subtree, retaining the property that there are no branching nodes and ensuring
that properties I and II are preserved.

The argument that the tree T and the sequence 〈mi 〉 have the required properties
is now just the typical movable marker argument, made explicit in the following
lemmas.

Lemma 3.2 For every j , lims m j,s = m j exists.

Proof Let s be such that Ks[ j] = K [ j]. Then for all t > s, if i ∈ Ks+1 r Ks , then
i > j , so for all t > s, m j,t = m j,t+1. �

Lemma 3.3 Every successor tree T (e) with e ∈ E+ is finite.

Proof Fix e ∈ E+. Let i be such that mi > e. Once mi,s reaches its limit mi , T s(e)
will never grow again. At each stage before this limit is reached, at most finitely
many elements are added to T (e). Therefore, T (e) is finite. �

Lemma 3.4 T has properties I, II, and III.

Proof The fact that T has properties I and II follows immediately from the fact
that these properties are explicitly retained at each stage in the construction and the
previous two lemmas.

To see that T satisfies property III, fix any j ∈ ω. If s is the largest stage at which
i ∈ Ks+1 r Ks for some i 6 j , then by the construction,

m j = m j,s+1 > mi,s+1 = mk,s > s + 1,

where k is as in the construction above. But Ks+1[ j] = K [ j] by our choice of s, so
Km j [ j] = K [ j]. �

This completes the proof of Theorem 3.1. �

The proof of Theorem 3.1 leads to several corollaries concerning the connection
between the complexity of nontrivial self-embeddings of computable type 1 trees T
and the complexity of natural algebraic relations on T .

Corollary 3.5 There is a computable type 1 tree T such that T has a computable
successor relation and every nontrivial self-embedding of T computes 0′.

Proof The tree T constructed in Theorem 3.1 has a computable successor relation
because we only add nodes above the top node in T (e) at any given stage. Therefore,
if n,m are nodes in T at stage s, then S(n,m) holds if and only if it holds at stage
s. (Because each nontrivial self-embedding of T computes 0′ and there is such an
embedding computable from the join of the successor function and the branching
function, the branching function for T has degree 0′.) �

Corollary 3.6 There is a computable type 1 tree T such that T has a computable
branching function and every nontrivial self-embedding of T computes 0′.

Proof This corollary follows by altering the construction in Theorem 3.1 such that
any new nodes which are added to T (e) at stage s are placed between the node e (the
root of T (e)) and its current successor. By making this change, the nodes which are
leaves at stage 0 remain leaves throughout the rest of the construction. Therefore,
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the branching function is equal to ∞ for the root of T and is equal to 1 for all other
nodes except those nodes which are leaves at stage 0. (By reasoning similar to the
parenthetical remark at the end of Corollary 3.5, the successor relation has degree 0′

for this tree.) �

We next turn to the question of working with nontrivial self-embeddings for isomor-
phism types of computable type 1 trees.

Theorem 3.7 There is a computable type 1 tree T such that no computable tree
classically isomorphic to T has a computable nontrivial self-embedding.

The remainder of this section is dedicated to the proof of Theorem 3.7. We will build
a computable tree T such that the root of T is the only ω-node. For each successor
n of the root, we call the subtree T (n) a component of T and we will make each
component finite. Because the root of T will be the only infinite node, T will have
the required form.

To build T , we uniformly construct the sequence T0, T1, . . . of components of
T . (These components should also have subscripts indicating the current stage of
the construction but we suppress the stage subscript unless it is not clear from con-
text.) Each component Ti will have height three and will consist of finitely many
components each of which will be one of the following four types.

•

@@
•

~~
•

•

•

@@
•

~~
•

•

@@
• •

~~
•

•

OOOOO •

@@
•

~~
•

ooooo
•

Type A Type B Type C Type D

More specifically, each Ti will contain at most one component of type A, at least
one component of type B, exactly i many components of type D, and finitely many
components (including possibly none) of type C. Consider the form of a nontrivial
self-embedding δ of T . We let λ denote the root of T and ri denote the root of the
component Ti . Because T has height four, δ(λ) = λ. Because each Ti has height
three, δ(ri ) = r j for some j . Because Ti has exactly i many type D trees, δ(ri ) = r j
for some j > i . Finally, because each Ti is finite, if δ is nontrivial, then there must
be some i for which δ(ri ) = r j for j > i . By considering iterated images of Ti , it
is clear that there must be infinitely many indices i for which δ maps Ti into T j for
some j > i . Therefore, any nontrivial self-embedding of (any isomorphic copy of)
T must map infinitely many components into disjoint components. We will exploit
this property in our proof.

Fix two effective enumerations of the partial computable functions: ϕe and fi .
(We use two different notations to distinguish between the partial computable func-
tion which we view as determining the eth tree and the partial computable function
which we view as giving a potential nontrivial self-embedding of this tree.) We sat-
isfy all requirements of the form

R〈e,i〉 : ϕe does not compute a tree isomorphic to T

or fi is not a nontrivial self-embedding of the tree computed byϕe.

To make these requirements precise, we need to explain how we obtain a tree from
ϕe. We view ϕe as defining a partial computable relation �e on universe ω by setting
n 6�e m if ϕe(〈n,m〉) converges to 0 and n �e m if ϕe(〈n,m〉) converges to a value
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other than 0. If ϕe is total and (ω,�e) is a tree, then we refer to this tree as the
ϕe-tree. At a stage s, we consider the largest set X such that for all n,m ∈ X ,
ϕe,s(〈n,m〉) converges and call (X, ϕe,s) the ϕe-tree at stage s. (Of course, this finite
structure may have already violated the axioms for a tree in which case ϕe does not
compute a tree and we get an easy win.)

Because each component Ti of our tree T will contain a type B tree, we know
that T has height four and each component Ti has height three. Therefore, if the
ϕe-tree at stage s has height greater than four, we know it is not isomorphic to our
tree T . Furthermore, in the case when the ϕe-tree is isomorphic to our tree T , we
can identify the root of the ϕe-tree and the roots of each of its components as it is
enumerated. When we say that S is a component of the ϕe-tree at stage s, we mean
that the ϕe-tree at stage s has height four, that the least element of S is at level 1 in
the ϕe-tree, that S contains a type B component, and that S contains all the nodes
(currently) above its least element.

For any component S of the ϕe-tree, we can count the number of type D trees
occurring in S. As the component S grows, this number can never decrease. (If
we ever see a component of S which contains a component larger than a type D
tree, we know the ϕe-tree is not isomorphic to our tree and we get an easy win.)
Finally, if the component S has i many type D trees at stage s, then the only possible
(current) image of S in T is the component Ti . As the number of type D trees in S
grows, the possible image of this component in our tree changes, but if the ϕe-tree
is isomorphic to T , then this number must eventually stop growing. Therefore, we
eventually correctly guess the only possible image of the component S in our tree.

Before giving the full construction, we consider how to satisfy a single require-
ment R〈e,i〉 in isolation. Assume that (ω, ϕe) is a tree of height four (so that we do
not get an easy win). We wait for a stage s at which the ϕe-tree contains disjoint
components U and V such that fi is defined on all of U and embeds U into V . (By
our analysis of nontrivial self-embeddings of trees isomorphic to T , if the ϕe-tree
is isomorphic to T and fi is a nontrivial self-embedding of the ϕe-tree, then such
components must exist.) Once we find such components, we fix them and define two
parameters. For all stages t > s, u(t) is equal to the number of type D trees in U
at stage t and v(t) is equal to the number of type D trees in V at stage t . (We also
assume that neither U nor V ever adds any additional elements to a type D tree. Such
additional elements would again give us an easy win. This assumption means that
u(t) and v(t) are increasing in t .) For any stage t > s, we know that Tu(t) is the only
possible (current) image of U in T and that Tv(t) is the only possible (current) image
of V in T .

At stage s, u(s) < v(s) and fi gives an embedding of U into V . We set up to
diagonalize by taking the following two steps. First, if Tu(s) does not have a type
A component, then we add elements to Tu(s) to create a type A component in Tu(s).
Second, if Tv(s) does have a type A component, then we add an element to Tv(s) to
change this component from type A to type C. (Recall that Tu(s) and Tv(s) can have
at most one type A component.)

At each stage t > s, we calculate u(t) and v(t) and check whether either of these
parameters have changed. Assume for the moment that neither of these parameters
changes at a future stage. We next check whether at stage t , U is isomorphic to Tu(t)
and V is isomorphic to Tv(t). If not, then we go on to the next stage. If so, we check
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whether fi is defined on all of U and is an embedding on U into V . If not, go on to
the next stage. If so, then we are ready to diagonalize.

In this situation, we have U ∼= Tu(t), V ∼= Tv(t) and fi : U ↪→ V . Tu(t) and U
each have a single type A component (because of our set up to diagonalize proce-
dure) and we refer to these components as the designated components of Tu(t) and
U . We refer to the component in V which is the image of the designated component
in U as the designated component in V . Because of our set up to diagonalize pro-
cedure, we know that the designated component in V is either of type B, C, or D.
If the designated component of V is of type B, then we add an element to Tu(t) to
change the designated component of Tu(t) from type A to type C. If the designated
component of V is of type C or D, then we add an element to Tu(t) to change the
designated component in Tu(t) from type A to type B.

Consider what can happen after this diagonalization step. If the opponent does
not change u(t) at a later stage, then the only way for the ϕe-tree to be isomorphic
to T is for U to change its designated component (currently of type A) into the same
type of component as the designated component in Tu(t) (which is now either type
B or C). However, we chose the new type for the designated component in Tu(t)
in such a way that fi cannot be extended to map from this type of component into
the designated component in V . Therefore, unless the opponent adds new type D
components to U to change u(t) or adds new type D components to V to change
v(t), we win requirement R〈e,i〉. If the opponent does change u(t) or v(t), then we
repeat this process of setting up to diagonalize and later diagonalizing.

To be more specific about this process and give an indication of the full construc-
tion, we remove the earlier assumption that u(t) = u(s) and v(t) = v(s) for all t > s.
At each stage t > s, we calculate u(t) and v(t) and check whether u(t) = u(t − 1)
and v(t) = v(t − 1). If u(t − 1) < u(t), then U has gained extra type D trees and its
potential image in T has changed. In this situation in the full construction, we will
take an outcome on a tree of strategies indicating that u(t)may be approaching infin-
ity in the limit. Notice that if u(t) does go to infinity in the limit, then U is an infinite
component of the ϕe-tree and we win R〈e,i〉 because T has no infinite components.
Similarly, if u(t) = u(t −1) but v(t −1) < v(t), then in the full construction, we will
take an outcome indicating that v(t)may be approaching infinity in the limit. Again,
if v(t) goes to infinity in the limit, then V is an infinite component of the ϕe-tree and
we win R〈e,i〉.

