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The Halting Problem Is Decidable on a Set of
Asymptotic Probability One

Joel David Hamkins and Alexei Miasnikov

Abstract The halting problem for Turing machines is decidable on a set of
asymptotic probability one. The proof is sensitive to the particular computational
models.

1 Introduction

The classical halting problem for Turing machines is perhaps the canonical undecid-
able set. Nevertheless, we provide an algorithm deciding almost all instances of it
with respect to what seems to be the most natural measure, the asymptotic density of
Turing machine programs. We take this result as a warning that the central concerns
of computability and complexity theory do not interact well with measure, and the
important issues can concentrate on sets of measure zero.

The main result places the halting problem within the “black hole” phenomenon
of complexity theory, occurring when the difficulty of an unfeasible problem is con-
fined to a very small region, a black hole, outside of which it is easily solved. For
example, we should not base an encryption scheme on such a problem if the intended
instances of it will respect the measure, for we should not allow that a criminal could
rob the bank 95% of the time or, indeed, any significant amount of the time. The
second author previously found the black hole phenomenon to arise in several group
theoretic decision problems and inquired whether the halting problem itself exhibited
such a black hole. Our main theorem shows that indeed it does.

The most natural method for measuring sets of Turing machine programs seems
to be asymptotic density. The asymptotic density or probability of a set B of Tur-
ing machine programs is the limit of the proportion of all n-state programs in B as
n increases. That is, if Pn is the set of all n-state programs, then the asymptotic
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probability of B is

µ(B) = lim
n→∞

|B ∩ Pn|

|Pn|
,

provided that this limit exists. If B has asymptotic probability one, for example, then
for sufficiently large n, more than 99% of all n-state programs are in B, and so on,
as close to 100% as desired.

Theorem 1.1 (Main Theorem) There is a set B of Turing machine programs such
that

(1) B has asymptotic probability one,
(2) B is polynomial time decidable,
(3) the halting problem H ∩ B is polynomial time decidable.

We will prove this theorem for a variety of computational models, but not for all
computational models, while discussing the relevant details of the models in full.

2 Proof of the Main Theorem for the Standard Model

Let us begin by proving the main theorem for what we call here the standard model
of Turing machine computation. In the standard model, we have a finite program
directing the operation of a head reading and writing 0s and 1s while moving on a
semi-infinite tape (infinite in one direction only), with a single halt state.

1 0 1

Head

1 1 0 0 · · · −→

In the standard model, the Turing machine has n states Q = { q1, . . . , qn }, with
q1 designated as the start state, plus a separate designated halt state, which is not
counted as one of the n states. A Turing machine program is a function

p : Q × { 0, 1 } → (Q ∪ { halt }) × { 0, 1 } × { L , R }.

The transition p(q, i) = 〈r, j, R〉, for example, directs that when the head is in state
q reading symbol i , it should change to state r , write symbol j , and move one cell
to the right. The computation of a program proceeds by iteratively performing the
instructions of such transition rules, halting when (and if) the halt state is reached. If
the machine attempts to move left from the left-most cell, then the head falls off the
tape and computation ceases. Since the domain of the program has size 2n and the
target space has size 4(n + 1), we can easily count the number of programs.

Lemma 2.1 In the standard model, there are (4(n + 1))2n many n-state Turing
machine programs.

As a warm-up exercise, let us calculate the asymptotic probability of the set of pro-
grams having no transition reaching the halt state. Such a criterion is clearly linear
time decidable (for any reasonable representation of programs by finite binary se-
quences), and no computation by such a program can ever reach the halt state.



The Halting Problem is Almost Decidable 517

Lemma 2.2 In the standard model, the collection of programs having no transition
reaching the halt state has asymptotic probability 1/e2, which is about 13.5%.

Proof If p has no transition reaching the halt state, then p : Q × { 0, 1 }

→ Q × { 0, 1 } × { L , R }. Since this target set has size 4n, the total number of
such functions is (4n)2n . The asymptotic proportion of all n-state programs with this
property is therefore

lim
n→∞

(4n)2n

(4(n + 1))2n = lim
n→∞

(
n

n + 1

)2n

= lim
n→∞

[(
1 −

1
n + 1

)n
]2

= 1/e2.

Therefore, the asymptotic probability that a Turing machine program does not en-
gage the halt state is 1/e2. �

Definition 2.3 The halting problem is the set H of programs p that halt when
computing on input 0 on a tape initially filled with 0s.

For the purposes of defining the halting problem H , one should specify whether it
officially counts as halting or not if the head should happen to fall off the left edge
of the tape. Although the truth of the main theorem will not depend on these details,
provided we adopt a uniform answer, let us be definite and regard such computations
as having not officially halted, as the halt state was not reached. Thus, we regard
H as the set of programs that eventually reach the halt state from an initially empty
tape. To be even more specific, if the head happens to fall off the tape while executing
the transition p(q, i) = 〈r, j, L〉, then we do not regard the state r as having been
achieved, since this step was not completed.

Proof of the Main Theorem Using the standard model, let B be the set of programs
that on input 0 either halt before repeating a state or fall off the tape before repeating
a state. Clearly, B is polynomial time decidable, since we need only run a program p
for at most n steps, where n is the number of states in p, to determine whether or not
it is in B. It is equally clear that the halting problem is polynomial time decidable for
programs p in B, since again we need only simulate p for n steps to know whether it
halted or fell off. What remains is to prove that this behavior occurs with asymptotic
probability one.

Lemma 2.4 In the standard model, for any fixed input and fixed integer k ≥ 0, the
set of programs not repeating states within the first k steps has asymptotic probability
one.

Proof Just to be clear, we count a computation that halts or falls off the tape as
satisfying the property if it does so before repeating a state. We calculate for large n
the proportion of all n-state programs having this property, by induction on k. When
k = 0, then all programs have the property. Suppose that the set Bk of programs hav-
ing the desired property for k has asymptotic probability one, and consider Bk+1. Fix
any ε, and choose n large enough so that Bk has proportion more than 1−ε/2 of all n-
state programs. Among all n-state programs p in Bk , consider the probability that p
is in Bk+1. If p leads to a computation where the head has already fallen off the tape,
then of course p ∈ Bk+1. Otherwise, the first k steps of computation by p have led
to the successive states qi0 , qi1 , . . . , qik , which have not yet repeated. The (k + 1)th
step of computation involves a transition rule p(qik , jk) = (qik+1 , jk+1, mk), giving
respectively the new state, the new bit to write on the tape and the direction to move
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the head. In order for p to be in Bk+1, it suffices that qik+1 must not be one of the
previously used states { qi0 , qi1 , . . . , qik }. Since there are (n + 1) − (k + 1) = n − k
many other equally likely states to choose from, the proportion of all n-state pro-
grams agreeing with p on the first k steps and satisfying the additional requirement
is n−k

n . The proportion of all n-state programs in Bk+1, consequently, is at least
(1 − ε/2)( n−k

n ). Since n−k
n goes to 1 as n becomes large, we may choose n large

enough so that this proportion is at least 1−ε. Thus, Bk+1 has asymptotic probability
one, as desired. �

Proceeding with the main argument, let Bk be the set of programs that do not repeat
a state within their first k steps of computation. The key idea is that for the first
k steps of computation, the programs in Bk behave statistically like a random walk
with uniform probability of going left or right. The reason is that if a program lands
in a totally new state q , reading some symbol i , then among the programs landing in
that situation and agreeing with the computation so far, exactly half of them will opt
to move left and half will move right, precisely because nothing about state q has yet
been determined. Because of this, we may make use of Polya’s classical result on
random walks, which we mention without proof.

Lemma 2.5 (Polya [2], see also, e.g., [1]) In the random walk with equal likelihood
of moving left or right on a semi-infinite tape, beginning on the left-most cell, the
probability of eventually falling off the left edge is 1.

This is the famous recurrence phenomenon, because it asserts that such a random
walk has probability one of eventually returning to its starting point. It follows that
with probability one the random walk reaches any given fixed position of the tape.
Interestingly, the recurrence property holds for random walks in dimensions one and
two, but not in dimensions three or higher.

Putting everything together, let us show that B has asymptotic probability one. Fix
any ε > 0 and, by Lemma 2.5, find some large k such that with probability exceeding
√

1 − ε, the k-step random walk falls off the left edge of the tape. By Lemma 2.4,
let n be large enough so that Bk contains more than the proportion

√
1 − ε of all

n-state programs. Combining these facts with the observation that programs in Bk
operate statistically like random walks for their first k steps of computation (or until
they halt, if this is sooner), as far as the head position is concerned, we conclude that
proportion at least (

√
1 − ε)2

= 1 − ε of all n-state programs exhibit the desired
property. So the set B of all such programs has asymptotic probability one, and the
theorem is proved. �

Let us now clarify matters by untangling the two possibilities for programs in B,
namely, (1) the programs that halt before repeating a state and (2) the programs that
fall off the tape before repeating a state. The fact is that behavior (1) is very rare and
behavior (2) occurs with asymptotic probability one.