If u(t) = u(t − 1) and v(t) = v(t − 1) and fi : U ↪→ V at stage t , then we set
up diagonalize as above. That is, we add a type A component to Tu(t) (if it does not
already have one) and change the type A component in Tv(t) (if it has one) to a type
C component. We check if U ∼= Tu(t) and V ∼= Tv(t). If so, then we diagonalize as
above.

There are four possible outcomes of this strategy to meet R〈e,i〉 ordered from
highest to lowest priority by u∞ <L v∞ <L fin <L triv. The tree of strategies
consists of all finite sequences of these outcomes ordered lexicographically using the
<L order. We use the trivial outcome triv before we have defined the components
U and V and if the ϕe-tree has height greater than four or enumerates a component
S which contains a component larger than a type D tree. (If we always take this
outcome, then we win R〈e,i〉 because of the form of T and the form of the nontrivial
self-embeddings of any tree isomorphic to T .) We use the u∞ outcome whenever
the parameter u(s) increases. (If we take this outcome infinitely often, we win R〈e,i〉
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because U is an infinite component in the ϕe-tree.) We use the v∞ outcome whenever
the parameter u(s) retains its value but the parameter v(s) increases. (If we take this
outcome infinitely often, then we win because V is an infinite component in the ϕe-
tree.) We use the outcome fin when both parameters u(s) and v(s) stay the same. (If
we take the u∞ and v∞ outcomes only finitely often and the fin outcome infinitely
often, then we win R〈e,i〉 by the diagonalization process.)

We will use α and β to denote nodes on the tree of strategies. If |α| = 〈e, i〉,
then α works on requirement R〈e,i〉 and we use ϕα and fα to denote ϕe and fi . We
denote the components chosen by α in the ϕα-tree by Uα and Vα (which also have
stage number subscripts which we typically suppress) and we denote the parameters
associated with α at stage s by u(α, s) and v(α, s). Each strategy will keep two other
parameters a(α, s) and b(α, s) (described below) to deal with the interaction between
different strategies. If a strategy α is initialized, then its components Uα and Vα and
its parameters become undefined.

To see how strategies for different R requirements interact, assume that α ( β. If
α ∗ triv ⊆ β, then β ignores α when it acts. If α ∗ fin ⊆ β, then β assumes that the
parameters u(α, s) and v(α, s) have reached their final values and β makes sure that
its chosen components Uβ and Vβ each contain more type D trees than Vα . (That
is, β tries to diagonalize using components in T which have indices greater than
those used by α to diagonalize.) This restriction causes no problems for β because if
the ϕβ -tree is isomorphic to T and fβ is a nontrivial self-embedding of the ϕβ -tree,
then fβ must map infinitely many components of the ϕβ -tree to components which
contain strictly more type D trees.

If α ∗ u∞ ⊆ β, then β assumes that the parameter u(α, s) will approach infinity
in the limit. In this case, β waits to work behind α in the sense that β only works
with components Uβ and Vβ which contain strictly fewer type D trees than Tu(α,s).
If α ∗ u∞ is on the true path, then u(α, s) will go to infinity, so α may occasionally
delay β from acting but will not prevent β from succeeding in the end.

Similarly, if α ∗ v∞ ⊆ β, then β assumes that the parameter u(α, s) has reached
its limit and that v(α, s) will approach infinity. In this case, β works in between Uα
and Vα in the sense that β works with components Uβ and Vβ for which the number
of type D trees is strictly greater than in Uα and is strictly less than in Vα . If α∗v∞ is
on the true path, then the parameter u(α, s) eventually reaches a finite value (which
β can work beyond in the sense described above) and v(α, s) does go to infinity; so
α may cause β to delay acting occasionally, but will not prevent β from succeeding
in the end.

To implement these restrictions, we introduce the parameters a(β, s) and b(β, s).
When β is first eligible to act (or first eligible to act after having been initialized),
a(β, s) is defined to be large. (That is, it is defined to be larger than any number
used in the construction so far.) The important feature of a(β, s) (which we verify
after the construction) is that it is greater than u(α, s) for all α such that α ∗ v∞ ⊆ β
and it is greater than v(α, s) for all α such that α ∗ fin ⊆ β. When β searches for
components Uβ and Vβ to use in its diagonalization, it only looks at components in
the ϕβ -tree which have strictly more than a(β, s) many type D trees.

At each stage s, β defines its parameter b(β, s) to be the minimum of v(α, s) for
all α such that α ∗v∞ ⊆ β and u(α, s) for all α such that α ∗u∞ ⊆ β. When β looks
for its components Uβ and Vβ , it only looks at components in the ϕβ -tree which have
strictly less that b(β, s) many type D trees.
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Suppose β is successful at finding components Uβ and Vβ which satisfy these size
restrictions. Because Uβ has more than a(β, s)many type D trees, β is working with
components which are beyond (in the sense of the indices of potentially isomorphic
components in T ) those used by all α for which α ∗ fin ⊆ β. Because Vβ has fewer
than b(β, s) many type D components, β is working with components which are
behind (in the same sense as the previous sentence) the components used by each
α such that α ∗ u∞ ⊆ β. Finally, because Uβ has more than a(β, s) many type D
trees and Vβ has fewer than b(β, s) many trees, β is working between the witness
components for all α such that α ∗ v∞ ⊆ β. Thus, these parameters succeed in
forcing β to work with components of the intuitively correct size.

We now present the formal construction. At the beginning of stage s, T will
contain a root node plus finite components T0, . . . , Ts−1. We begin by adding com-
ponent Ts consisting of a single type A component, a single type B component and
s many type D components. We proceed to let strategies (beginning with the unique
strategy for the requirement R〈0,0〉) act as in the basic module described below. Once
a strategy α with |α| = s acts, we end the stage and initialize all strategies of lower
priority than α. If a strategy is not eligible to act at stage s but is not initialized, then
its parameters retain their values.

Basic module for strategy β. When β is first eligible to act (or first eligible to
act after being initialized), define a(β, s) to be large. This parameter retains its value
unless β is initialized. At every β stage, define

b(β, s) = min({v(α, s) | α ∗ v∞ ⊆ β} ∪ {u(α, s) | α ∗ u∞ ⊆ β})

(we take as a convention that the minimum of the empty set is ∞). If Uβ and Vβ were
defined at a previous β stage (since the last initialization of β), then define u(β, s)
to be the number of type D components in Uβ and v(β, s) to be the number of type
D components in Vβ . (Throughout this module, we assume that the ϕβ -tree at stage
s is a tree of height four and that we have identified its root node. We can identify
nodes at level one in the ϕβ -tree using type B trees and we assume that no type D
component in the ϕβ tree ever grows. If any of these conditions are not true, we let
β ∗ triv act.)

Step 1. Check if there are disjoint components Uβ and Vβ in the ϕβ -tree such that
Uβ has > a(β, s) many type D components, Vβ has < b(β, s) many type D compo-
nents, fβ is defined on all of Uβ , and fβ is an embedding of Uβ into Vβ . If there are
no such components, then let β ∗ triv act.

If there are such components, then fix such Uβ and Vβ . (These components do
not change at future stages unless β is initialized.) Define u(β, s) and v(β, s) as
above and set up to diagonalize. First, check if Tu(β,s) has a type A component. If
not, then add such a component to Tu(β,s). If so, then Tu(β,s) remains unchanged.
Second, check if Tv(β,s) has a type A component. If so, then we add an element
to this component to make it into a type C component. If not, then Tv(β,s) remains
unchanged. Let β ∗ fin act. When β is next eligible to act, it acts in step 2 (unless it
is initialized).

Step 2. Let t be the previous β stage. Break into the following three subcases.
Unless β proceeds to step 3 (or is initialized), β acts in step 2 again at the next β
stage.

2(a). If u(β, s) > u(β, t), then let β ∗ u∞ act.
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2(b). If u(β, s) = u(β, t) and v(β, s) > v(β, t), then let β ∗ v∞ act.
2(c). If u(β, s) = u(β, t) and v(β, s) = v(β, t), then check if u(β, s) < v(β, s) <

b(β, s). If not, then let β∗fin act. If so, then set up to diagonalize as described
in the second paragraph of step 1. (Uβ and Vβ are already defined, so setting
up to diagonalize consists in making sure that the corresponding trees Tu(β,s)
and Tv(β,s) have the correct number of A components. Also, once we have
set up to diagonalize with a particular choice of u(β, s) and v(β, s), future
setting up procedures will not add elements to Tu(β,s) and Tv(β,s) unless these
parameters change.) Check if Uβ ∼= Tu(β,s), Vβ ∼= Tv(β,s), fβ is defined on
all of Uβ and gives an embedding of Uβ into Vβ . If any of these conditions
fail, then let β ∗ fin act. If all of these conditions hold, then proceed to step 3.

Step 3. In this step, β diagonalizes as follows. The single type A components in
Tu(β,s) and Uβ are called the designated components of Tu(β,s) and Uβ (respectively)
and the image of the designated component in Uβ under fβ is called the designated
component of Vβ . If the designated component of Vβ is a type B tree, then add
an element to the designated component of Tu(β,s) to make it into a type C tree. If
the designated component of Vβ is a type C or D tree, then add an element to the
designated component of Tu(β,s) to make it into a type B tree. Let β ∗ fin act. When
β is next eligible to act, it acts in step 4.

Step 4. Let t < s be the last β stage. Check if u(β, s) = u(β, t) and v(β, s) =

v(β, t). If so, then let β ∗ fin act. If not, then return to step 3.
This completes the formal description of the construction. As usual, we say that

a strategy α is on the true path if α is the leftmost strategy of length |α| which is
eligible to act infinitely often. Because the tree of strategies is finitely branching and
because strategies of length up to s get to act at stage s, the true path is infinite.

Lemma 3.8 Let β be a strategy on the true path.

1. β is initialized only finitely often.
2. a(β, s) reaches a finite limit a(β).
3. Unless β ∗ triv is on the true path, β eventually defines the components Uβ

and Vβ permanently. Once these components have been permanently defined,
the parameters u(β, s) and v(β, s) are always defined and are increasing in
s. Furthermore, if β ∗ triv acts infinitely often, then β ∗ triv is on the true path.

4. If β ∗ u∞ is on the true path, then lims u(β, s) = ∞ and Uβ has infinitely
many type D components.

5. If β ∗ v∞ is on the true path, then lims v(β, s) = ∞ and Vβ has infinitely
many type D components.

6. If β∗fin is on the true path, then lims u(β, s) = u(β) and lims v(β, s) = v(β)
both exist, Uβ has u(β) many type D components (in the limit) and Vβ has
v(β) many type D components (in the limit).

7. lims b(β, s) = ∞.

Proof The verification of these properties proceeds by induction on β and is stan-
dard. For properties 1 and 2, let s be the least β stage such that s > |β| and the
path in the tree of strategies is never to the left of β after stage s. Property 1 follows
because β is never initialized after stage s and property 2 follows because β defines
a(β, s) at stage s and this definition can only be removed by initialization.



Self-Embeddings of Computable Trees 17

For property 3, assume that β ∗ triv is not on the true path and β is not initialized
after stage s. In this case, β must eventually move from step 1 to step 2 in the basic
module at some stage after s and β defines Uβ and Vβ at this stage. Because β is not
initialized after this time, the only way that β could return to taking outcome β ∗ triv
is if the ϕβ -tree violated the axioms of a tree or had height greater than four or added
an extra element to some type D component in Uβ or Vβ . In any of these cases, β
would take outcome β ∗ triv at all future β stages and hence β ∗ triv would be on the
true path. It is clear that if this situation does not occur, then the parameters u(β, t)
and v(β, t) are defined and increasing in t at every subsequent stage. Furthermore,
it follows from these comments that if β takes outcome β ∗ triv infinitely often, then
β ∗ triv is on the true path.

For property 4, assume that β ∗ u∞ is on the true path and let t be a stage such
that β is never initialized after t and β ∗ triv is not eligible to act after t . The strategy
β ∗ u∞ is only eligible to act at β stages after t at which the parameter u(β, s) has
increased. Because this parameter measures the number of type D components in
Uβ , property 4 follows. The proof of property 5 is essentially the same.

For property 6, assume that β ∗fin is on the true path. There must be a stage t after
which β is never initialized and none of β ∗ triv, β ∗ u∞, or β ∗ v∞ are ever eligible
to act. Therefore, after stage t , the parameters u(β, s) and v(β, s) never increase and
the number of type D components in Uβ and Vβ never increase (and none of these
type D components grow).

For property 7, let s be the least stage such that β is never initialized after s. If
there are no strategies α such that α ∗ u∞ ⊆ β or α ∗ v∞ ⊆ β, then b(β, t) = ∞ for
all t > s. Otherwise, by the induction hypothesis, for each α ∗ u∞ ⊆ β, the value of
u(α, t) approaches infinity and for each α ∗ v∞ ⊆ β, the value of v(α, t) approaches
infinity. Therefore, b(β, t) approaches infinity. �

Lemma 3.9 For all strategies β and all β stages s, a(β, s) is greater than
max({u(α, s) | α ∗ v∞ ⊆ β} ∪ {v(α, s) | α ∗ fin ⊆ β}).

Proof This lemma follows from three observations. First, whenever β is initialized,
it defines a(β, s) to be large at the next β stage. This large value is by definition
greater than max({u(α, s) | α ∗ v∞ ⊆ β} ∪ {v(α, s) | α ∗ fin ⊆ β}). Second, if
α ∗ v∞ ⊆ β and u(α, s) increases, then α takes outcome u∞ and β is initialized.
Third, if α ∗ fin ⊆ β and v(α, s) increases, then α takes outcome v∞ and β is
initialized. �

Lemma 3.10 Assume that β sets up to diagonalize at stage s. No strategy α 6= β
can add elements after this point to Tu(β,s) (unless β is initialized or u(β, s) increases
at a later stage) or to Tv(β,s) (unless β is initialized or v(β, s) increases at a later
stage).

Proof β can set up to diagonalize in either step 1 or step 2 of the basic module. In
either case, we have a(β, s) < u(β, s) < v(β, s) < b(β, s) and β takes outcome
β ∗ fin when β performs this action. To show that no α 6= β can add elements to
Tu(β,s) or Tv(β,s) after this stage unless β is initialized or the parameters u(β, s) or
v(β, s) change, we break into cases depending on the relative priority of α and β.

Case 1 α <L β. In this case, β is initialized at the end of the stage when α acts.
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Case 2 β ∗ fin <L α. In this case, α is initialized when β sets up to diagonalize
at stage s. Therefore, a(α, t) for t > s is greater than v(β, s) and hence α works
with trees with more type D components than Tv(β,s) and cannot add new elements
to either Tu(β,s) or Tv(β,s).

Case 3 β ∗ fin ⊆ α. By Lemma 3.9, the value of a(α, s) is greater than v(β, s).
As above, α works with trees with strictly more type D components that Tu(β,s) and
Tv(β,s).

Case 4 α ( β. We break this case into four subcases.

Subcase 4a α ∗ triv ⊆ β. In this subcase, α does not add any elements to T
without taking an outcome to the left of β and initializing β.

Subcase 4b α ∗ fin ⊆ β. By Lemma 3.9, v(α, s) < a(β, s). Hence, α works with
trees with strictly fewer type D components than Tu(β,s) and Tv(β,s). If either the
parameter u(α, s) or v(α, s) should increase at a later stage, α would take outcome
α ∗ u∞ or α ∗ v∞ and β would be initialized.

Subcase 4c α ∗ v∞ ⊆ β. By Lemma 3.9 and the definition of b(β, s),

u(α, s) < a(β, s) < u(β, s) < v(β, s) < b(β, s) < v(α, s).

Therefore, Uα has strictly fewer type D components than Tu(β,s) (unless u(α, s) later
increases in which case β is initialized) and Vα has strictly more type D components
than Tu(β,s) and Tv(β,s) (unless these parameters increase at a later stage).

Subcase 4d α ∗ u∞ ⊆ β. By the definition of b(β, s),

u(β, s) < v(β, s) < b(β, s) < u(α, s).

Therefore, α works with components that contain strictly more type D trees than
Tu(β,s) and Tv(β,s) (unless these parameters increase at a later stage). �

Lemma 3.11 Each component Tk is finite in the limit.

Proof By the construction, a component Tk can only grow at stage s > k if there
is a strategy β such that u(β, s) = k and β sets up to diagonalize or diagonalizes at
stage s or such that v(β, s) = k and β sets up to diagonalize at stage s. Because the
parameters a(β, s) are always chosen large, only finitely many strategies β can ever
have u(β, s) = k or v(β, s) = k for any fixed value of k. Therefore, it suffices to
show that such strategies only cause Tk to grow finitely often.

Consider the case when v(β, s) = k and β sets up to diagonalize. In this situation,
β could cause Tk to grow by adding an element to change a type A component in Tk
into a type C component. By Lemma 3.9, unless β is initialized or v(β, s) increases
at a later stage, no other strategy can add an element to Tk after stage s. (Even
if u(β, s) later increases and β sets up to diagonalize again with the same value
of v(β, s), the tree Tk will not grow because we have already removed the type A
component and no other strategy can have added a new type A component.)

If β is initialized after setting up to diagonalize, then it will work with components
which contain strictly more type D components than Tk in the future. Therefore, in
this case β causes only finitely much change to Tk .
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If the value of v(β, s) increases at a later stage, then α might reach a later stage
t in which u(β, t) = k and β sets up to diagonalize at stage t . In this situation, β
will change Tk by adding a type A component. (We could also arrive at this situation
without having v(β, s) = k at some earlier stage in which case β will only add a
type A component if Tk does not already have such a component.)

By Lemma 3.9, unless β is initialized or the value of u(β, t) increases at a later
stage, no strategy α 6= β can add elements to Tk . If β is later initialized or if u(β, t)
increases at a later stage, then β will work with components with strictly more type
D trees than Tk and hence β will cause only finitely much growth to Tk .

If β later diagonalizes with u(β, t) = k, then β will add an element to Tk to
change the type A component to either type B or type C. However, because β diag-
onalizes at most once with any given components, it will not add any more elements
to Tk at a future stage. Therefore, β only adds finitely many elements to Tk . �

Lemma 3.12 All requirements R〈e,i〉 are satisfied.

Proof Let β be the strategy on the true path such that |β| = 〈e, i〉. Assume for
a contradiction that the ϕβ -tree is isomorphic to T and that fβ is a nontrivial self-
embedding of the ϕβ -tree.

Let s be a stage after which β is never initialized and a(β, s) has reached its
final value. Because lims b(β, s) = ∞, there must be a β stage t > s and disjoint
components U and V of the ϕβ -tree such that the number of type D components in
U is strictly greater than a(β, t), the number of type D components in V is strictly
less than b(β, t), and fβ is an embedding of U into V . At this stage, β defines Uβ
and Vβ permanently.

By the choice of Uβ and Vβ , we know that fβ is an embedding from Uβ into Vβ
at stage t . These components may gain new type D components after stage t , but
because fβ is a self-embedding of the ϕβ -tree, it must eventually become defined
on all of Uβ as it grows and continue to be an embedding into Vβ . Furthermore, it
is possible that Vβ gains new type D components more quickly than the parameter
b(β, s) grows. However, since lims b(β, s) = ∞, we must eventually be in the
situation where Vβ has stopped growing and it has strictly fewer than b(β, s) many
type D components.

Therefore, we can assume without loss of generality that t is a β stage, that Uβ and
Vβ have completely enumerated all of their type D components by stage t , that Vβ
has strictly fewer than b(β, t)many type D components, and that fβ is an embedding
of Uβ into Vβ . Notice that these assumptions imply that the parameters u(β, t) and
v(β, t) have reached their limits and that u(β, t) < v(β, t) < b(β, t).

At stage t , β sets up to diagonalize (in either step 1 or step 2 depending on the pre-
vious actions of β). β adds a type A component to Tu(β,t) (if necessary) and changes
the type A component in Tv(β,t) to a type C component (if necessary). Because the
ϕβ -tree is isomorphic to T and because neither Uβ nor Vβ gains a type D component
after stage t , there must be a stage t ′ > t at which Uβ ∼= Tu(β,t ′) and Vβ ∼= Tv(β,t ′).
At this stage, β moves to step 4 of the basic module and diagonalizes by changing the
designated component in Tu(β,t ′) so that it cannot be embedded into the designated
component of Vβ .

Because Uβ ∼= Tu(β,t ′) before this additional element is added, we know that the
number of each type of component in Uβ and Tu(β,t ′) (before the additional element is
added) match up. Furthermore, because β is never initialized again and both u(β, s)
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and v(β, s) have reached their limits, by Lemma 3.9 we know that Tu(β,t ′) does not
change again after stage t ′. Therefore, to make Uβ ∼= Tu(β,t ′) (after the extra element
is added), Uβ must change its designated component to match the new type of the
designated component in Tu(β,t ′). Furthermore, because Uβ is already committed by
fβ to embedding the designated component of Uβ into the designated component of
Vβ and because the new type of the designated component of Tu(β,t ′) does not embed
into the designated component of Vβ , the embedding fβ cannot be extended in a way
that is compatible with extending the designated component of Uβ . This fact gives
the desired contradiction. �

This completes the verification that our construction succeeds.

4 Type 2 Trees

Recall that a type 2 computable tree is one which has no maximal ω-nodes and
which has an isolated path. (The type 2 trees we construct below will all be finitely
branching and hence will have no ω-nodes at all.) It is well known that there are such
trees T which have a single path and such that this path codes 0′. (The successor
relation on T can even be computable. Among other places, such a construction is
contained in the proof that König’s Lemma for finitely branching trees is equivalent
to ACA0 in Simpson [14].) We construct such a tree and show that any nontrivial
self-embedding of it can compute 0′.