Theorem 2.7 In the standard model, the asymptotic probability one behavior of a
Turing machine, on any fixed input, is that the head falls off the tape before halting
or repeating a state.

Proof First, we generalize Lemma 2.4 to exclude the possibility of halting.
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Lemma 2.8 In the standard model, for any fixed input and fixed integer k ≥ 0,
the set of programs not repeating states and not halting within the first k steps of
computation on that input has asymptotic probability one.

Proof Let Ck be the desired set of programs, which includes the programs that fall
off the tape within the first k steps of computation on that fixed input, provided that
they do so before repeating a state. As in Lemma 2.4, we show inductively that Ck
has asymptotic density one. When k = 0, this is trivial. Let us now calculate the
probability that a program p is in Ck+1, given that it is in Ck . If the head fell off
within k steps, then p will also be in Ck+1. Otherwise, as in Lemma 2.4, the first
k steps of computation exhibit states qi0 , qi1 , . . . , qik , which have not yet repeated.
The (k+1)th step of computation involves a transition p(qik , jk) = (qik+1 , jk+1, mk),
which will place p into Ck+1 if qik+1 is a new state and not the halt state. Since there
are n−(k +1) remaining states to choose from, the probability that p will be in Ck+1
is at least n−(k+1)

n . Since this probability goes to 1 as n goes to infinity, we conclude
that Ck+1 has asymptotic probability one. �

Now fix any ε > 0. Select k large enough so that the random walk in k steps has
probability exceeding

√
1 − ε of falling off the left edge. By Lemma 2.8, take n suf-

ficiently large so that the proportion of all n-state programs that do not halt in k steps
and do not repeat a state in k-steps is at least

√
1 − ε. Thus, as in the Main Theo-

rem, these computations behave statistically like random walks, as far as the head
position is concerned, and so the proportion of all n-state machines that fall off the
tape in k steps before repeating a state or halting is at least

√
1 − ε

√
1 − ε = 1 − ε,

as desired. �

Corollary 2.9 In the standard model, the halting problem H has asymptotic prob-
ability zero, and the complement of H contains a decidable set of asymptotic proba-
bility one.

Proof If the head falls off the tape, then the computation cannot reach the halt state,
and so the program is not in H . So H has probability zero. The set of programs that
fall off the tape before repeating a state or halting is contained in the complement
of H , is clearly polynomial time decidable, and, by Theorem 2.7, has asymptotic
probability one. �

The previous corollary depends on the formalism that computations for which the
head falls off the tape are not counted as halting. If one wishes instead to count
them as halting, then the conclusion would be that the corresponding version of H
would have asymptotic probability one and contain a decidable set of asymptotic
probability one.

Because the computational behavior identified in Theorem 2.7, with the head
falling off the tape before a state is repeated, is both typical and trivial, many other
well-known undecidability problems for Turing machines can also be decided with
asymptotic probability one. We give two examples.

Definition 2.10 Let FIN be the set of programs computing functions on N with
finite domain and COF be the set of programs with cofinite domain. These sets are
well known to be undecidable (see, e.g., [3]).
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Corollary 2.11 In the standard model, there is a set B of programs such that

(1) B has asymptotic probability one,
(2) B is polynomial time decidable,
(3) FIN ∩ B is polynomial time decidable,
(4) COF ∩ B is polynomial time decidable.

Proof For the purposes of computing functions on N, we assume that input on a
Turing machine tape is given by a string of 1s, that is, in unary form. Let B be the
set of programs that fall off the tape before halting or repeating a state, on a tape
initially filled entirely with 1s. This set is clearly polynomial time decidable, and by
Theorem 2.7, it has asymptotic probability one. But any program that falls off the
tape will have had a chance to inspect only finitely many of the 1s on the tape before
doing so, and so the program will have this same behavior provided that there is a
sufficiently long string of 1s on the tape as input. So every program in B is in FIN
and none are in COF. On B, therefore, these questions are decidable. �

The previous proof shows that almost every program computes a finite function. In
other words, FIN has asymptotic probability one and COF has asymptotic probability
zero. Taking the domains of the computable functions as the natural enumeration of
the computably enumerable (c.e.) sets, this means that almost every c.e. set is finite.