Lemma 4.1 If T is a tree ordering on ω such that
(a) T is finitely branching,
(b) ∀m, n(m � n H⇒ m > n),
(c) ∀n(n � the immediate predecessor of n + 1),

then T has exactly one path X. Furthermore, if this path X is written as
λ = x0 ≺ x1 ≺ x2 ≺ · · · where xi+1 is the successor of xi , then xn = max{m :

ht(m) 6 n}.

Proof Let xn = max{m : ht(m) 6 n} which exists by (a). For any fixed n, we
will show by induction that l � xn for all l > xn . Thus for any n, xn is an infinite
node. By (b), xn has height n and is the only infinite node of height n. Therefore,
x0 ≺ x1 ≺ x2 ≺ · · · gives the unique path through T .

Fixing n ∈ ω, we show that l � xn for all l > xn by induction on l. For the
base of the induction, we have trivially that xn � xn . For the induction step, suppose
that l > xn and l � xn and we show that l + 1 � xn . Let p be the immediate
predecessor of l + 1 in T . By (c), l � p and hence p is comparable to xn . So either
p � xn , in which case l + 1 � xn and we are done, or p ≺ xn , in which case
ht(l + 1) 6 n (as ht(xn) 6 n) contradicting the fact that xn = max{m : ht(m) 6 n}

as l + 1 > l > xn . �

Theorem 4.2 There is a computable type 2 tree T such that any nontrivial self-
embedding of T computes 0′.

Proof We construct T to have exactly one infinite path X such that degT (X) > 0′.
Fix a c.e. set K of degree 0′.

〈T,�〉 is built computably in stages denoted 〈Ts,�s〉 with Ts = {0, 1, 2, . . . s}
and �s=� ∩

(
Ts × Ts

)
for all s. T =

⋃
s Ts = ω and �=

⋃
s �s . At each stage s
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we designate an element ns of Ts to be the immediate predecessor of s + 1 and �s+1
is defined to be the reflexive and transitive closure of �s ∪{(ns, s + 1)}.

Let �0= {(0, 0)} and at stage s let

ns =

{
max{m � s | Ks+1[ht(m)] = Ks[ht(m)]} if this set is nonempty,
0 otherwise.

Lemma 4.3 T has exactly one infinite path X and this path computes K .

Proof Conditions (b) and (c) of Lemma 4.1 are satisfied immediately by the con-
struction of T . Furthermore, because new nodes are always added as (current) leaves
in T , the height of any node is fixed once it is placed in T . Therefore, we can speak
of ht(x) for any x ∈ T without reference to a stage number.

To see that (a) is satisfied, we reason by contradiction. Assume that x ∈ T
is an ω-node. It follows that there are infinitely many stages s0 < s1 < · · ·

such that nsi = x . At stage s0, x gains s0 + 1 as a successor and hence x is
no longer a leaf in T after stage s0. Consider any stage si for i > 1. Since
x = nsi , we have x � si and so x ≺ si (because si was added as a leaf
at the previous stage and we know x is no longer a leaf in T ). Therefore, x
has a successor yi such that x ≺ yi � si . By the definition of nsi = x , we
know Ksi +1[ht(x)] = Ksi [ht(x)] but Ksi +1[ht(yi )] 6= Ksi [ht(yi )]. However,
ht(yi ) = ht(x) + 1, so Ksi +1[ht(x)] = Ksi [ht(x)] and Ksi +1[ht(x) + 1] 6=

Ksi [ht(x) + 1] for all i > 1. Because K is a c.e. set, there can be at most one
such stage si , giving the desired contradiction. (This argument really shows that T
is binary branching.) Therefore (a) holds and T has exactly one path X .

We next show that X >T K . Because s + 1 is added as a (current) leaf of Ts at
stage s, the successor relation on T is computable. Therefore, from the set X , we
can compute the sequence x0 ≺ x1 ≺ · · · such that x0 is the root of T , xi+1 is the
successor of xi , and X = {xi | i ∈ ω}.

By Lemma 4.1 we know that xn = max{m | ht(m) 6 n}. Furthermore, by the
proof of Lemma 4.1, we know that for all s > xn , we have xn � s. We claim that
for all n, Kxn [n] = K [n]. Suppose not and fix n such that Kxn [n] 6= K [n]. Let
s > xn be such that Ks+1[n] 6= Ks[n]. Because xn � s and ht(xn) = n, we have
that ns ≺ xn . Therefore, xn 6� s + 1 contradicting the fact that xn � s + 1. �

Lemma 4.4 Any nontrivial self-embedding ϕ of T computes K .

Proof Let ϕ be a nontrivial self-embedding of T and let m be some node on X such
that ϕ(m) 6= m. (That such a node exists is a consequence of X being the only path
and there being no nontrivial self-embeddings of finite trees.) ϕ(m) must also lie on
X as T has only one infinite path. By induction one sees that for all n, ϕn(m) � xn
and ϕn(m) ∈ X . Therefore, for all n, ϕn(m) > xn , Kϕn(m)[n] = Kxn [n] = K [n] and
ϕ >T K . �

This completes the proof of Theorem 4.2. �

The result can be improved slightly by replacing nontrivial with weakly nontrivial
in 4.2. To show this we construct T ′ from T . T ′ will have, like T , a single isolated
path X ′ that computes K . T ′ will be modified, however, to ensure that any weakly
nontrivial self-embedding must move a node on X ′.
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We say a node n on T is just off X if n is not on X but the immediate predecessor
is on X . Any weakly nontrivial self-embedding of T that fixes every node on X must
be weakly nontrivial on some finite tree T (n) with n just off X . Any finite tree can
be properly extended to a finite tree that has no weakly nontrivial self-embedding
by adding nodes extending the leaves so that no two leaves have the same height.
This is what we do to ensure that T (n) has no nontrivial self-embedding. Extensions
may be added at different stages in the construction but we ensure that each leaf is
extended only a finite amount.

We first repeat the construction of T using only the even numbers—adding node
2(s + 1) as the immediate successor to 2ns at stage s. We describe the placement of
every odd number on T ′.

We begin with T ′

0 = T0. As before at stage s we determine 2ns and place 2(s +1)
as its immediate successor. At stage s we also find all leaves extending 2ns except
2(s + 1) and we properly extend all such leaves with successive odd numbers so
that any two distinct leaves have different heights. That is, we are guessing that the
path X will pass through 2(s + 1) and so all the other successors of 2ns are just off
X . Therefore, we want to extend the leaves above these other successors to have
different lengths. T ′

s+1 is this extension of Ts+1. We need only show now that every
leaf on T is extended only finitely and that all the odd numbers are used.

As in Lemma 4.1, x ′
n (the nth element in the unique path X ′ in T ′) will be the

numerically greatest even number of height less than or equal to n. x ′
n is added to

T ′ at stage s = x ′
n/2 and for all t > s, 2nt � x ′

n . So no more extensions will be
added to the leaves above any node just off X whose height is less than or equal to
n. Therefore, each leaf is extended finitely only a finite number of times.

To see that all the odd numbers are used we merely need to note that there are
infinitely many nodes just off X ′ (otherwise X ′ would be computable) and that we
have decreed that each leaf extending such a node must be properly extended.

We next turn our attention to nontrivial self-embeddings in computable trees
S ∼= T where T is a computable type 2 tree.

Theorem 4.5 There is a computable finitely branching tree S with exactly one infi-
nite path (so S is a type 2 tree) such that no computable tree classically isomorphic
to S has a computable nontrivial self-embedding.

Proof Let 〈T,�T 〉 be the tree constructed in Theorem 3.7, let Ti (for i ∈ ω) be the
sequence of components of T , let λT denote the root of T , and let λi denote the root
of the component Ti . Let A = {ai : i ∈ ω} be a set of distinct elements disjoint from
T . We define the tree 〈S,�S〉 as follows:

1. S = (T r {λT }) ∪ A,
2. a0 is the root of S,
3. ∀x, y ∈ T \ {λT } (x �T y ↔ x �S y), and
4. ∀i ∈ N (ai+1 and λi are immediate successors of ai ).

It is straightforward to see that there is a unique tree S satisfying 1, 2, 3, and 4 and
that S has exactly the one infinite path given by a0 ≺ a1 ≺ a2 · · · .

We claim that any nontrivial self-embedding δ of S computes a nontrivial self-
embedding of T , and hence by Theorem 3.7, δ must be noncomputable. To prove
this claim, notice that because a0 ≺ a1 ≺ · · · is the unique path in S, we have that
for each i ∈ ω, δ(ai ) = a j for some j > i . Because δ is nontrivial and every subtree
off the unique path is finite, we can fix the least k such that δ(ak) 6= ak . For every
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i > k, δ(ai ) = a j for some j > i . In other words, δ gives an embedding from Ti
into T j . It follows that δ induces a nontrivial self-embedding δ′ of T given by

1. δ′(λT ) = λT and
2. for all x ∈ T r {λT } (δ′(x) = δ(x)).

To finish the proof, let 〈U,�U 〉 be any computable tree classically isomorphic to
S. We show that any nontrivial self-embedding δ of U computes a nontrivial self-
embedding of a computable tree classically isomorphic to T . Hence by Theorem 3.7,
δ >T 0.

As U is isomorphic to S, it too has exactly one infinite path B. We claim that B
is computable. It is c.e. because x ∈ B if and only if there exists a chain of height
4 above x (recall all the components of T have height 3). And it is co-c.e. because
x 6∈ B if and only if there exists a b ∈ B such that b and x are incomparable.

We build a computable tree 〈V,�V 〉 isomorphic to T as follows. Let V =

(U r B) ∪ {ρ}, where ρ is a new element which will serve as the root of V . For
all x, y ∈ V define x �V y if and only if x = ρ or x �U y. As B is computable, so
is 〈V,�V 〉, and it is easy to see that V is isomorphic to T .

From δ we compute a nontrivial self-embedding δ′ of V . Let δ′(ρ) = ρ and for all
x ∈ U r B, let δ′(x) = δ(x). δ′ is clearly computable from δ and hence δ >T 0. �

5 Type 3 Trees

Recall that a type 3 computable tree is an infinite computable tree which has no
maximal infinite node and no isolated paths. In particular, any infinite computable
binary branching tree which has no isolated paths is a type 3 tree. In Theorem 2.3, we
proved that each computable type 3 tree has a nontrivial self-embedding computable
in 0′′. The next theorem shows that this bound is optimal.

Theorem 5.1 There is an infinite computable binary branching tree S with no iso-
lated paths such that any nontrivial self-embedding computes 0′′.

Before proving Theorem 5.1, we outline the main steps of the proof. We begin
by giving a particular computable approximation to 0′′ which is conducive to our
coding methods. Next, we define a c.e. subtree T ⊆ 2<ω such that 0′′ is coded into
the branching levels of T . (A c.e. subtree T ⊆ 2<ω is a c.e. set T of elements of 2<ω

which is closed under initial segments. The tree order is given by the initial segment
relation ⊆.) We say n is a branching level of T if there is a string σ ∈ T such that
|σ | = n and both T (σ ∗ 0) and T (σ ∗ 1) are infinite. We use a c.e. subtree T of
2<ω because it makes the notation easier when verifying properties such as where
the branching levels occur in T and the fact that T has no isolated paths.

We show that from any nontrivial self-embedding of T we can compute a function
dominating the branching levels and that any such function computes 0′′. Finally, we
show how to define a computable tree S ∼= T for which the successor relation is
computable. Because the branching levels of T are invariant under isomorphisms,
we have 0′′ coded into the branching levels of S. From any nontrivial self-embedding
of S, we can decode 0′′ as long as we can determine the height of each node in
S. However, since the successor relation is computable in S, we can effectively
determine the height of any node.

We begin by developing our computable approximation to 0′′. Fix a uniformly
c.e. sequence of c.e. sets An for n ∈ ω such that {n | An is finite } ≡T 0′′. (For
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example, we could use the standard enumeration of all c.e. sets.) Without loss of
generality, we assume that in the uniform enumeration of the An sequence, exactly
one set gets an element at each stage. Let f (n) = the least s such that the sets among
A0, . . . , An which are finite have been completely enumerated by stage s.

Lemma 5.2 For any function b which dominates f , 0′′ 6T b ⊕ 0′.

Proof Let k ∈ ω be such that f (x) 6 b(x) for all x > k. To determine whether
n ∈ 0′′ for n > k, ask 0′ whether An gets an element after stage b(n). The answer to
this question is no if and only if n ∈ 0′′. �

We want to define a computable approximation f (n, s) to the function f (n) so
that f (n) = lim infs f (n, s). To define f (n, s), proceed as follows. If the sets
A0, . . . , An are all empty at stage s, then set f (n, s) = 0. If at least one of these sets
is nonempty but none of them receives a new element at stage s, then let f (n, s) = t
where t < s is the last stage at which one of these sets received an element.

If we are not in one of these two cases, then at stage s, exactly one set among
A0, . . . , An gets a new element. Let in,s 6 n be such that Ain,s gets a new element
at stage s and let tn,s < s be the last stage at which Ain,s received an element. (If s is
the first stage at which Ain,s gets an element, then set tn,s = 0.) Let

In,s = { j 6 n | A j has received an element since tn,s}.

In,s represents our current guess at which sets among A0, . . . , An are infinite. Let
f (n, s) = t where t < s is the greatest stage such that there exists a j 6 n for which
j 6∈ In,s and A j gets an element at stage t . (If the sets A j for j 6∈ In,s are all empty
or if In,s = {0, 1, . . . , n}, then set f (n, s) = 0.) That is, to calculate f (n, s) we look
at the sets A j for j 6 n which we currently think are not infinite and take the last
stage at which one of these sets received a new element. The function f (n, s) is a
total computable function.

Lemma 5.3 The function f (n, s) satisfies the following properties.

1. f (n) = lim infs f (n, s).
2. For every k > f (n), there is a stage sk such that for all t > sk either

f (n, t) = f (n) or f (n, t) > k.

Proof Fix n and break into two cases. If A0, . . . , An are all finite, then let u be the
last stage at which any of these sets gets an element. Because f (n, s) = u for all
s > u, we have both property 1 and 2 in this case.

Otherwise, there is at least one set among A0, . . . , An which is infinite. Let I
be the set of all i 6 n such that Ai is infinite and let u0 = f (n) be the last stage
such that some A j with j 6 n and j 6∈ I receives an element. Let u1 > u0 be a
stage such that each Ai with i ∈ I has received at least one element between stages
u0 and u1.

Consider any stage s > u1 and split into two cases. First, if none of the sets Ai
for i 6 n receives an element at stage s, then f (n, s) > u0 since I 6= ∅ and each
Ai for i ∈ I received an element after stage u0. Second, if one of the Ai sets for
i ∈ I does receive an element at stage s, then tn,s > u0 since each such set receives
an element between stages u0 and u1. Furthermore, In,s ⊆ I since none of the sets
A j for j 6∈ I receives an element after stage u0.
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If In,s = I , then f (n, s) = u0 = f (n). If In,s ( I , then f (n, s) > u0 since
there is an Ai for which i ∈ I \ In,s and this Ai received an element after stage u0.
Therefore, for all s > u1, f (n, s) > u0 = f (n).

Define a sequence of stages v0 < v1 < v2 < · · · such that u1 < v0 and at each
stage vk , In,vk = I . To see that such a sequence exists, consider any stage t > u1.
We claim there is a stage s > t such that In,s = I . To find s, let jn be the index such
that jn 6 n and A jn is the last set among Ai with i ∈ I to receive a new element
after stage t . Let s > t be the first stage at which A jn receives a new element. Since
A jn receives a new element at stage s, we have in,s = jn . As s > t is the first stage
at which A jn receives a new element and since A jn has received an element since u0,
we have u0 < tn,s 6 t . Each set Ai with i ∈ I has now received a new element since
stage t (and hence since tn,s), so In,s = I as required. Therefore, we have established
the existence of the sequence v0 < v1 < · · · with In,vk = I . Since In,vk = I , we
have f (n, vk) = u0 = f (0). Therefore, we have established property 1.

On the other hand, we can extend our sequence of stages u0 < u1 < u2 < · · · so
that each Ai , i ∈ I , receives an element between stages uk and uk+1. Consider any
s > uk+1. If none of the sets Ai , i ∈ I , receive an element at s, then f (n, s) > uk
since I 6= ∅ and each Ai , i ∈ I , has received an element since uk . If some Ai ,
i ∈ I , does receive an element at stage s, then either In,s = I (in which case
f (n, s) = u0 = f (n)) or In,s ( I (in which case f (n, s) > uk since Ain,s has
received an element since stage uk). Therefore, we have established property 2. �

We define a computable function g(n, s) from f (n, s) that has one further property.
We define g(n, s) by induction on s, and for each s by induction on n. For every s,
let g(0, s) = f (0, s). Assume g(i, t) has been defined for all i 6 n and t 6 s, and
we explain how g(n + 1, s) is defined. Let kn,s be the number of stages t < s for
which g(i, t) = g(i, s) for all i 6 n and let mn,s = the maximum value of g(i, s) for
i 6 n. Let ln,s = kn,s + mn,s . Define g(n + 1, s) = f (n + 1, ln,s).

Lemma 5.4 The function g(n, s) satisfies the following properties.

1. f (n) = lim infs g(n, s).
2. For every k > f (n), there is a stage sk such that for all t > sk either

g(n, t) = f (n) or g(n, t) > k.
3. For every n, there are infinitely many stages s at which g(i, s) = f (i) for all

i 6 n.

Proof We proceed by induction on n. By Lemma 5.3, these properties hold for
n = 0. Assume these properties hold for i 6 n and we prove them for g(n + 1, s).
Applying property 3 to n, let u0 < u1 < · · · list all the stages at which g(i, s) = f (i)
for all i 6 n. Let M = the maximum of f (i) for i 6 n. (Because f is nondecreasing,
M is really just equal to f (n).) At each stage uk , we have mn,uk = M and kn,uk = k,
so by definition g(n +1, uk) = f (n +1,M +k). Therefore, as k → ∞, g(n +1, uk)
takes on all the values of f (n + 1, t) for t > M .

Let t > M be a stage for which f (n + 1, t) = f (n + 1). (By property 2
of Lemma 5.3 there are infinitely many such stages.) Let k = t − M . At stage
uk , we have g(i, uk) = f (i) for all i 6 n by definition of uk and we have
g(n + 1, uk) = f (n + 1,M + k) = f (n + 1, t) = f (n + 1). Therefore, property 3
of this lemma holds for n + 1.



26 Binns, Kjos-Hanssen, Lerman, Schmerl, and Solomon

For any a ∈ ω, let sa > ua be a stage such that for every s > sa and every i 6 n,
either g(i, s) = f (i) or g(i, s) > a. (The existence of sa follows from property 2
of this lemma applied inductively to i 6 n.) Consider any s > sa . By definition,
ln,s = kn,s + mn,s . We claim that ln,s > a. There are two cases to consider. First,
suppose g(i, s) = f (i) for all i 6 n. In this case, mn,s = M and because sa > ua ,
there have been at least a many stages t < s for which g(i, t) = g(i, s) = f (i) for
all i 6 n. Therefore, kn,s > a, so ln,s > a. Second, suppose that for some i 6 n
we have g(i, s) 6= f (i). By the choice of sa , g(i, s) > a, so mn,s > a and ln,s > a.
Therefore, in either case ln,s > a and so g(n + 1, s) = f (n + 1, t) for some t > a.

The previous paragraph established that for all a, there is a stage sa such that for
all s > sa , there is a t > a for which g(n + 1, s) = f (n + 1, t). Combining this fact
with property 2 of Lemma 5.3 and with the fact that g(n + 1, uk) = f (n + 1) for
infinitely many uk yields properties 1 and 2 of this lemma. �

We now put together the last two pieces of our approximating function. Let h(n) =

the least stage s for which Ks[n + 1] = K [n + 1]. Because h(n) is a 10
2 function,

it has a computable approximation h(n, s) such that lims h(n, s) = h(n). Finally, let
a(n, s) be the computable function defined by a(n, s) = max{g(n, s), h(n, s)}.

Lemma 5.5 The computable function a(n, s) satisfies the following properties.

1. a(n) = lim infs a(n, s) exists and for all n, a(n) > f (n), h(n).
2. For all n and for every k > a(n), there is a stage sk such that for all t > sk ,

either a(n, t) = a(n) or a(n, t) > k.
3. For every n, there are infinitely many stages s at which a(i, s) = a(i) for all

i 6 n.
4. For any function b which dominates a, 0′′ 6T b.

Proof Properties 1 through 3 follow from Lemma 5.4 and the fact that h(n) =

lims h(n, s). Property 4 follows from the fact that if b dominates a, then b dominates
both h and f . The fact that b dominates h gives 0′ 6T b. Combining this fact with
Lemma 5.2 gives 0′′ 6T b. �

We next define a c.e. subtree T ⊆ 2<ω such that the branching levels of T dominate
the function a(n). The branching levels are the levels that contain branching nodes.
That is, level k in T is a branching level if there is a node σ ∈ T such that |σ | = k
and both T (σ ∗ 0) and T (σ ∗ 1) are infinite.