The general conclusion that we make from the main theorem and these corollaries
is that the central concerns of computability theory and complexity theory do not
interact well with the natural measure, and the most important phenomena occur on
sets of measure zero. This is a negative conclusion, since it shows that one should
not expect interesting complexity issues to arise with probability one.

We resist the argument that the Turing machine programs in our set B of the main
theorem are “meaningless” programs that should not be counted as within the domain
of discourse. First, we note that programs in B may have better behavior on other
inputs, and so it would be wrong to exclude the programs entirely, based merely on
their behavior on the input 0; we do not yet know whether programs have probability
one of falling off the tape on all their input. Second, we observe that the programs are
not meaningless, for they each determine a well-defined computational behavior; it is
just that with probability one, this behavior is trivial in a certain way. Third, although
the programs do fall off the tape, at least some of them leave behind computationally
interesting information on the tape, and so it would be incorrect to characterize them
as being uniformly noncomputational. Finally, we believe that the space of all Turing
machine programs is defined with very natural boundaries—any syntactically correct
complete sequence of instructions is allowed—and we would find it unnatural to
define the program space with any except a purely syntactic criteria.

3 Other Computational Models

Let us turn now to the question of whether the conclusions of the main theorem hold
for other models of Turing machine computability. First, we observe that the argu-
ment of the main theorem applies directly to several other common Turing machine
models.
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Corollary 3.1 The conclusion of the main theorem holds for the following models
of computability.

(1) Single tape Turing machines with an arbitrary finite alphabet, operating on
a semi-infinite tape.

(2) Multitape Turing machines with an arbitrary finite alphabet, operating on
semi-infinite tapes.

(3) Turing machines with an arbitrary finite alphabet, operating with a head
moving on a half-plane or quarter-plane grid of cells.

Proof The corollary is proved merely by observing that the calculations of
Lemma 2.4 do not fundamentally rely on the size of the alphabet, and so in the
case of a general alphabet, it is still true that for any k the set of programs that adopt
new states for their first k moves has asymptotic probability one. Because these
programs therefore act like a random walk for the first k steps, the probability that
they fall off the left end of the tape can be made as close to 1 as possible. So (1)
holds. For the multitape model of (2), we assume that there is a single head moving
back and forth, reading and writing on all columns at once. This is functionally
equivalent to having a larger alphabet, if one regards an entire column of cell values
as a single element of a larger alphabet. So (2) holds. For (3), we observe that first,
the analogue of Lemma 2.4 remains true, and second, the desired conclusion now
follows from the two-dimensional generalization of Lemma 2.5, by which random
walks on a half-plane (or any smaller portion of the plane), eventually fall off the
edge with probability one. �

The result also applies to 2-dimensional Turing machines operating on a full doubly-
infinite plane, provided that it has at least one broken cell, which is broken in the
sense that it causes the computation to cease if the head should happen to occupy it.
The point is that because of the 2-dimensional analogue of Polya’s recurrence theo-
rem, on any fixed input such a Turing machine would, with asymptotic probability
one, land on the forbidden cell before repeating a state.

The reader will have already observed that our argument does not work, of course,
with the computational models having bi-infinite tapes, where there is no possibility
of the head falling off. Nevertheless, by means of a totally different argument, we
will now establish the conclusions of the main theorem for at least some of the bi-
infinite tape models.

Specifically, consider the halting subset model of computation, which augments
any of the usual Turing machine models by specifying not a single distinguished
halt state, but rather by specifying a subset of the states to be halting states. In this
model, we have a finite set of states Q = { q1, . . . , qn }, and a program is specified
by providing a transition function p : Q ×{0, 1} → Q ×{0, 1}× {L , R} and also by
listing a subset A ⊆ Q of the states, decreed to be the halting states. Computation
proceeds in the ordinary manner until a state is reached that is an element of the set
A of halting states, at which point the computation halts. This model of computation
works equally well with bi-infinite or semi-infinite tapes (or planar or multidimen-
sional tapes, as desired, with suitable modifications to the instruction set to allow for
appropriate head movement).
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Theorem 3.2 The conclusion of the main theorem holds for the halting subset
model of Turing machine computation using any sort of tape configuration and any
finite alphabet.