The basic idea of our construction is as follows. We make the node 0a(0)
∈ 2<ω

the branching node of least length in T . Therefore, we need to insure that both
0a(0)

∗ 0 and 0a(0)
∗ 1 have infinitely many extensions in T . Since we want the

next branching level to be above a(1), we make the next branching nodes equal to
0a(0)

∗ 0 ∗ 0a(1) and 0a(0)
∗ 1 ∗ 0a(1). To do this, we need to ensure that for each node

σ of length 2, we have that the nodes 0a(0)
∗ σ(0) ∗ 0a(1)

∗ σ(1) have infinitely many
extensions in T . (Below, we will denote these nodes by τσ2 .) We repeat this process
by making the next branching nodes have the form 0a(0)

∗ σ(0) ∗ 0a(1)
∗ σ(1) ∗ 0a(2)

for all |σ | = 2. In other words, for all strings σ of length 3, we need to ensure
that the nodes 0a(0)

∗σ(0)∗0a(1)
∗σ(1)∗0a(2)

∗σ(2) have infinitely many extensions
in T .

By repeating the process in the previous paragraph, the branching levels of T will
occur at levels of the form n +

∑n
i=0 a(i) for n ∈ ω. We use the approximation
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a(n, s) to define a c.e. tree with these branching levels and we use properties 2 and
3 of Lemma 5.5 to verify that these levels are branching levels and that no other
levels are branching. Since a(n) 6 n +

∑n
i=0 a(i), we have the required domination

property. We then need to show how to extract information about the branching
levels from any nontrivial self-embedding of our tree.

We begin with some notation. For any s, any n 6 s, and any string σ ∈ 2<ω with
|σ | = n + 1, we define

τσn,s = 0a(0,s)
∗ σ(0) ∗ 0a(1,s)

∗ σ(1) ∗ · · · ∗ 0a(n,s)
∗ σ(n).

For any n and any string σ ∈ 2<ω such that |σ | = n + 1, we let

τσn = 0a(0)
∗ σ(0) ∗ 0a(1)

∗ σ(1) ∗ · · · ∗ 0a(n)
∗ σ(n).

For any nonempty string α ∈ 2<ω, let α′ denote the string obtained by removing the
last element of α. Notice that

(τσn,s)
′
= 0a(0,s)

∗ σ(0) ∗ 0a(1,s)
∗ σ(1) ∗ · · · ∗ 0a(n,s)

is a string of length n+
∑n

i=0 a(i, s) and that (τσn )
′ is a string of length n+

∑n
i=0 a(i).

As described above, the goal of our construction is to make each node of the form
(τσn )

′ a branching node of our c.e. tree T and we accomplish this goal by making
each node τσn have infinitely many extensions on T . Because we cannot effectively
know which nodes are of the form τσn , we have to use the approximations τσn,s . At
stage s, we add at least one new node extending each string of the form τσs,s . We then
verify that in the limit, this process makes the branching nodes of T exactly those
nodes of the form (τσn )

′.
Once we have such a tree T , we show that from any nontrivial embedding δ of

T , we can effectively obtain a nontrivial embedding ι of T and a node α such that
there are at least n many branching levels below |ιn+1(α)|. By our calculation of the
branching levels (described in the previous paragraph), the function c(n) = |ιn+1(α)|
dominates the function a(n), and hence by Lemma 5.5, c computes 0′′. Because c is
obtained effectively from δ, we conclude that 0′′ 6T δ.

The subtree T ⊆ 2<ω is enumerated in stages as a sequence of finite trees
T0 ⊆ T1 ⊆ T2 ⊆ · · · . Set T0 = ∅. To define Ts+1, consider each string σ ∈ 2<ω

which has length s + 1. Let ασ be the lexicographically least element of 2<ω which
extends τσs,s and which is not in Ts . Add ασ and all of its initial segments to Ts . Ts+1
is the tree formed by adding these strings when σ ranges over all elements of 2<ω of
length s + 1. Our desired tree is T =

⋃
s Ts .

Lemma 5.6 For each n and each σ ∈ 2<ω of length n + 1, the node (τσn )
′ is a

branching node of T .

Proof Let u0 < u1 < · · · be the stages such that n < u0 and a(i, uk) = a(i) for
all i 6 n. For each such stage, (τσn )

′
= (τσn,uk

)′ and (τσn,uk
)′ ⊆ τ

ξ
uk ,uk for all strings ξ

such that σ ′
⊆ ξ and |ξ | = uk + 1. Therefore, both Tuk ((τ

σ
n )

′
∗ 0) and Tuk ((τ

σ
n )

′
∗ 1)

gain extra elements at stage uk + 1. Therefore, these trees are infinite and (τσn )
′ is a

branching node in T . �

Lemma 5.7 If ξ is a branching node of T , then there is an n such that |ξ | =

n +
∑n

i=0 a(i).
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Proof Suppose ξ ∈ T is such that there is an n such that

n +

n∑
i=0

a(i) < |ξ | < n + 1 +

n+1∑
i=0

a(i). (1)

By Lemma 5.5, let u be a stage such that for all s > u and all i 6 n + 1, either
a(i, s) = a(i) or a(i, s) > |ξ |. Fix any stage s > u.

We claim that there is a j 6 n such that

j +

j∑
i=0

a(i, s) < |ξ | < j + 1 +

j+1∑
i=0

a(i, s). (2)

The proof of the claim breaks into two cases. If a(i, s) = a(i) for all i 6 n, then
the claim with j = n follows from Equation (1). Otherwise, let j < n be the least
number such that a( j + 1, s) 6= a( j + 1). In this case,

j +

j∑
i=0

a(i, s) = j +

j∑
i=0

a(i) < n +

n∑
i=0

a(i) < |ξ |.

Because a( j+1, s) > |ξ |, we have j+1+
∑ j+1

i=0 a(i, s) > |ξ | and hence Equation (2)
holds in this case as well.

By Equation (2), at stage s there is a unique σ ∈ 2<ω with length j + 1 such that
τσj,s ⊆ ξ . Furthermore, for a ∈ {0, 1} we have ξ ( (τσ∗a

j+1,s)
′. That is,

0a(0,s)
∗σ(0)∗· · ·∗0a( j,s)

∗σ( j) ⊆ ξ ( 0a(0,s)
∗σ(0)∗· · ·∗0a( j,s)

∗σ( j)∗0a( j+1,s).

It follows that at stage s + 1, Ts(ξ ∗ 0) gets a new element but Ts(ξ ∗ 1) does not.
Because this property holds for any s > u, T (ξ ∗ 1) = Tu(ξ ∗ 1) is finite; so ξ is not
a branching node of T .

To finish the proof, we need to show that if ξ ∈ T and |ξ | < a(0), then ξ is not a
branching node. The proof of this fact is similar to (but simpler than) the argument
above and we leave it to the reader to verify. �

From Lemmas 5.6 and 5.7, we obtain the following fact.

Lemma 5.8 The nth branching level of T is given by the formula b(n) = n +∑n
i=0 a(i).

Lemma 5.9 If T (ξ) is infinite, then ξ ⊆ τσn for some n and σ with |σ | = n + 1.

Proof Suppose that ξ 6⊆ τσn for any n and σ . We show that T (ξ) is finite. First,
notice that ξ must contain at least one value of 1 or else ξ ⊆ τσn for sufficiently large
n by choosing σ to contain all zeros.

Second, notice that if ξ does not have 0a(0) as an initial segment, then this property
follows trivially. That is, fix a stage u such that for all s > u, a(0, s) > a(0). At any
stage s > u, we add nodes only above strings τσs,s and each string τσs,s begins with
0a(0,s). Because this string is not an initial segment of ξ , Ts(ξ) does not get a new
element at stage s + 1. Therefore, Tu(ξ) = T (ξ) and hence T (ξ) is finite.

It remains to consider the case when 0a(0) is an initial segment of ξ and ξ contains
at least one value of 1. Let j be the largest value such that there are strings α (with
|α| = j + 1) and µ such that

ξ = 0a(0)
∗ α(0) ∗ · · · ∗ 0a( j)

∗ α( j) ∗ µ.
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Fix such j , α and µ. Because ξ 6⊆ τσn for any n and σ , the string µ must contain at
least one value of 1. Write µ = µ0 ∗ 1 ∗ µ1 where µ0 is such that µ0(k) = 0 for all
k < |µ0|. Because j is chosen maximal, |µ0| < a( j + 1).

Let u be a stage such that for all s > u and for all i 6 j + 1, a(i, s) = a(i) or
a(i, s) > |ξ |. The lemma follows from the claim that Tu(ξ) = T (ξ). To prove this
claim, fix any s > u and we show that Ts(ξ) does not gain a new element at stage
s + 1. We split into two cases. First, suppose that for all i 6 j , a(i, s) = a(i). The
only way for Ts(ξ) to gain a new element at stage s+1 is if there is a string σ of length
s + 1 such that ξ ⊆ τσs,s . Because a(i, s) = a(i) for i 6 j , this string σ must satisfy
σ(i) = α(i) for all i 6 j . It follows that 0a(0)

∗α(0)∗· · ·∗0a( j)
∗α( j)∗0a( j+1,s) is an

initial segment of τσs,s . However, regardless of whether a( j +1, s) = a( j) or not, we
have |µ0| < a( j + 1, s). Hence the strings 0a(0)

∗α(0)∗ · · · ∗ 0a( j)
∗α( j)∗ 0a( j+1,s)

and ξ are incomparable. (The point is that ξ contains the value 1 right after µ0 while
the other string has value 0 in this position.) Therefore, Ts(ξ) does not get a new
element in this case.

The other case is when there is an i < j for which a(i, s) 6= a(i). Let k denote
the least such i . The argument is similar. Ts(ξ) can gain a new element only if there
is a σ such that ξ ⊆ τσs,s . Because a(i, s) = a(i) for all i < k, we have σ(i) = α(i)
for i < k and hence 0a(0)

∗α(0)∗· · ·∗0a(k−1)
∗α(k −1)∗0a(k,s) is an initial segment

of τσs,s . Because a(k, s) > |ξ |, this string is incomparable with ξ and hence Ts(ξ)
does not get a new element in this case. �

Lemma 5.10 The tree T has no isolated paths.

Proof This lemma follows immediately from Lemmas 5.9 and 5.6. �

Lemma 5.11 If δ : T → T is a nontrivial self-embedding, then there is a string ξ
such that |δ(ξ)| > |ξ |.

Proof Suppose there is no such string ξ . Because |ξ | 6 |δ(ξ)| for any self-
embedding δ and because T is binary branching, it follows that for each n, δ
restricted to the strings of length n in T is a permutation. Therefore, δ is onto and
hence is not nontrivial. �

Lemma 5.12 If δ : T → T is a nontrivial self-embedding then there is a k ∈ ω
and a node ξ such that ξ ( δk(ξ).

Proof By Lemma 5.11, let µ0 be a node such that |µ0| < |δ(µ0)|. If µ0 ⊆ δ(µ0)
then µ0 ( δ(µ0) and we can let ξ = µ0 and k = 1 to verify the lemma. Otherwise,
assume that µ0 6⊆ δ(µ0). Let µ1 be such that |µ1| = |µ0| and µ1 ⊆ δ(µ0). Notice
that µ1 6= µ0 and δ(µ0) 6= µ0.

We proceed by induction. Assume that n > 1 and we have defined a sequence
of pairwise distinct nodes µ0, µ1, . . . , µn such that |µi | = |µ0| for all i 6 n and
µi+1 ⊆ δ(µi ) and µi 6= δ(µi ) for all i < n. (The last two sentences of the previous
paragraph establish the required properties when n = 1.)

We claim that in this situation, µn 6= δ(µn). Suppose that µn = δ(µn). Because
|µn| = |µn−1| and µn 6= µn−1, µn and µn−1 are incomparable nodes. However,
δ(µn) = µn ⊆ δ(µn−1). Therefore, δ(µn) and δ(µn−1) are comparable contradict-
ing the fact that δ is a self-embedding.
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Next, we let µn+1 be such that |µn+1| = |µ0| and µn+1 ⊆ δ(µn). We claim that
if µn+1 = µi for some i 6 n, then the conclusion of the lemma is true. Otherwise,
if µn+1 6= µi for all i 6 n, then we add µn+1 to the list of pairwise distinct nodes
above and continue by induction. Because there are only finitely many nodes at level
|µ0|, we must eventually find an n such that µn+1 = µi for some i 6 n. Hence, the
lemma follows from the claim in this paragraph.

Suppose that µn+1 = µi for some i 6 n and let l > 1 be such that i = (n+1)−l.
In this situation we haveµi = µn+1 ⊆ δl(µi ). We claim thatµi 6= δl(µi ) (and hence
we have established the lemma with ξ = µi and k = l). We break into three cases.

Case 1 i = 0. In this case, we have µ0 ⊆ δl(µ0). But, |µ0| < |δ(µ0)| implies
|µ0| < |δl(µ0)| so we have µ0 ( δl(µ0) as required.

Case 2 l = 1. In this case, we have µi ⊆ δ(µi ). Because i 6 n, we know
µi 6= δ(µi ), so µi ( δ(µi ) as required.

Case 3 i > 0 and l > 1. For a contradiction, assume that µi = δl(µi ). We have
µi = µn+1 ⊆ δ(µn) and µi ⊆ δ(µi−1). By our induction hypothesis, µn and µi−1
are incomparable nodes. Furthermore, we have

µi = µn+1 ⊆ δ(µn) ⊆ δ2(µn−1) ⊆ · · · ⊆ δl(µi ) = µi .

Therefore, δ(µn) = µi so δ(µn) and δ(µi−1) are comparable nodes, violating the
fact that δ is a self-embedding. �

For any nontrivial self-embedding δ : T → T , we can fix k and ξ as in Lemma
5.12 and let γ = δk

: T → T . γ is a nontrivial self-embedding of T such that
ξ ( γ (ξ) ( γ 2(ξ) ( · · · . It will also be useful to consider the nontrivial self-
embedding ι : T → T given by ι = γ 2. Notice that both ι and γ are obtained from
δ by finitely many parameters.

Lemma 5.13 Let δ be any nontrivial self-embedding δ : T → T and let γ and ι be
defined from δ as above. There are nodes α and β0 such that α ( β0 ( ι(α) and β0
is a branching node.

Proof Fix ξ as in the paragraph before this lemma. Because ξ, γ (ξ), γ 2(ξ), . . .
traces out a path in T and because T has no isolated paths, there must be a j > 1
and a branching node β0 such that γ j (ξ) ⊆ β0 ( γ j+1(ξ). Let α = γ j−1(ξ).
Because α = γ j−1(ξ) ( γ j (ξ) ⊆ β0, we have α ( β0. Because ι = γ 2, we have
β0 ( γ j+1(ξ) = γ 2(γ j−1(ξ)) = ι(α). �

Lemma 5.14 Let ι : T → T be a nontrivial self-embedding for which there are
nodes α and β0 such that α ( β0 ( ι(α) and β0 is a branching node. Then there is
a branching node β1 such that ι(α) ( β1 ( ι2(α).

Proof Fix α and β0. Because α ( β0 ( ι(α), we have

α ( β0 ( ι(α) ( ι(β0) ( ι(β0 ∗ 0)
α ( β0 ( ι(α) ( ι(β0) ( ι(β0 ∗ 1).

Let β1 be the infimum of ι(β0 ∗ 0) and ι(β0 ∗ 1). Because these two nodes are
incomparable, β1 is strictly contained in both of them. From the offset containments
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above, it is clear that β0 ( ι(α) ( β1. Let i0 ∈ {0, 1} be such that β0 ∗ i0 ⊆ ι(α).
Because ι(β0 ∗ i0) ⊆ ι2(α) and β1 ( ι(β0 ∗ i0) we have β1 ( ι2(α).

Finally, because β0 is a branching node, both T (ι(β0 ∗ 0)) and T (ι(β0 ∗ 1)) are
infinite. Therefore, the infimum of ι(β0 ∗0) and ι(β0 ∗1) (which is β1) is a branching
node. �

Lemma 5.15 Let δ : T → T be any nontrivial self-embedding. There is a nontriv-
ial self-embedding ι : T → T (defined from δ together with finitely many parame-
ters) and a node α such that the sequence c(n) = |ιn+1(α)| dominates the branching
level function b(n) of T (see Lemma 5.8).

Proof Define ι from δ as above and let α and β0 be as in Lemma 5.13. Applying
Lemma 5.14 inductively, we obtain a sequence of branching node β0 ( β1 ( β2
( · · · such that ιn(α) ( βn ( ιn+1(α). (For n = 0, we define ι0(α) = α.) Therefore,
there are at least n many branching levels below |ιn+1(α)|. �

To prove Theorem 5.1, we need to transform the c.e. subtree T ⊆ 2<ω into a com-
putable tree S. This transformation is easily done in a general setting.

Lemma 5.16 For any c.e. subtree T̂ ⊆ 2<ω, there is a computable tree Ŝ such that
Ŝ ∼= T̂ . Furthermore, we can assume that the successor relation is computable in Ŝ.

Proof If T̂ is finite, this lemma follows trivially. Assume T̂ is infinite and T̂ is
the range of the total computable 1-1 function ϕe. Let Ŝ have domain ω and let
6Ŝ be defined by n 6Ŝ m ⇔ ϕe(n) ⊆ ϕe(m). Then ϕe is an isomorphism from
(Ŝ,6Ŝ) to (T̂ ,⊆) as required. Furthermore, m is a successor of n in Ŝ if and only if
ϕe(m)′ = ϕe(n). �

We now present the proof of Theorem 5.1. Let T be the c.e. subtree of 2<ω we
have constructed and let S ∼= T be the computable tree with a computable suc-
cessor relation given by Lemma 5.16. Let b denote the branching level function
for S (which is the same as the branching level function for T since S ∼= T ). By
Lemma 5.8, b dominates a and hence by Lemma 5.5, 0′′ 6T b. Fix any nontrivial
self-embedding δ : S → S. By Lemma 5.15, there is a nontrivial self-embedding
ι : S → S (defined from finitely many parameters) and a node α such that the func-
tion c(n) = ht(ιn+1(α)) dominates b (and hence by Lemma 5.5, 0′′ 6T c). Because
we only need finitely many parameters to obtain ι from δ, we have ι 6T δ. Fur-
thermore, because the successor function is computable in S, we can determine the
height of any node in S. Therefore, 0′′ 6T c 6T ι 6T δ as required. This completes
the proof of Theorem 5.1.

Because the coding in the proof of Theorem 5.1 is done with the branching levels
of S and these levels are invariant under isomorphisms, we also obtain a result con-
cerning the existence of nontrivial self-embeddings of computable type 3 trees up to
isomorphism.

Theorem 5.17 There is a computable type 3 tree S such that for any computable
Ŝ ∼= S and any nontrivial self-embedding δ : Ŝ → Ŝ, 0′′ 6T 0′

⊕ δ. In particular, Ŝ
does not have any10

2 nontrivial self-embeddings and Ŝ does not have any nontrivial
self-embeddings which are strictly between 0′ and 0′′.
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Proof Fix a computable tree S ∼= T where T is the c.e. subtree T ⊆ 2<ω con-
structed above. Fix any Ŝ ∼= S and any nontrivial self-embedding δ of Ŝ. Let ι and c
be the functions given by Lemma 5.15 for Ŝ and δ. The only change from the proof
of Theorem 5.1 is that we do not know that the successor relation in Ŝ is computable.
However, since 0′

⊕ δ can compute both ι and the successor relation in Ŝ, we have
0′′ 6T c 6T 0′

⊕ δ. �

6 Chains and Antichains

The fact that any infinite partial order must have either an infinite chain or an infinite
antichain is a simple application of Ramsey’s Theorem for pairs and two colors.
Herrmann [7] examined the effective content of this result and proved the following
theorem.

Theorem 6.1 (Herrmann [7]) If P is an infinite computable partial order, then P
has either an infinite 10

2 chain or an infinite 50
2 antichain. In addition, there is an

infinite computable partial order which has no infinite 60
2 chains or antichains.

In this section, we consider this result in the context of trees rather than general
partial orders and we show that for trees these results can be improved by exactly
one quantifier.

Theorem 6.2 Let T be an infinite computable tree. T has either an infinite com-
putable chain or an infinite 50

1 antichain.

Proof If T has infinitely many leaves, then the set of leaves is an infinite 50
1 an-

tichain. Otherwise, T must have a node x such that T (x) is infinite and contains no
leaves. In this case, let x0 = x and xi+1 be the 6N least element of T which satisfies
xi ≺ xi+1. The sequence x0, x1, . . . gives an infinite computable chain. �

Theorem 6.3 There is an infinite binary branching computable tree such that T
has no infinite c.e. chains or antichains.

Proof We build (T,�) to meet the following requirements.

R2e : We is not an infinite chain
R2e+1 : We is not an infinite antichain

We build T in stages beginning with T0 = {λ}. Throughout the construction, we
maintain the property that each node x is either currently a leaf or else has exactly
two successors. Each requirement Ri keeps a parameter ri such that any node x
added to T by a lower priority requirement after ri is defined satisfies ri � x . For
uniformity of notation, we set r−1 = λ. If a strategy is initialized, then all of its
parameters become undefined. Any parameter not explicitly redefined or undefined
by initialization retains its value. If a requirement ends the current stage, then it
initializes all lower priority requirements. The action for R2e at stage s is as follows.

1. If s is the first stage at which R2e is eligible to act or if R2e has been initialized
since it was last eligible to act, let a be such that r2e−1 � a and a is a leaf in
Ts . Add new nodes b and c to Ts as immediate successors of a. Set r2e = b
and end the stage.
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2. If r2e is defined but R2e has not succeeded yet, then check whether there is a
node x ∈ Ts such that r2e � x and x ∈ We,s . If not, then let R2e+1 act. If so,
then let z denote the immediate predecessor of x . Since z is not a leaf, it has
two immediate successors. Let y denote the successor of z which is not equal
to x . Redefine r2e = y and end the stage. We say that R2e has succeeded.