Proof The idea of this proof is that since each state has a 50% chance of being
a halting state, it is very likely for the computation to halt very quickly. For defi-
niteness, let us consider initially the bi-infinite tape halting subset model. Let B be
the set of programs that halt before repeating a state on input 0. This is clearly a
polynomial time decidable set, and the halting problem for programs in B is easily
decided (because all programs in B halt). It remains to show that B has asymptotic
probability one. For any natural number k, the arguments of the main theorem, and
specifically Lemma 2.4, show that there is a measure one set of programs that do not
repeat states for the first k steps of computation (or halt before k steps without hav-
ing repeated a state). Among the programs that do not repeat states for k steps, each
new state has an independent 50% chance of being a halting state. So the chance of
halting in these k steps, given that no states have been repeated, is 1−2−k . Thus, the
asymptotic probability of B exceeds 1 − 2−k for every k, and so it has measure one,
as desired. The argument works just as well with the halting subset models of com-
putation using other tape configurations by modifying B to include all programs that
either halt or cease computation before repeating a state. The essential calculation
above shows that this set has asymptotic measure one, is polynomial time decidable,
and for programs in this set, the halting problem is polynomial time decidable, as
desired. �

Unfortunately, we do not know whether the conclusions of the main theorem hold
for the relatively common model of Turing machine computation having a bi-infinite
tape and a single halt state. Neither do we know whether it holds for the semi-
infinite tape models that allow computation somehow to continue after attempting
to move left from the left-most cell. We admit that this situation is unsatisfactory,
because one doesn’t like results in computability theory to be sensitive to the choice
of computational model.

Question 3.3 Does the conclusion of the Main Theorem hold for all the usual
models of Turing machine computation?

The current focus, of course, is on the bi-infinite tape model with a single halt state.
One can weaken the desired conclusion by asking only that the halting problem be
decided on a set of large probability, rather than probability one. If one asks only
to decide the problem on a set of nonzero probability, then this is a consequence of
Lemma 2.2.

Theorem 3.4 For any of the single halt state models of Turing machine, including
those with bi-infinite tapes, there is a set B of Turing machine programs such that

(1) B has nonzero asymptotic probability,
(2) B is polynomial time decidable,
(3) the halting problem H ∩ B is polynomial time decidable.

Proof The set of programs arising in Lemma 2.2, which have no transition leading
to the halt state, has asymptotic probability 1/e2, but clearly no such program is in
H . �
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Question 3.5 In Theorem 3.4, how large can the probability of B be? Can one
always decide the halting problem in an asymptotic majority of cases?

We close the paper by emphasizing that the relation of Turing equivalence does not
respect asymptotic probability.

Theorem 3.6 The relation of Turing equivalence does not respect the property of
having asymptotic probability one in the natural numbers. Indeed, for any set A of
natural numbers there is a set B =T A that is Turing equivalent to A and has any
prescribed asymptotic computable probability or nonconvergent probability.

Proof If a set A has asymptotic probability one in the natural numbers, then the
complement of A, which is Turing equivalent to A, has asymptotic probability zero.
But also, any set A is Turing equivalent to a set with asymptotic probability zero by
simply multiplying its second member by 2, its third member by 3, and so on, so as
to stretch it out to density zero. The complement of this set, which is also Turing
equivalent, has asymptotic probability one. Intermediate densities can be achieved
by adding regular blocks of numbers in a computable pattern so as to achieve a given
intermediate computable probability while the true information is coded on a thin set
of probability zero. By alternating blocks of numbers with large empty stretches, one
can arrange that the asymptotic probability of the set does not converge and even that
the upper density is 1 while the lower density is 0 (or any other intermediate values).
Meanwhile, the true information of the set is coded on a thin set, of probability zero,
which does not upset those calculations. �

Finally, we note that with many models of computability, the notion of what happens
“almost everywhere” can be highly sensitive to what are otherwise unimportant dif-
ferences in formalism. For example, if one takes as the basic model of computability
a suitable generalization of C++ programs, then most would agree that for the usual
purposes it is an irrelevant formalism whether one excludes programs at the out-
set that have syntax errors preventing them from compiling or instead takes them
to compute the empty function. But if they were officially counted, then because
clearly there are far more programs with errors than without, it would mean that al-
most every program would be trivial in this way. For such a model, all interesting
phenomena would occur on a set of asymptotic density zero.
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