3. If R2e has succeeded, then let R2e+1 act.
The action for R2e+1 at stage s is as follows.

1. If s is the first stage at which R2e+1 is eligible to act or if R2e+1 has been
initialized since it was last eligible to act, define r2e+1 = r2e. End the stage.

2. If r2e+1 is defined and R2e+1 has not succeeded yet, check whether there is a
node x ∈ Ts such that r2e+1 � x and x ∈ We. If not, then let R2e+2 act. If
so, then redefine r2e+1 = x and end the stage. We say R2e+1 succeeds.

3. If R2e+1 has succeeded, then let R2e+2 act.
This argument is finite injury so each parameter reaches a limit. Because nodes are
added to T only in step 1 of the R2e action, T has the property that at each stage,
each node is either currently a leaf or has exactly two successors.

To see that R2e is met, let s be the least stage such that R2e is never initialized
after stage s. The parameter r2e is defined at stage s and can only change values after
stage s if R2e changes the value in step 2 of its action.

There are two cases to consider. First, suppose there is a stage t > s and a node
x ∈ Tt such that r2e � x and x ∈ We,t . In this case, r2e is redefined so that r2e is
incompatible with x . Because r2e is not changed again and because no strategy of
higher priority than R2e adds elements to T after stage t , there are only finitely many
elements in T which are not above this final value of r2e. Therefore, x cannot be part
of an infinite chain and R2e is met.

Second, suppose there is no such stage t and node x . In this case, r2e has reached
its limit at stage s and every node added to T after stage s is added above r2e. Because
there are only finitely many nodes in T which are not above r2e, there cannot be an
infinite chain which is disjoint from T (r2e). Therefore, R2e is met.

The argument that R2e+1 is met is quite similar. Let s be the least stage such that
R2e+1 is never initialized after s and let r2e+1 denote the value of the parameter at
stage s. If there is no node x ∈ We such that r2e+1 � x , then R2e+1 never changes
the value of r2e+1 and there are only finitely many nodes of T which are not above
r2e+1. Any infinite antichain must intersect T (r2e+1), so R2e+1 is met.

If there is a node x ∈ We such that r2e+1 � x , then let x be the first such node
seen by R2e+1 after stage s. At this point, r2e+1 is redefined to be equal to x , so
there are only finitely many nodes in T which are not comparable to x . Hence, no
set containing x can be an infinite antichain. Therefore, R2e+1 is won. �

Theorem 6.4 Let L be any low set. There is an infinite binary branching com-
putable tree T such that T has no infinite chains or antichains computable from L.

Proof We need to meet the following requirements.

R2e : ϕL
e is not an infinite chain

R2e+1 : ϕL
e is not an infinite antichain

As in the proof of Theorem 6.3, we build T in stages and maintain the property that
each node x is either currently a leaf or else has exactly two immediate successors.
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Each requirement Ri keeps a parameter ri as before. The main change in this con-
struction is that the value of ri can change more than once (but still only finitely
often) after the last time Ri is initialized. As before, whenever a requirement ends a
stage, it initializes all lower priority requirements.

R2e keeps three parameters: r2e, r̂2e, and x2e. The r2e parameter is used as before
to force lower priority requirements to work above r2e. The r̂2e parameter is used
to store an “old value” of r2e in case our approximations to computations from L
change and we need to revert back to an earlier situation and wait for reconvergence.
The x2e parameter will be explained when it appears in the construction below.

When R2e first acts or if R2e has been initialized since its last action, it lets a be a
node such that r2e−1 � a and a is currently a leaf. It adds two new nodes b and c as
immediate successors of a in T , defines r̂2e = r2e = b, and ends the stage. At future
stages s, R2e requires lower priority strategies to work above r2e and it tries to decide
whether ∃x ∃t (r2e � x ∧ ϕL

e,t (x) = 1). This predicate is 6L
1 , so it is computable

from L ′ and hence from 0′ (since L is low). Fix the 10
2 predicate P(e, k) defined by

P(e, k) ⇔ ∃x ∃t (k � x ∧ ϕL
e,t (x) = 1).

Let P(e, k, s) be a computable approximation such that P(e, k) = lims P(e, k, s).
At stage s, R2e checks whether P(e, r̂2e, s) = 1. (Notice that r̂2e = r2e at this

point, so R2e is really checking whether P(e, r2e, s) = 1.) If not, then R2e has no
need to diagonalize and it lets R2e+1 act. If so, then R2e wants to find the least
witness x which appears to satisfy this existential statement. We define a second 10

2
predicate Q(x, u) by

Q(x, u) ⇔ ∀t (t > u → ϕL
e,t (x) = 1)

and fix a computable approximation Q(x, u, s) such that Q(x, u) = lims Q(x, u, s).
(The predicate Q(x, u) is computable from L ′, so it is 10

2 because L is low.) R2e
looks for the least x such that r̂2e = r2e � x and Q(x, s, s). If there is no such x then
R2e lets R2e+1 act and waits to check again at the next stage. Eventually, it must find
an x and s for which Q(x, s, s). (Of course, if P(e, r̂2e, s) changes from value 1 to
value 0 while R2e is waiting for such an x , it ends the stage and returns to waiting
for P(e, r̂2e, s) to have value 1.)

When R2e finds such an x , it defines its third parameter x2e = x . Let z be the
immediate predecessor of x2e and let y be the successor z which is not equal to x2e.
R2e sets r2e = y but leaves the value of r̂2e unchanged. That is, r̂2e retains the “old
value” of r2e. R2e ends the stage (and hence initializes the lower priority strategies
so that they will work above the new value of r2e in the future).

If P(e, r̂2e) really holds and x2e really is a correct witness for this existential
statement, then we have successfully diagonalized. However, it is possible that either
P(e, r̂2e) does not hold or that x2e is not a correct witness. Therefore, at each future
stage s, R2e continues to check whether P(e, r̂2e, s) = 1. If this value ever changes
to 0, then R2e redefines r2e to have value r2e = r̂2e, cancels its parameter x2e, ends the
stage, and returns to waiting for P(e, r̂2e, s) = 1. If P(e, r̂2e, s) retains its value of 1,
then R2e checks whether Q(x2e, s, s) still gives the value 1. If so, then R2e continues
to believe it has correctly diagonalized and lets R2e+1 act. If Q(x2e, s, s) = 0 at
some future stage s (while P(e, r̂2e, s) = 1), then R2e cancels the parameter x2e,
redefines r2e to have value r2e = r̂2e, ends the stage, and returns to looking for the
least x such that Q(x, s, s) = 1.
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To understand why this strategy eventually succeeds, let u be a stage such that
R2e is never initialized after u. At stage u, R2e defines r2e and r̂2e and it will never
change the value of r̂2e again. (The entire construction is finite injury so there is such
a stage.) Because P(e, r̂2e) is a 10

2 predicate, there is a t > u such that for all s > t ,
P(e, r̂2e, s) is either constantly 0 or constantly 1.

If P(e, r̂2e, s) is eventually constantly 0, then r2e will eventually be set perma-
nently equal to r̂2e. From this stage on, all nodes added to T are above r̂2e. Because
P(e, r̂2e) does not hold, ϕL

e does not place any elements from T (r̂2e) into its chain.
Because there are only finitely many elements of T outside of T (r̂2e), ϕL

e cannot
compute an infinite chain and R2e is met.

If P(e, r̂2e, s) is eventually constantly 1, then there is an x such that r̂2e � x
and x is a witness to the existential statement P(e, r̂2e). Because Q(x, u, s) is a 10

2
predicate and we look for the least witness x , R2e eventually defines x2e such that
Q(x2e, s, s) has reached its limit of 1. Both r2e and x2e have reached their limits
at this stage. After this stage, all elements added to T are above r2e and hence are
incomparable with x2e. Because ϕL

e (x2e) = 1, ϕL
e cannot compute an infinite chain

in T so R2e is met.
In either case, notice that r̂2e and r2e reach limits and that x2e either reaches a

limit or there is a stage after which it is never defined. Therefore, R2e only initializes
lower priority strategies finitely often.

The strategy to meet requirement R2e+1 is similar. R2e+1 also keeps three pa-
rameters r2e+1, r̂2e+1, and x2e+1. When it first acts (or after it has been initialized),
R2e+1 sets r̂2e+1 = r2e+1 = r2e and ends the stage.

At future stages, R2e+1 checks whether P(e, r̂2e+1, s) = 1. If not, it lets R2e+2
act. If so, it looks for the least x such that Q(x, s, s) = 1. If there is no such x , it
lets R2e+2 act next. If there is such an x , it sets x2e+1 = x , redefines r2e+1 so that
r2e+1 = x2e+1, and ends the stage. (As above, it leaves r̂2e+1 unchanged to mark
the “old value” of r2e+1. If P(e, r̂2e+1, s) changes values from 1 to 0 while R2e+1
is waiting for such an x , it ends the stage and returns to waiting for P(e, r̂2e+1, s) to
equal 1.)

Once x2e+1 is defined, R2e+1 continues to check whether P(e, r̂2e+1, s) = 1. If
this value ever changes to 0, it cancels x2e+1, redefines r2e+1 so that r2e+1 = r̂2e+1,
ends the stage, and returns to waiting for P(e, r̂2e+1, s) to equal 1. As long as
P(e, r̂2e+1, s) remains equal to 1, R2e+1 checks whether Q(x2e+1, s, s) continues
to equal 1. As long as it does, R2e+1 lets R2e+2 act. If Q(x2e+1, s, s) changes values
to 0, then R2e+1 cancels x2e+1, redefines r2e+1 to have value r2e+1 = r̂2e+1, ends the
stage, and returns to looking for the least x such that Q(x, s, s) = 1.

The analysis that R2e+1 eventually succeeds and that it initializes the lower pri-
ority requirements only finitely often is similar to the analysis given for R2e. The
details are left to the reader. �

There is no need to restrict ourselves to a single low set L in the proof of
Theorem 6.4. That is, essentially the same proof (with a little extra bookkeep-
ing in the indices) shows that if L i (for i ∈ N) is a sequence of uniformly low,
uniformly 10

2 sets, then there is an infinite binary branching computable tree T such
that T has no infinite chains and no infinite antichains computable from any of the
L i sets. By Jockusch and Soare [8] and Simpson [14], there is an ω-model M of
WKL0 such that the second-order part of M consists of all the sets in the Turing
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ideal generated by a sequence L0 6T L1 6T · · · of uniformly low, uniformly 10
2

sets. Thus, we obtain the following corollary.

Corollary 6.5 WKL0 is not strong enough to prove that every infinite binary
branching tree has either an infinite chain or an infinite antichain.

Notes

1. A discrete linear order is a linear order in which every element except the least has an im-
mediate predecessor and every element except the greatest has an immediate successor.

2. A Turing degree is called PA over 0′ if it can compute an infinite path through any infinite
0′-computable subtree of 2<ω.
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